JPS6057168B2 - composite contact - Google Patents

composite contact

Info

Publication number
JPS6057168B2
JPS6057168B2 JP3821978A JP3821978A JPS6057168B2 JP S6057168 B2 JPS6057168 B2 JP S6057168B2 JP 3821978 A JP3821978 A JP 3821978A JP 3821978 A JP3821978 A JP 3821978A JP S6057168 B2 JPS6057168 B2 JP S6057168B2
Authority
JP
Japan
Prior art keywords
layer
contact
aucu
alloy
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3821978A
Other languages
Japanese (ja)
Other versions
JPS54130436A (en
Inventor
公志 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP3821978A priority Critical patent/JPS6057168B2/en
Publication of JPS54130436A publication Critical patent/JPS54130436A/en
Publication of JPS6057168B2 publication Critical patent/JPS6057168B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Contacts (AREA)

Description

【発明の詳細な説明】 本発明は比較的低接触圧て使用される複合接点に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to composite contacts that are used with relatively low contact pressures.

従来からスイッチング接点としては、貴金属およびそ
の合金の接点がよく知られており、特に、Au(金)系
接点の白金系(白金、ロジウム、ルテニウム等)接点が
よく使用されている。
Conventionally, contacts made of noble metals and alloys thereof are well known as switching contacts, and in particular, contacts made of platinum (platinum, rhodium, ruthenium, etc.) of Au (gold) are often used.

AuおよびAu合金のAu系接点は比較的融点および硬
度が低く、そのために、接点負荷が重負荷(例えば20
V、IA)の場合に使用したときに、接点開閉時に発生
するアーク熱による溶着、変形が生じ易く、又、接点同
士を接触させたON状態で通電した時に、接点同士が互
いにひつつき合い開離不能となる、いわゆる粘着障害が
生じ易いものであつた。しかし、一方Au系接点は、耐
触性および耐雰囲気性には優れており、そのため軽負荷
での使用時では、接点開閉回数が進んでも接点接触抵抗
は増大せず比較的安定している長所があつた。 又、白
金系接点では、融点および硬度が高いため重負荷での使
用時では、溶着、変形や粘着障害を生じないものである
が、軽負荷時では白金系接点特有の絶縁性の有ポリマー
である薄い膜状の、いわゆるブラウンパウダーが発生し
、そのため接点開閉回数が進むと接触抵抗が増大し、接
良不良(ミス)を生じる欠点があり、又、初期接触抵抗
が高い(50mΩ以上)という欠点、すなわち、特に低
接触圧で使用される場合、例えばリレー用の接点におい
て初期接触抵抗が高いということはノイズの原因となつ
て、問題となつていた。 第一の発明は以上のような実
情に鑑みて為されたものであり、その目的とするところ
は、Au系接点の弱点である重負荷での開閉時における
溶着変形、粘着をなくし、初期接触抵抗が低く安定しか
つ高寿命の接点を提供するところにある。
Au-based contacts of Au and Au alloys have relatively low melting points and hardnesses, which allows the contact loads to be heavy (e.g. 20
When used in the case of V, IA), welding and deformation are likely to occur due to the arc heat generated when the contacts open and close, and when the contacts are in contact with each other and energized, the contacts may stick to each other and open. It was easy to cause so-called adhesion failure, which made it impossible to use the adhesive. However, on the other hand, Au-based contacts have excellent contact resistance and atmosphere resistance, and therefore, when used under light loads, the contact resistance does not increase and is relatively stable even as the number of times the contact opens and closes increases. It was hot. In addition, platinum-based contacts have a high melting point and hardness, so they do not cause welding, deformation, or adhesion problems when used under heavy loads, but when used under light loads, the insulating polymer unique to platinum-based contacts A certain thin film-like so-called brown powder is generated, and as a result, the contact resistance increases as the number of times the contact is opened and closed, resulting in poor connection (mistakes).Also, the initial contact resistance is high (50 mΩ or more). The disadvantage, particularly when used with low contact pressures, is the high initial contact resistance, for example in contacts for relays, which is a source of noise and has been a problem. The first invention was made in view of the above-mentioned circumstances, and its purpose is to eliminate welding deformation and adhesion during opening and closing under heavy loads, which are the weak points of Au-based contacts, and to improve initial contact. Its purpose is to provide contacts with low resistance, stability, and long life.

本発明者は、比較的低接触圧で使用される接点例えば
リレー用接点等の材料として種々のAu系の材料につい
て検討した結果、AuとCuとのAuCu合金(Cu0
.1〜1喧量%)中にある複合粒子と井桁、分散させた
AuCu系材料を用いた接点材料が比較的重負荷(例え
ば20V,1A)での接点開閉で優れていることを見い
だした。しかしながらその複合粒子には次の特性が要求
される。すなわち、(1)硬度が非常に高いこと。
The present inventor investigated various Au-based materials as materials for contacts used with relatively low contact pressure, such as relay contacts, and found that an AuCu alloy of Au and Cu (Cu0
.. It has been found that a contact material using AuCu-based materials dispersed with composite particles and cross-linkers (1 to 1% by mass) is excellent in contact opening and closing under relatively heavy loads (e.g., 20 V, 1 A). However, the composite particles are required to have the following properties. That is, (1) hardness is extremely high.

(2)融点が高いこと。(2) It has a high melting point.

(3)大気中での種々の腐触性ガスに対し安定している
こと。
(3) Stable against various corrosive gases in the atmosphere.

(4)耐酸化性が大きいこと。(4) High oxidation resistance.

(5)導電性であること。(5) Be conductive.

が要求される。is required.

そこで、本発明者らはこのような特性を持つ複合粒子に
ついて研究を進めた結果、タングステンカーバイド(W
C)粒子が上記特性を有し、かつ量産性と低価格を具備
したものであることを見いだし第一の発明を完成した。
すなわち、第一の発明はAuCu合金中にタングステン
カーバイド粒子を分散させてなる合金層を接点表面とし
たことに特徴を有し、WC粒子をAuCu合金中に分散
させたことにより、AuCu合金を複合強化し、その結
果Au系接点の弱点である重負荷での接点開閉において
溶着、粘着及び変形のない高性能の複合接点が得られた
Therefore, the present inventors conducted research on composite particles with such characteristics and found that tungsten carbide (W
C) The first invention was completed by discovering that the particles had the above-mentioned characteristics and were mass-producible and inexpensive.
That is, the first invention is characterized in that the contact surface is an alloy layer formed by dispersing tungsten carbide particles in an AuCu alloy, and by dispersing WC particles in the AuCu alloy, the AuCu alloy is As a result, a high-performance composite contact was obtained that is free from welding, adhesion, and deformation when opening and closing contacts under heavy loads, which are the weak points of Au-based contacts.

上記WC粒子の粒径は10μ以下が好ましく、その共析
量は30〜50V01%(容量%)が好ましいもので、
そしてAuCu−WC合金層の厚みは1〜15μが好ま
しく、その場合には、効果が顕著に現われ、最も好まし
いのは、WC粒子の粒径1μ、共析量40■0I%、層
厚3〜5μであることがわかつた。そしてAuCu−W
C合金層の母材(基材)となるAuCu合金について述
べる。純Auは非常に軟かく(ビッカース硬さHv8O
〜90)、機械的強度に弱いものであり、その糾Au中
に複合粒子を共析させて、複合強化を図つても、その効
果は弱く、重負荷で接点開閉したとき溶着障害を生じる
ことがわかつた。しかし、接触抵抗が顕著に増大しない
程度に.Auの合金化を図り、硬度の上昇および機械的
強度の増大を図る必要があつた。そこで、発明者等は、
CuをAuに合金化させることにより、硬度がビッカー
ス硬さHV2OO程度にまでするAuCu合金を選択し
た。第1図にWC粒子径を1μ、CUl重・量%AuC
u−WC合金層厚を3μとして形成したときの複合接点
のWC粒子の共析量■(VOl%)と20V,1Aでの
接点寿命N(接点開閉回路)の関係を示す。縦軸は接点
寿命N1横軸は共析量Vを示し、図において、WCの共
析量が40V01%のところが最も寿命が長く、高性能
であることを示しWCの共析量が、40V01%のとこ
ろが最も好ましいことがわかつた。次に、AuCu−W
C合金接点表面度の製造方法の一例を述べる。例えば、
AuCu合金を接点母材上に電着させると共に、WCが
共析する複合めつき方法により、ALlCU一WC接点
表面層を形成させる。すなわち、メッキ液中にWC粒子
を混入せしめ、十分攪拌後、通電ノし、めつきするもの
である。この複合めつき法により、AuCu合金中にW
C粒子が均一に分散する。AuCu−WC接点表面層を
得ることができた。第二の発明について述べる。
The particle size of the WC particles is preferably 10μ or less, and the amount of eutectoid is preferably 30 to 50 V01% (volume %),
The thickness of the AuCu-WC alloy layer is preferably 1 to 15 μm. In that case, the effect will be noticeable, and the most preferable is the particle size of the WC particles of 1 μm, the eutectoid content of 40%, and the layer thickness of 3 to 15 μm. It was found to be 5μ. and AuCu-W
The AuCu alloy that is the base material of the C alloy layer will be described. Pure Au is very soft (Vickers hardness Hv8O)
~90), has weak mechanical strength, and even if composite particles are eutectoided in the compacted Au to strengthen the composite, the effect is weak and welding failure may occur when the contacts are opened and closed under heavy loads. I understood. However, to the extent that the contact resistance does not increase significantly. It was necessary to increase the hardness and mechanical strength by alloying Au. Therefore, the inventors
An AuCu alloy whose hardness reaches a Vickers hardness of approximately HV2OO was selected by alloying Cu with Au. Figure 1 shows that the WC particle size is 1μ, and the weight of CUL is %AuC.
The relationship between the eutectoid amount (VOl%) of WC particles of a composite contact and the contact life N (contact opening/closing circuit) at 20 V and 1 A when the u-WC alloy layer thickness is 3 μm is shown. The vertical axis shows the contact life N1 and the horizontal axis shows the eutectoid amount V. In the figure, the eutectoid amount of WC is 40V01%, which indicates the longest life and high performance. However, it turned out to be the most preferable. Next, AuCu-W
An example of a method for manufacturing a C alloy contact surface will be described. for example,
The ALlCU-WC contact surface layer is formed by a composite plating method in which AuCu alloy is electrodeposited on the contact base material and WC is eutectoid. That is, WC particles are mixed into a plating solution, stirred thoroughly, and then energized to perform plating. This composite plating method allows W to be added into the AuCu alloy.
C particles are uniformly dispersed. An AuCu-WC contact surface layer could be obtained. The second invention will be described.

本発明者はさらに研究を進めた結果、第一の発明である
接点母材上にAuCu−WC合金の接点表面層を形成し
た上に、純Au層を形成させることにより、軽負荷(例
えば100mV,1mA)の接点開閉時に開閉動作回数
が進行しても接点接触抵”抗をよソー層安定化させるこ
とができることを見いだし第二の発明を完成した。
As a result of further research, the inventors of the present invention found that by forming a pure Au layer on top of a contact surface layer of AuCu-WC alloy on the contact base material, which is the first invention, a light load (for example, 100 mV , 1 mA), it was discovered that the contact resistance could be stabilized even as the number of opening/closing operations progressed, and the second invention was completed.

すなわち、第二の発明はタングステンカーバイド粒子を
AuCu合金中に分散させてなる合金接点表面層の表面
に純Au層を形成したところに特徴を有し、AuCu−
WC合金層上に純Au層を形成したことにより、接点開
閉時にAuCu−WC合金層のCuの配化を防止し、接
点接触抵抗をよソー層安定化させるものである。
That is, the second invention is characterized in that a pure Au layer is formed on the surface of an alloy contact surface layer made by dispersing tungsten carbide particles in an AuCu alloy.
By forming a pure Au layer on the WC alloy layer, it is possible to prevent Cu from forming in the AuCu-WC alloy layer when the contact is opened and closed, thereby stabilizing the contact resistance of the contact.

つぎに、純Au層について詳しく述べる。純Au層の厚
さが小さすぎると上記の効果が小さくなり、逆に厚さが
大きすぎると重負荷時の接点開閉時に、アーク熱により
AuCu−WC合金層へ純Au層のAuが拡散し、接点
表面のCu濃度を相対的に下げ、このため溶着が生じや
すく、接点寿命の劣化原因となり、問題となる。このよ
うなことから、本発明者は種々検討した結果、純Au層
の厚みは、0.1〜0.5μが好ましく最も好ましいの
は0.2〜0.3μであることがわかつた。次に、第三
、第四の発明について述べる。
Next, the pure Au layer will be described in detail. If the thickness of the pure Au layer is too small, the above effect will be reduced, and if the thickness is too large, the Au in the pure Au layer will diffuse into the AuCu-WC alloy layer due to arc heat when opening and closing the contacts under heavy loads. , the Cu concentration on the contact surface is relatively lowered, and therefore welding is likely to occur, causing deterioration of the contact life, which poses a problem. For this reason, the inventors of the present invention have conducted various studies and found that the thickness of the pure Au layer is preferably 0.1 to 0.5 μm, and most preferably 0.2 to 0.3 μm. Next, the third and fourth inventions will be described.

上述の第一、第二の発明において、AuCu−WC合金
層を接点母材(一般にFe系材料)にメッキするには、
密着性が比較的良くなく、本発明者は、研究を進めた結
果、接点母材とAuCu−WC合金層との間に下地材を
介在させることにより、両者の結合を非常に良くするこ
とを見いだした。
In the first and second inventions described above, in order to plate the AuCu-WC alloy layer on the contact base material (generally Fe-based material),
The adhesion was relatively poor, and as a result of research, the present inventor found that by interposing a base material between the contact base material and the AuCu-WC alloy layer, the bonding between the two could be greatly improved. I found it.

しかしながらこの下地には、つぎの特性が要求される。
すなわち、(1)AUCU−WC層との密着性がよいこ
と。
However, this base is required to have the following properties.
That is, (1) good adhesion with the AUCU-WC layer.

(2)融点が高いこと(アーク熱により下地がAuCu
−WC層と合金化して融点が下がることが予想されるか
ら)。(3)熱伝導率が大きいこと(溶着を防ぐため)
。(4)導電率が高いこと。(5)接点母材との密着性
が高いこと。
(2) It has a high melting point (the base is made of AuCu due to arc heat)
- It is expected that the melting point will be lowered by alloying with the WC layer). (3) High thermal conductivity (to prevent welding)
. (4) High conductivity. (5) High adhesion to the contact base material.

(6)接点母材成分(Fe)が拡散により接点表面に析
出しないように接点母材成分の拡散率が小さいこと。
(6) The diffusivity of the contact base material component (Fe) must be low so that the contact base material component (Fe) does not precipitate on the contact surface due to diffusion.

が要求される。is required.

そこで、本発明者はこのような特性をもつ下地について
さらに研究を進めた結果、下地を2層構造とし、接点母
材上に、下地として順次Cu層,Ni層を形成すること
によりAuCu−WC合金層と接点母材を強固に結合す
ることを見いだした。すなわちNi層は接点表面部分を
構成するAuCu一WC層と密着性がよく、かつ融点が
高く接点の溶着を防ぐことができ、接点母材であるFe
等の拡散率が小さい。
Therefore, as a result of further research on the base material having such characteristics, the present inventors developed a two-layer structure for the base material, and formed a Cu layer and a Ni layer as the base layer on the contact base material in order to form AuCu-WC. It was discovered that the alloy layer and the contact base material can be strongly bonded. In other words, the Ni layer has good adhesion to the AuCu-WC layer constituting the contact surface portion, has a high melting point, and can prevent welding of the contact, and has good adhesion to the AuCu-WC layer that constitutes the contact surface, and has a high melting point to prevent welding of the contact.
etc., the diffusion rate is small.

しかしながら、Ni層は接点母材との密着性が悪い。そ
こで、このNi層と接点母材の間に、その両者と密着性
のよいCu層を介在させ、両者を結合させたのである。
Cu層は、熱および電気伝導度がよいため、接点の耐溶
着性向上に寄与する。また、Ni層は拡散率が小さいた
め、Cu層の拡散も抑制する。すなわち、この2層構造
の下地は、前述の下地として要求される全ての特性を備
えている。下地について詳しく述べる。下地を構成する
Ni層とCu層の厚さが小さいと上記の効果が小さくな
る。逆に、厚みが大きいとコストアップを招き、特にN
i層では導体抵抗の上昇及び熱伝導率が低いことに基づ
く接点温度の上昇が問題となる。本発明者は、このよう
なことから、種々検討した結果、Ni層及びCu層の厚
さは、それぞれ1〜5μが好ましく、最も好ましいのは
3μであることがわかつた。すなわち以上のように第三
の発明では、接点母材上に順次Cu層、U1層およびA
uCu−WC合金接点表面層を形成した複合接点であり
、第四の発明では接点母材上に順次Cu層,Si層,A
uCu−WC合金層および純Au層を形成した複合接点
である。
However, the Ni layer has poor adhesion to the contact base material. Therefore, a Cu layer having good adhesion to the Ni layer and the contact base material was interposed between the Ni layer and the contact base material to bond them together.
Since the Cu layer has good thermal and electrical conductivity, it contributes to improving the welding resistance of the contact. Furthermore, since the Ni layer has a low diffusion rate, it also suppresses the diffusion of the Cu layer. That is, this two-layer structure base has all the characteristics required of the base described above. Let's talk about the base in detail. If the thickness of the Ni layer and Cu layer constituting the base is small, the above effect will be reduced. On the other hand, if the thickness is large, the cost will increase, especially for N.
The problem with the i-layer is an increase in contact temperature due to an increase in conductor resistance and low thermal conductivity. As a result of various studies, the inventors of the present invention have found that the thickness of the Ni layer and the Cu layer is preferably 1 to 5 microns, and most preferably 3 microns. That is, as described above, in the third invention, the Cu layer, the U1 layer and the A layer are sequentially formed on the contact base material.
It is a composite contact in which a uCu-WC alloy contact surface layer is formed, and in the fourth invention, a Cu layer, a Si layer, and an A layer are sequentially formed on the contact base material.
This is a composite contact formed with a uCu-WC alloy layer and a pure Au layer.

そしてこのように構成された複合接点実施例の拡大断面
図を図に示す。第2図は第三の発明の複合接点の拡大断
面図であり、第3図は第四の発明の複合接点の拡大断面
図である。第2図において、1はFe系材料からなる接
点母材、2はCu層、3はNi層、4はCu層2とNi
層3からなる下地、5は接点表層を構成するAuCu−
WC合金層である。このAuCu−WC合金層5は、A
uCu合金5a中にWC粒子5bを分散させて構成され
ている。第3図において、6は純Au層で、AuCu−
WC合金層5上に形成されている。以上の第一、第二、
第三、第四の発明のいづれもAuCu合金中にWC粒子
を分散させてなるところのAuCu−WC合金層を用い
ているところに共通点がある。
The figure shows an enlarged cross-sectional view of an embodiment of the composite contact configured in this manner. FIG. 2 is an enlarged sectional view of the composite contact of the third invention, and FIG. 3 is an enlarged sectional view of the composite contact of the fourth invention. In Fig. 2, 1 is a contact base material made of Fe-based material, 2 is a Cu layer, 3 is a Ni layer, and 4 is a contact base material made of Fe-based material.
Layer 3 is the base layer, 5 is AuCu- which constitutes the contact surface layer.
This is a WC alloy layer. This AuCu-WC alloy layer 5 is made of A
It is constructed by dispersing WC particles 5b in a uCu alloy 5a. In Fig. 3, 6 is a pure Au layer;
It is formed on the WC alloy layer 5. The first, second,
Both the third and fourth inventions have a common feature in that they use an AuCu-WC alloy layer formed by dispersing WC particles in an AuCu alloy.

以上要するに、第一の発明の複合接点は、AuCu合金
中にWC粒子を分散させたAuCu−WC合金層を接点
の表面層としたため、重負荷での接点開閉時に、接点間
の溶着、粘着障害を防ぎ、かつWC粒子は導電性である
ため、AuCu合金中にWC粒子を分散させても、接触
抵抗は増大せす、AuCu合金とほぼ同一となり、その
ため、初期接触抵抗は低く、かつ安定しており、かつ、
WC粒子により摩耗が少ないため接点開閉回数が進んで
も接触抵抗が低く、安定している。
In summary, in the composite contact of the first invention, since the surface layer of the contact is an AuCu-WC alloy layer in which WC particles are dispersed in the AuCu alloy, welding between the contacts and adhesion problems occur when the contacts are opened and closed under heavy loads. In addition, since WC particles are conductive, dispersing WC particles in AuCu alloy does not increase the contact resistance, but it becomes almost the same as AuCu alloy, so the initial contact resistance is low and stable. and
Since the WC particles cause less wear, contact resistance remains low and stable even as the number of times the contact opens and closes increases.

したがつて、接点は高寿命となる。第二の発明の複合接
点は、耐触性のよいAuCu一WC合金表面層上に、さ
らに純Auをフラッシュ(薄い層)して、純Au層を形
成しているため、接ノ点開閉回数が進行しても腐獣生成
物ができず、そして、AuCu−WC合金層のCuを配
化させず、接触抵抗をよソー層、低く安定させることに
なり、そのため接触障害が生じさせない効有を有する。
Therefore, the contact has a long life. The composite contact of the second invention has a pure Au layer formed by flashing (thin layer) pure Au on the surface layer of the AuCu-WC alloy with good contact resistance. Even if the process progresses, carrion products are not formed, and the Cu in the AuCu-WC alloy layer is not distributed, making the contact resistance low and stable, which is effective in preventing contact failure. has.

かつ第二の発明の複合接点は、第一の発明の効果7をす
べて持つており、重負荷から軽負荷までの接点開閉時に
、接点開閉回数が進行しても、接触抵抗は安定しており
、高容量・ドライ兼用の接点を得ることができる。第三
の発明の複合接点は、AuCu−WC合金層フと接点母
材との間に下地としてCu層およびNi層をを介在させ
たため、接点が長寿命となり、下地の作用によりAuC
u−WC合金層が強固に接点用材に密着固定され、かつ
下地により接点母材の拡散が抑制されて耐腐触性が向上
する効果を有する。
Moreover, the composite contact of the second invention has all of the effects 7 of the first invention, and the contact resistance is stable even when the number of times the contact opens and closes increases during contact opening and closing from heavy loads to light loads. , high capacity and dry contacts can be obtained. The composite contact of the third invention has a Cu layer and a Ni layer interposed as a base between the AuCu-WC alloy layer and the contact base material, so the contact has a long life and the AuCu
The u-WC alloy layer is tightly fixed to the contact material, and the base material suppresses diffusion of the contact base material, thereby improving corrosion resistance.

第四の発明の複合接点は、接点母材上に順次Cu層、S
i層、AuCu−WC合金層および純AuWを形成した
ので以上の第一、第二、第三の発明の効果のすべてを有
している。
The composite contact of the fourth invention includes a Cu layer and an S layer on the contact base material.
Since the i-layer, the AuCu-WC alloy layer, and pure AuW are formed, all of the effects of the first, second, and third inventions described above are obtained.

すなわち、重負荷から軽負荷までの接点開閉時に、接点
点開閉回数が進行しても、接触抵抗は低く安定しており
、溶着、粘着や変形等の障害が生じず、かつ接点母材と
AuCu−WC合金層とが強固に密着固定され、接点母
材の拡散が抑制され、耐腐触性が向上され、したがつて
接点寿命が非常に長くできるという効果を有する。つぎ
に実施例を説明する。
In other words, even when the contact opens and closes from heavy loads to light loads, the contact resistance remains low and stable even if the number of times the contact opens and closes increases, and problems such as welding, adhesion, and deformation do not occur, and the contact base material and AuCu - The WC alloy layer is tightly fixed, diffusion of the contact base material is suppressed, corrosion resistance is improved, and the life of the contact can be extremely extended. Next, an example will be explained.

(第一発明の実施例) 〔実施例1〕 AuCu−WC合金層は、Auの機械的強度を増大させ
るために、Cuを1重量%だけAu中固溶させ、このA
uCu合金中にWC粒子を共析させたものである。
(Example of the first invention) [Example 1] In order to increase the mechanical strength of Au, the AuCu-WC alloy layer is made by dissolving 1% by weight of Cu in Au and using this A
WC particles are eutectoid in a uCu alloy.

これらは複合めつき法による電解析出で得られたもので
ある。すなわち、AuCu合金めつき液(商品名:ニユ
ートロネツクス240,日本エレクトロプレーテイング
エンジニヤーズ社製)を使用し、その液中にWC粒子を
混入し、複合めつきを行ない、接点母材上にAuCu−
WC合金層を形成した。WC粒子の粒径は約1μであり
、AuCu合金中に非常に細かく分散しており、その共
析量は後述するWC共析量測定法によつて測定するもの
であり、めつき浴中へのWC粒子の混入量を増減するこ
とにWC粒子のAuCu合金中の共析量を制御し、又、
めつき時間により層厚を制御.した。そしてWC粒子の
共析量は約27■o1%で、層厚は3μに形成した。な
お複合めつき条件は下記のとおりである。複合めつき条
件 電流密度 ;0.5A/dイ 浴 温 ;65℃ WC粒子混入量;15g/′ めつき時間 ;1紛 以上のようにして目的とする複合接点を得た。
These were obtained by electrolytic deposition using a composite plating method. That is, using an AuCu alloy plating liquid (product name: Neutronex 240, manufactured by Nippon Electroplating Engineers), WC particles are mixed into the liquid, composite plating is performed, and the plating is applied onto the contact base material. AuCu-
A WC alloy layer was formed. The particle size of the WC particles is about 1μ, and they are very finely dispersed in the AuCu alloy.The amount of eutectoid is measured by the WC eutectoid amount measurement method described later. The eutectoid amount of WC particles in the AuCu alloy is controlled by increasing or decreasing the amount of WC particles mixed in, and
Layer thickness is controlled by plating time. did. The eutectoid amount of WC particles was about 27 1%, and the layer thickness was 3 microns. The compound plating conditions are as follows. Composite plating conditions Current density: 0.5 A/d bath temperature: 65°C Amount of WC particles mixed: 15 g/' Plating time: 1 powder or more The desired composite contact was obtained.

〔実施例2〕WC粒子の共析量を約40V01%(WC
粒子混入量;25y/f)とした外は実施例と同様にし
て複合接点を得た。
[Example 2] The eutectoid amount of WC particles was approximately 40V01% (WC
A composite contact was obtained in the same manner as in the example except that the amount of particles mixed in was 25y/f).

〔実施例3〕 WC粒子の共析量を約50V01%(WC粒子混入量;
35y/′)とした外は実施例1と同様にして複合接点
を得た。
[Example 3] The eutectoid amount of WC particles was approximately 50V01% (WC particle mixed amount;
A composite contact was obtained in the same manner as in Example 1 except that the contact point was 35y/').

〔実施例4〕 AuCu−WC合金層の厚みを1μ(めつき時間;4分
)とした外は実施例2と同様にして複合接点を得た。
[Example 4] A composite contact was obtained in the same manner as in Example 2, except that the thickness of the AuCu-WC alloy layer was 1 μm (plating time: 4 minutes).

〔実施例5〕 AuCu一合金層の厚みを5μ(めつき時間;16”分
とした外は実施例2と同様にして複合接点を得た。
[Example 5] A composite contact was obtained in the same manner as in Example 2, except that the thickness of the AuCu alloy layer was 5 μm (plating time: 16” minutes).

(第二の発明の実施例) 〔実施例6〕 実施例2で得た複合接点のAuCu−WC合金層上に電
着法により層厚0.1μの純Au層を形成して目的とす
る複合接点を得た。
(Example of the second invention) [Example 6] A pure Au layer with a layer thickness of 0.1μ was formed on the AuCu-WC alloy layer of the composite contact obtained in Example 2 by electrodeposition to achieve the objective. A composite contact point was obtained.

その層厚はめつき時間により制御した。なお、めつき液
、めつき条件は下記のとおりである。めつき液;金めつ
き液 (商品名;ニユートロネツクス21へ日 本
エレクトロプレーテイングエンジニヤ ーズ社製)
めつき条件[:―:.:堵“ 〔実施例7〕 純Au層の厚みを0.2μ(めつき時間;5醗)とした
外は実施例6と同様にして複合接点を得た。
The layer thickness was controlled by the plating time. The plating solution and plating conditions are as follows. Plating liquid: Gold plating liquid (Product name: Neutronex 21 manufactured by Nippon Electroplating Engineers Co., Ltd.)
Plating conditions [:-:. Example 7 A composite contact was obtained in the same manner as in Example 6, except that the thickness of the pure Au layer was 0.2 μm (plating time: 5 times).

〔実施例8〕純Au層の厚みを0.3μ(めつき時間;
乃秒)とした外は実施例6と同様にして複合接点を得た
[Example 8] The thickness of the pure Au layer was 0.3μ (plating time;
A composite contact was obtained in the same manner as in Example 6, except that the contact point was changed to 1.

〔実施例9〕純Au層の厚みを0.5μ(めつき時間:
125秒)とした外は実施例6と同様にして複合接点を
得た。
[Example 9] The thickness of the pure Au layer was 0.5μ (plating time:
A composite contact was obtained in the same manner as in Example 6 except that the heating time was 125 seconds).

(第三の発明の実施例) 〔実施例10〕 〈Cu層の形成〉 接点母材(Fe素材料)上に下記めつき浴組成およびめ
つき条件で電解析出によつて厚さ1μのCu層を形成し
た。
(Example of the third invention) [Example 10] <Formation of Cu layer> A 1μ thick layer was formed on the contact base material (Fe material) by electrolytic deposition using the following plating bath composition and plating conditions. A Cu layer was formed.

層厚はめつき時間により制御した。浴組成 ・・・硫
酸銅 ;220f1/e 硫酸 ;45g/
fめつき条件・・・浴 温 ;300C 電解密度 ;3A/Dd めつき時間;2.紛 くNi層の形成〉 つぎにCu層の上に、下記のめつき浴組成およびめつき
条件で電解析出によつて厚さ1μのNi層を形成した。
Layer thickness was controlled by plating time. Bath composition...Copper sulfate; 220f1/e Sulfuric acid; 45g/
f Plating conditions: Bath temperature: 300C Electrolytic density: 3A/Dd Plating time: 2. Formation of Ni Layer with Disappearance> Next, a Ni layer with a thickness of 1 μm was formed on the Cu layer by electrolytic deposition using the following plating bath composition and plating conditions.

層厚はめつき時間により制御した。浴組成 ・・・硫
酸ニッケル;270g/I? 塩化ニッケル;
60y/e ホウ酸 ;45y/E l,3,6ナフタリンスルホン 酸ソーダ;3y めつき条件・・・浴 温 ;45℃ 電流密度 藝A/Dd PH;4.5±2 めつき条件 ;1.紛 くAuCu−WC合金層の形成〉 U1層の上に、実施例1のめつき条件で厚み3μWC共
析量40V01%のAuCu−WC合金層を形成した。
Layer thickness was controlled by plating time. Bath composition: Nickel sulfate; 270g/I? Nickel chloride;
60y/e Boric acid; 45y/E l,3,6 naphthalene sulfonic acid sodium; 3y Plating conditions: Bath temperature: 45°C Current density A/Dd PH: 4.5±2 Plating conditions: 1. Formation of confusing AuCu-WC alloy layer> On the U1 layer, an AuCu-WC alloy layer with a thickness of 3 μm and a WC eutectoid content of 40V01% was formed under the plating conditions of Example 1.

以上のようにして目的とする複合接点を得た。〔実施例
11)Cu層の厚みを3μ(めつき時間;7.紛)、N
i層の厚みを3μ(めつき時間;3分)とした外は実施
例10と同様にして複合接点を得た。
In the above manner, the desired composite contact point was obtained. [Example 11] The thickness of the Cu layer was 3 μ (plating time: 7.0 mm), N
A composite contact was obtained in the same manner as in Example 10, except that the thickness of the i-layer was 3 μm (plating time: 3 minutes).

〔実施例12〕 Cu層の厚みを5μ(めつき時間:12.5分)、Ni
層の厚みを5μ(めつき時間;7紛)とした外は実施例
10と同様にして複合接点を得た。
[Example 12] The thickness of the Cu layer was 5μ (plating time: 12.5 minutes), and the thickness of the Ni
A composite contact was obtained in the same manner as in Example 10, except that the layer thickness was 5 μm (plating time: 7 layers).

(第四の発明の実施例) 〔実施例13〕 実施例10で得た複合接点のAuCu−WC合金層上に
、実施例7の純Au層のめつき条件て電解析出によつて
厚さ0.2μの純Au層を形成して、目的とする複合接
点を得た。
(Example of the fourth invention) [Example 13] On the AuCu-WC alloy layer of the composite contact obtained in Example 10, a thick pure Au layer was deposited by electrolytic deposition under the plating conditions of Example 7. A pure Au layer with a thickness of 0.2 μm was formed to obtain the desired composite contact.

〔実施例14〕 実施例11で得た複合接点のAuCu−WC合金層上に
、実施例7の糾Au層のめつき条件で電解析出によつて
厚さ0.2μの純Au層を形成して、目的とする複合接
点を得た。
[Example 14] On the AuCu-WC alloy layer of the composite contact obtained in Example 11, a pure Au layer with a thickness of 0.2μ was deposited by electrolytic deposition under the conditions for plating the hardened Au layer in Example 7. The desired composite contact was obtained.

〔実施例15〕 実施例12で得た複合接点のAuCu−WC合金層上に
、実施例7の糾Au層のめつき条件で電解析出によつて
厚さ0.2μの純Au層を形成して、目的とする複合接
点を得た。
[Example 15] On the AuCu-WC alloy layer of the composite contact obtained in Example 12, a pure Au layer with a thickness of 0.2μ was deposited by electrolytic deposition under the conditions for plating the hardened Au layer in Example 7. The desired composite contact was obtained.

〔実施例16〕 AuCu−WC合金層のWC粒子の共析量を27■o1
%とした外は実施例14と同様にして複合接点を得た。
[Example 16] The eutectoid amount of WC particles in the AuCu-WC alloy layer was 27■o1
A composite contact was obtained in the same manner as in Example 14, except for the percentage.

〔実施例17〕AuCu−WC合金層のWC粒子の共析
量を50V01%とした外は実施例14と同様にして複
合接点を得た。
[Example 17] A composite contact was obtained in the same manner as in Example 14, except that the amount of eutectoid WC particles in the AuCu-WC alloy layer was 50V01%.

〔実施例18〕AuCu−WC合金層の厚みを2μとし
た外は実施例14と同様にして複合接点を得た。
[Example 18] A composite contact was obtained in the same manner as in Example 14, except that the thickness of the AuCu-WC alloy layer was 2 μm.

〔実施例19〕 AuCu−WC合金層の厚みを5μとした外は実施例1
4と同様にして複合接点を得た。
[Example 19] Example 1 except that the thickness of the AuCu-WC alloy layer was 5 μm.
A composite contact was obtained in the same manner as in 4.

〔実施例20〕 純Au層の厚みを0.5μ(めつき時間;125秒)と
した外は実施例14と同様にして複合接点を得た。
[Example 20] A composite contact was obtained in the same manner as in Example 14, except that the thickness of the pure Au layer was 0.5 μm (plating time: 125 seconds).

〔実施例20〕 接点母材上に実施例10のCu層の形成条件で厚み1μ
のCu層を形成し、層厚3μ、WC共析量40■o1%
の外は実施例1のAuCu−WC合金層の形成条件と同
様にしてAuCu−WC合金層を前記Cu層上に形成し
、そして、層厚0.2μの外は実施例6の純Au層の形
成条件と同様にして純Au層を形成して、目的とする複
合接点を得た。
[Example 20] A Cu layer with a thickness of 1 μm was formed on the contact base material under the conditions of Example 10.
Formed a Cu layer with a layer thickness of 3μ and a WC eutectoid content of 40■o1%.
An AuCu-WC alloy layer was formed on the Cu layer under the same conditions as the AuCu-WC alloy layer of Example 1 except for the layer thickness of 0.2μ, and the pure Au layer of Example 6 was used except for the layer thickness of 0.2μ. A pure Au layer was formed under the same conditions as in the above to obtain the desired composite contact.

ここで、上記のAuCu−WC合金層のWC粒子の共析
量を測定法を説明する。
Here, a method for measuring the eutectoid amount of WC particles in the AuCu-WC alloy layer will be described.

(WC共析量測定法) 複合接点上に、保護めつき(N1)を施した後、切断し
、その断面をエメリー紙及びバフで鏡・面仕上する。
(WC eutectoid measurement method) After protective plating (N1) is applied to the composite contact, it is cut and its cross section is mirror-finished with emery paper and buff.

そして得られたAuCu−WC合金層断面を金属顕微鏡
て拡大すると共に、ビデオアナライザにて、AuCu合
金部とWC部の面積比を求め、WCの共析量を得た。以
上の実施例で得た複合接点について、接点寿ノ命(重負
荷、軽負荷)、粘着、初期接触抵抗と各めつき層間の密
着性を試験した。
Then, the cross section of the obtained AuCu-WC alloy layer was enlarged using a metallurgical microscope, and the area ratio of the AuCu alloy part and the WC part was determined using a video analyzer to obtain the eutectoid amount of WC. The composite contacts obtained in the above examples were tested for contact life (heavy load, light load), adhesion, initial contact resistance, and adhesion between each plating layer.

1接点寿命試験 接点寿命は負荷レベルを重負荷時と軽負荷時に分けて試
験した。
1-contact life test The contact life was tested by dividing the load level into heavy load and light load.

〈重負荷〉 負荷レベルを20V,1Aとし、大気中で毎秒2.8回
の頻度て接点を開閉させ、接触抵抗が4Ω以上になつた
とき、又は溶着を生じたときの接点開閉回数の接点寿命
を示した。
<Heavy load> The load level is 20V, 1A, and the contact is opened and closed at a frequency of 2.8 times per second in the atmosphere, and the number of times the contact opens and closes when the contact resistance becomes 4Ω or more or when welding occurs. It showed the lifespan.

この場合、試験はそれぞれ10個の試料を用い、それぞ
れw回試験をした。そのときの平均接点寿命は別表に示
した。なお、開閉回数は150万回でおわり、15防回
が最大の接点寿命を示している。〈軽負荷〉 負荷レベルを1007n.■,17n,Aの負荷で毎秒
100回の頻度て接点を開閉させ、開閉動作中の接触抵
抗が30Ω以上になつたとき、接触不良として検知し、
その生じた時の開閉回数で接点寿命を示した。
In this case, each test was conducted w times using 10 samples. The average contact life at that time is shown in the attached table. Note that the number of openings and closings ends after 1.5 million times, and 15 times indicates the maximum contact life. <Light load> Set the load level to 1007n. ■The contact is opened and closed at a frequency of 100 times per second under a load of 17n, A, and when the contact resistance during the opening and closing operation becomes 30Ω or more, it is detected as a contact failure.
The contact life was determined by the number of times the contact opened and closed when it occurred.

この場合、試験はそれぞれ10個の試料を用い、それぞ
れw回試験をした。そのときの平均接点寿命を別表に示
した。なお、開閉回数は5000万回でおわり、500
0万回と示されているのは、接点不良がなかつたことに
なり、最大の接点寿命を示している。く接触抵抗の変化
〉 第4図、第5図に、実施例14の接点開閉回数(N)と
接触抵抗(R)との関係を示した。
In this case, each test was conducted w times using 10 samples. The average contact life at that time is shown in the attached table. In addition, the number of opening and closing times is 50 million times, and 500 million times.
The number 00,000 times indicates that there were no contact failures, indicating the maximum contact life. Change in Contact Resistance> FIGS. 4 and 5 show the relationship between the number of times of contact opening/closing (N) and the contact resistance (R) in Example 14.

第4図は、負荷レベルが100m.V,1mVとしたと
きの軽負荷時のグラフ、第5図は、負荷レベル20,A
,1Vとしたときの重負荷時のグラフである。図におい
て、縦軸は接触抵抗(R;mΩ),横軸は開閉回数(N
;回)を示しており、どちらも軸も、対数になつている
。2粘着試験 接点を0Nの状態にして、通電をし、接点同士が粘着し
開離不能になつた時間で粘着性能を評価した。
Fig. 4 shows a case where the load level is 100m. The graph at light load when V, 1 mV, Figure 5 shows the load level 20, A.
, 1V under heavy load. In the figure, the vertical axis is the contact resistance (R; mΩ), and the horizontal axis is the number of openings and closings (N
; times), and both axes are logarithmic. 2. Adhesive Test Contacts were set to ON state, current was applied, and adhesive performance was evaluated based on the time it took for the contacts to adhere to each other and become impossible to separate.

その結果を別表に示した。なお、粘着試験は50叫間(
H)でおわり、500時間と示されているのは、50叫
問粘着がなかつたことを示しており、試験での最大の粘
着性能を示している。
The results are shown in the attached table. In addition, the adhesion test was conducted for 50 seconds (
The end of H) and 500 hours indicates that there was no adhesion for 50 hours, indicating the maximum adhesion performance in the test.

3初期接触抵抗試験 接点の初期の接触抵抗を測定したもので、それぞれw個
の試料を用い、そのときの平均を別表に示した。
3 Initial Contact Resistance Test The initial contact resistance of the contacts was measured. W samples were used for each, and the average was shown in the attached table.

4密着性試験 密着性試験は、180′Cにおける曲げ試験を行ない各
めつき層間の剥離状態を調べることにより行なつた。
4 Adhesion Test The adhesion test was conducted by conducting a bending test at 180'C and examining the state of peeling between each plated layer.

そしてその試験は実施例13〜20において行なつたも
ので、その結果、いずれの実施例でも層間剥離はみられ
ず、良好なものであつた。
The test was conducted in Examples 13 to 20, and as a result, no delamination was observed in any of the Examples, and the results were good.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例のWC粒子の共析量と接点寿命
との関係を示す図、第2図は第三の発明の一実施例の基
本的原理を説明する拡大断面図、第3図は第四の発明の
一実施例の基本的原理を説明する拡大断面図、第4図は
実施例14の軽負荷時の接触抵抗の変化を示す図、第5
図は実施例14の重負荷時の接触抵抗の変化を示す図で
ある。 1・・・・・・接点母材、2・・・・・・CU層、3・
・・・・・Ni層、4・・・・・・下地、5・・・・・
・AUCU−WC合金層、5a・・・・・・AuCu一
合金、5b・・・・・・WC粒子、6・・・・・・純A
u層。
FIG. 1 is a diagram showing the relationship between the eutectoid amount of WC particles and contact life in an embodiment of the present invention, FIG. 2 is an enlarged sectional view explaining the basic principle of an embodiment of the third invention, and FIG. 3 is an enlarged sectional view explaining the basic principle of an embodiment of the fourth invention, FIG. 4 is a diagram showing the change in contact resistance under light load in embodiment 14, and FIG.
The figure is a diagram showing the change in contact resistance under heavy load in Example 14. 1...Contact base material, 2...CU layer, 3.
...Ni layer, 4...Base, 5...
・AUCU-WC alloy layer, 5a...AuCu alloy, 5b...WC particles, 6...Pure A
U layer.

Claims (1)

【特許請求の範囲】 1 AuCu合金中にタングステンカーバイド粒子を分
散させてなる合金層を接点表面としたことを特徴とする
複合接点。 2 第1項記載のWCの共析量が30〜50Vol%で
ある複合接点。 3 タングステンカーバイド粒子をAuCu合金中に分
散させてなる合金接点表面層の表面に純Au層を形成し
たことを特徴とする複合接点。 4 第3項記載の純Au層の厚みが0.1〜0.5μで
ある複合接点。 5 接点母材上に順次Cu層、Si層および、AuCu
−WC合金接点表面層を形成したことを特徴とする複合
接点。 6 第4項記載のCu層およびNi層の厚みがそれぞれ
1〜5μである複合接点。 7 接点母材上に順次Cu層、Si層、AuCu−WC
合金層および純Au層を形成したことを特徴とする複合
接点。
[Scope of Claims] 1. A composite contact characterized in that the contact surface is an alloy layer formed by dispersing tungsten carbide particles in an AuCu alloy. 2. A composite contact in which the eutectoid amount of WC according to item 1 is 30 to 50 Vol%. 3. A composite contact characterized in that a pure Au layer is formed on the surface of an alloy contact surface layer made by dispersing tungsten carbide particles in an AuCu alloy. 4. The composite contact according to item 3, wherein the pure Au layer has a thickness of 0.1 to 0.5 μ. 5 Cu layer, Si layer and AuCu layer are sequentially formed on the contact base material.
- A composite contact characterized by forming a WC alloy contact surface layer. 6. The composite contact according to item 4, wherein the Cu layer and the Ni layer each have a thickness of 1 to 5 μm. 7 Cu layer, Si layer, AuCu-WC on the contact base material
A composite contact characterized by forming an alloy layer and a pure Au layer.
JP3821978A 1978-03-31 1978-03-31 composite contact Expired JPS6057168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3821978A JPS6057168B2 (en) 1978-03-31 1978-03-31 composite contact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3821978A JPS6057168B2 (en) 1978-03-31 1978-03-31 composite contact

Publications (2)

Publication Number Publication Date
JPS54130436A JPS54130436A (en) 1979-10-09
JPS6057168B2 true JPS6057168B2 (en) 1985-12-13

Family

ID=12519184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3821978A Expired JPS6057168B2 (en) 1978-03-31 1978-03-31 composite contact

Country Status (1)

Country Link
JP (1) JPS6057168B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2589484A1 (en) * 1985-11-04 1987-05-07 Asulab Sa OBJECT WITH PRECIOUS METAL COATING RESISTANT TO WEAR
US5134039A (en) * 1988-04-11 1992-07-28 Leach & Garner Company Metal articles having a plurality of ultrafine particles dispersed therein

Also Published As

Publication number Publication date
JPS54130436A (en) 1979-10-09

Similar Documents

Publication Publication Date Title
US4529667A (en) Silver-coated electric composite materials
CN102667989B (en) Silver-clad composite material, its manufacture method and movable contact component for movable contact component
TWI479581B (en) Copper-rhodium alloy wire used for connecting semiconductor equippments
JP2009057630A (en) Sn-PLATED CONDUCTIVE MATERIAL, METHOD FOR PRODUCING THE SAME, AND ELECTRICITY CARRYING COMPONENT
JP2010037629A (en) Conducting material for terminal and connector, and fitting-type connecting terminal
CN101320642B (en) Production method of electric contact point
JP4934852B2 (en) Silver plated metal member for electronic parts and method for producing the same
JPS6057168B2 (en) composite contact
JPH01194218A (en) Power connector
US3889366A (en) Method for producing electric contacts made of internally oxidized silver alloy
JPH04354144A (en) Electrode
WO1996002941A1 (en) Metal cover for ceramic package and method of making same
JP5598851B2 (en) Silver-coated composite material for movable contact part, method for producing the same, and movable contact part
JPS5931810B2 (en) composite contact
JPS59153893A (en) Conductor covered with silver and its manufacture
CA2069390A1 (en) Corrosion resistant high temperature contacts or electrical connectors and method of fabrication thereof
Ning et al. A new electrical contact alloy with high reliability based on gold
JPS61288384A (en) Electric contact
JPS62199795A (en) Parts for electronic and electrical appliances
JPS6010410B2 (en) Composite plated contacts
Larson Electrodeposited gold composites
JPS62228497A (en) Cobalt-nickel alloy striking solution
CN117089838A (en) Layered plating stack for improved contact resistance in corrosive environments
JP2015042771A (en) Metal material for electronic component, connector terminal using the same, connector, and electronic component
Reid Gold plating with pulsed current: Presentations at a recent Symposium