JPS605703A - Controller for electric railcar - Google Patents
Controller for electric railcarInfo
- Publication number
- JPS605703A JPS605703A JP58111915A JP11191583A JPS605703A JP S605703 A JPS605703 A JP S605703A JP 58111915 A JP58111915 A JP 58111915A JP 11191583 A JP11191583 A JP 11191583A JP S605703 A JPS605703 A JP S605703A
- Authority
- JP
- Japan
- Prior art keywords
- speed
- constant
- deviation
- signal
- acceleration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/26—Rail vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、電車など鉄道用電気車の制御装置に係シ、特
に電気車の走行条件と無関係に予め設定した所定の一定
速度で自動的に電気車を走行させることができる定速運
転制御機能を備え大制御装置に関する。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a control device for an electric railway vehicle such as a train, and in particular, the present invention relates to a control device for an electric vehicle for railways such as a train, and in particular, the present invention relates to a control device for an electric vehicle for railways such as a train, and in particular, a system for automatically controlling an electric vehicle at a predetermined constant speed regardless of the running conditions of the electric vehicle. The present invention relates to a large control device equipped with a constant speed operation control function that allows an electric vehicle to run.
車両運行面での安全性の向上や省力化に対する要求が高
まるにつれ、電気車の制御装置についても種々の自動化
機能が設けられるようになってきており、その一つに定
走行速度制御機能がある。As the demand for improved safety and labor saving in vehicle operation increases, various automated functions are being installed in electric vehicle control devices, one of which is a constant running speed control function. .
この定走行速度制御機能は、電気車の走行速度を検出し
、それを運転台から指令された目標速度とつき合わせ、
これらの偏差に応じて主電動機のトルクを制御すること
により電気車の走行速度が目標値に収斂するようにし大
もので、このような定走行速度制御機能を備えた電気車
の制御装置の一例を第1図ないし第3図に示す。This constant running speed control function detects the running speed of the electric vehicle and compares it with the target speed commanded from the driver's cab.
By controlling the torque of the main motor according to these deviations, the running speed of the electric car converges to the target value.This is an example of an electric car control device equipped with such a constant running speed control function. are shown in Figures 1 to 3.
これらの図において、第1図は主回路の構成を、第2図
は主回路機器の動作を、そして第3図は制御回路をそれ
ぞれ示したもので、これらの図において、Al、A2は
主電動機電機子、BVはブレーキ制御器、CCはカム軸
接触器、CLは限流継電器、CMはカム電動機電機子、
CMFはカム電動機界磁、F−CTRは界磁制御器、F
Lは界磁回路用断流器、FLaは断流器F Lの補助a
接点、FLbは同じく補助す接点、GATEはアナログ
ゲー)、IADは電機子電流検出器、IFDは界磁電流
検出器、Lは電機子電流用断流器、Laは断流器りの補
助a接点、Lbは同じく補助す接点、MCは主幹制御器
、“MFI、MF2は主電動機の直巻界磁巻線、PH−
Cは移相器、PT−Bはブレーキ制御パターン発生器、
PT−C8は定速運転パターン発生器、PT−PA、P
T−PBは力行制御パターン発生器、R1−R5は抵抗
短絡用゛接触器、SCは短絡継電器、SDpは速度偏差
検出器、s h F 1 + s h F 2は主電動
機分巻界磁巻線、T@Gは速度発電機である。In these figures, Figure 1 shows the configuration of the main circuit, Figure 2 shows the operation of the main circuit equipment, and Figure 3 shows the control circuit. In these figures, Al and A2 are the main circuits. Motor armature, BV is brake controller, CC is camshaft contactor, CL is current limiting relay, CM is cam motor armature,
CMF is the cam motor field, F-CTR is the field controller, F
L is the current circuit breaker for the field circuit, FLa is the current breaker F L's auxiliary a
contact, FLb is the same auxiliary contact, GATE is the analog game), IAD is the armature current detector, IFD is the field current detector, L is the armature current interrupter, La is the auxiliary current interrupter a The contact, Lb is the same auxiliary contact, MC is the main controller, MFI, MF2 is the direct field winding of the main motor, PH-
C is a phase shifter, PT-B is a brake control pattern generator,
PT-C8 is a constant speed operation pattern generator, PT-PA, P
T-PB is a power running control pattern generator, R1-R5 is a contactor for resistance short circuit, SC is a short circuit relay, SDp is a speed deviation detector, s h F 1 + s h F 2 is a traction motor shunt field winding The line T@G is the speed generator.
この制御回路は、界磁巻線MFとshFとを有する複巻
電動機を用いζ′そのshFの電流をSCRなどによる
チョッパ制御による界磁制御器F−CTRで制御し、所
定のトルクが得られるようにした、いわゆる界磁チョッ
パ方式のもので、カム軸接触器CCかSlノツチにある
状態で主幹制御器MCを1ノツチにすると、CCの接点
Paによって断流器りとFLが投入され、主電動機が起
動する。このときにはCCがS1ノツチにあシ接触器R
1〜R5の全てが開いているため、電機子A1、A2に
は起動用抵抗器が全部直列に接続され、起動電流が制御
されるようになっている。This control circuit uses a compound motor having field windings MF and shF, and controls the shF current with a field controller F-CTR using chopper control such as an SCR so that a predetermined torque can be obtained. In this so-called field chopper type, when the master controller MC is set to 1 notch with the camshaft contactor CC or Sl notch, the current interrupter and FL are turned on by the contact Pa of CC, and the main motor is switched on. starts. At this time, the CC is placed on the S1 notch and the contactor R
1 to R5 are all open, all starting resistors are connected in series to armatures A1 and A2, and the starting current is controlled.
同時に、CCの接点Peにより力行パターン発生器PT
−PAのゲートGATEが開かれ、電機子電流検出器
IADと界磁電流検出器IFDの検出信号によって動作
するPT@PAの出力が移相器PH−Cに入力され、電
機子電流と界磁電流σ1所定のパターンにし六がって分
巻界礎巻4’J s h Fl、2の電流が制御され、
必要なトルク特性が与えられる。At the same time, the power running pattern generator PT is activated by the contact Pe of CC.
- The gate GATE of PA is opened, and the output of PT@PA, which operates according to the detection signals of armature current detector IAD and field current detector IFD, is input to phase shifter PH-C, and the armature current and field The current of the shunt field corner winding 4'J s h Fl,2 is controlled according to a predetermined pattern of current σ1,
The required torque characteristics are provided.
次にMCf、2ノツチに進めると、CCの接点2 。Next, proceed to MCf, 2 notches, and CC contact 2.
a+2bによって継電器SCが動作し、カム電動機の[
様子CMに電源が与えられ、CCはSlノツチから順次
S6ノツチまで進歩する。このとき、IADと限流継電
器CLの働きによシ接点2aから接続点2bに到る電路
が開閉されるため、CCの歩進速度は電気車の加速状態
によって制御されるO
こうしてCCがS1ノツチからS6ノツチにまで進むと
、それにつれて第2図に示すように接点R1−R5が閉
じ、起動抵抗器は順次短終されてゆく。The relay SC is operated by a+2b, and the cam motor [
Power is applied to the state CM, and the CC progresses sequentially from the Sl notch to the S6 notch. At this time, the electric path from the contact point 2a to the connection point 2b is opened and closed by the action of the IAD and the current limiting relay CL, so the stepping speed of the CC is controlled by the acceleration state of the electric car. As the process progresses from the notch to the S6 notch, contacts R1-R5 close as shown in FIG. 2, and the starting resistors are successively shortened.
CCが86ノツチになって起動抵抗器が全部短絡されて
いる状態で、さらにMCを3ノツチK 3(@めると弱
め界磁制御状態に入り、CCの接点3aから力行パター
ン発生器PT −PBの出力にあるゲートGATEに信
号が与えられ、P H−CKはこのPT −PBからの
パターン出力が供給されるようになり、弱め界磁制御が
行なわれる。このときの界磁電流1dPT・PBの働き
により電機子電流を予め定めた一定の値に保ちながら電
気車が加速されるように制御される。なお、このときに
は、接点3aの信号が禁止ゲートに与えられ、これによ
りPT −PAの出力にあるGATEは閉じられている
。When CC is set to 86 notches and all starting resistors are short-circuited, if MC is further set to 3 notches K3 (@), the field weakening control state is entered, and powering pattern generator PT-PB is output from contact 3a of CC. A signal is given to the gate GATE at the output, and the pattern output from PT-PB is supplied to PH-CK, and field weakening control is performed.At this time, due to the action of the field current 1 dPT/PB, The electric vehicle is controlled to be accelerated while keeping the armature current at a predetermined constant value.At this time, the signal at contact 3a is applied to the inhibition gate, which causes the output of PT-PA to change. GATE is closed.
この弱め界磁制御領域において、F−CTRによる界磁
電流の大きさが最少制限値に達し大あとは、主電動機の
特性に沿った加速状態となる。In this field-weakening control region, after the magnitude of the field current due to the F-CTR reaches the minimum limit value, an acceleration state follows the characteristics of the main motor.
力お、これらの図には示して力いが、この弱め界磁状態
で運転台から力行OFF指令が与えられたときには、F
・CTRの働きにより界磁電流を増加させ、電機子電流
をゼロに保つような制御が行なわれる(この状態を惰行
制御と呼称する)。Although power is shown in these diagrams, when a power running OFF command is given from the driver's cab in this field weakening state, F
- Control is performed to increase the field current and keep the armature current at zero by the action of the CTR (this state is called coasting control).
一方、ブレーキ制御器BVが操作されると、回生ブレー
キ指令Bが与えられ、ブレーキ制御器(ターン発生器P
T−Bの出力のゲ−)GATEだけが開かれるので、−
F−CTRの働きによシ界磁電流が太きく増加されて回
生ブレーキが作用するようにされる。On the other hand, when the brake controller BV is operated, a regenerative brake command B is given, and the brake controller (turn generator P
Since only the output gate (GATE) of T-B is opened, -
The field current is greatly increased by the action of the F-CTR, so that the regenerative brake is activated.
以上の制御における動作特性が第4図で、この第4図は
いわゆるノツチ曲線と呼ばれるものである0
次に、M(14ノツチ又は5ノツチに進め六とする。The operating characteristics in the above control are shown in FIG. 4, which is a so-called notch curve.
これらM Cの4ノツチ及び5ノツチはいわゆる定走行
速度制御領域で、このときにはC(Jj:S6ノツチ位
置にあり、MCの出力4又は5がらの信号が速度偏差検
出器SDDに入力されると共に、これらの信号がオアゲ
ートを介して定速連転パターン発生器PT・C8の出力
にあるゲー)GATEに入力され、このPT−C8の出
力がPH−Cに供給されるようにされ、さらに2つの禁
止ゲートの禁止入力にも供給され、これによシ他のPT
・PA、PT@PBのいずれの出力もPH−Cに入力さ
れ々いようにする。These 4 and 5 notches of MC are in the so-called constant running speed control region, and at this time they are at the C (Jj:S6 notch position), and the signal from output 4 or 5 of MC is input to the speed deviation detector SDD. , these signals are input to the gate (GATE) at the output of the constant speed continuous pattern generator PT.C8 via the OR gate, and the output of this PT-C8 is supplied to the PH-C. It is also supplied to the inhibit input of the two inhibit gates, which allows the other PTs to
- Make sure that neither the output of PA nor PT@PB is input to PH-C.
そこで、いi、MCが5ノツチ位置に進められ六とする
。Therefore, MC is advanced to the 5th notch position and becomes 6th.
そうすると、これによ、!ll5DDは50Km/hを
走行速度目標値とする動作を行ない、速度発電機T−G
から供給される電気車の速度を表わす電圧と、50Km
/hの速度を表わす目標値電圧とを比較し、それらの偏
差を表わす信号を発生してPT・C8に入力する。そし
て、PT11C8では、このSDDからの信号によって
PH−Cに供給する電圧を制御し、主電動機の昇磁電流
を変化させる。Then this is it! ll5DD operates with a target running speed of 50 km/h, and the speed generator T-G
The voltage representing the speed of the electric car supplied from 50km
/h and a target value voltage representing the speed, a signal representing the deviation between them is generated and inputted to the PT.C8. Then, in the PT11C8, the voltage supplied to the PH-C is controlled by the signal from this SDD, and the magnetizing current of the main motor is changed.
この制御装置では、第4図のノツチ曲線から明らかなよ
うに、電気車の走行速度が成る速度以上にあるときには
、主電動機の界磁電流をF@CTRで制御してやるだけ
で、その発生トルクをカ行トルク領域からブレーキトル
ク領域塘で広い範囲にわたって制御することができ、こ
のとき主電動機の電機子を含む主回路については何も制
御しなくて済む。With this control device, as is clear from the notch curve in Figure 4, when the running speed of the electric vehicle is higher than the current speed, the generated torque can be reduced simply by controlling the field current of the main motor using F@CTR. Control can be performed over a wide range from the power torque range to the brake torque range, and at this time, there is no need to perform any control on the main circuit including the armature of the main motor.
そこで、SDDとPT−C8は、T@Gからの電圧が目
標値電圧よシ高いとき、つまシミ気車の走行速度が50
Km/hよシ高いときにはPH−Cに供給する電圧を高
くして界磁電流を増加させ、反対KT−Gからの電圧7
M標値電圧よシ低いとき、つ塘〕電気車の速度がsoK
m/hよシ低いときにはPH@Cに供給する電圧を低く
して界磁電流を減小させてやれば、電気車の走行速度が
目標速度である5oKm/hよシ高いときには回生ブレ
ーキトルクが発生して走行速度を低下させるようになり
、反対に電気車の速度が50Km/hよシ低いときには
けん引力が増加して走行速度を増加させるようになり、
電気車の走行速度f50Km/hの目標速度に収斂させ
る方向のフィードバック制御が働くことになって、50
Km/h f、目標速度とし大室走行速度制御が得られ
る。Therefore, in SDD and PT-C8, when the voltage from T@G is higher than the target value voltage, the running speed of the spool car is 50%.
When it is higher than Km/h, the voltage supplied to PH-C is increased to increase the field current, and the voltage 7 from the opposite KT-G is increased.
When M is lower than the standard voltage, the speed of the electric car is soK
If the field current is reduced by lowering the voltage supplied to PH@C when the speed is lower than the target speed of 5 km/h, the regenerative braking torque can be increased when the running speed of the electric vehicle is higher than the target speed of 5 km/h. When the electric vehicle's speed is lower than 50 km/h, the traction force increases and the traveling speed increases.
Feedback control is activated to converge the electric vehicle's running speed to the target speed of 50 km/h.
By setting the target speed to Km/h f, large room traveling speed control can be obtained.
ま六、MCを5ノツチ位置にし六ときも同様で、このと
きには、SDDでの動作が7oKm/hを表わす目標電
圧値に対するものとなシ、これによ多目標速度を70K
m/hとした定走行速度制御が得られることになる。Sixth, the same is true when setting the MC to the 5th notch position, and at this time, the operation in the SDD is for the target voltage value representing 7oKm/h, and the target speed is set to 70Km/h.
A constant traveling speed control of m/h can be obtained.
第5図に、上記の制御における速度の偏差値とそれに対
するけん引力及び回生ブレーキ力の関係の一例全示す。FIG. 5 shows an example of the relationship between the speed deviation value and the traction force and regenerative braking force in the above control.
即ち、この場合には、目標速度(指令速度)に比して実
車速度がlOKm/h以上低いときに最大けん引力(最
大トルク)を発生するような界磁電流に制御され、偏差
量が小さくなってくるのに伴ってけん引力も小さくされ
、偏差量が2Km/hとなったときにけん引力は0とな
るように制御される。That is, in this case, the field current is controlled to generate the maximum traction force (maximum torque) when the actual vehicle speed is lower than the target speed (command speed) by more than 1 OK m/h, and the amount of deviation is small. The traction force is also reduced as the deviation becomes 2 km/h, and the traction force is controlled to become 0 when the deviation amount reaches 2 km/h.
同様に、目標速度に比して実車速度が10Km/hるの
につれてブレーキ力も小さくされ、偏差量が2Km/h
となったところでブレーキ力がOになるように制御され
る。Similarly, as the actual vehicle speed becomes 10 km/h compared to the target speed, the brake force is also reduced, and the deviation amount becomes 2 km/h.
The brake force is controlled to become O at the point where the brake force becomes O.
このような定走行速度制御機能を備え六制御装置によれ
ば、定速走行の大めの運転操作が不要になり、その分、
安全確認がどに専念する余地が生じ、安全性の向上など
に役立つことにカシ、従って、このような電気車の制御
装置が従来から広く使用されるようになって87’t。According to the Roku control device equipped with such a constant speed control function, there is no need for large driving operations for constant speed travel, and accordingly,
It has become possible to concentrate on safety confirmation, and it is useful for improving safety.Therefore, such control devices for electric vehicles have been widely used since 1987.
次に、このような制御装置を用い大場合の電気車の運行
について説明する。Next, operation of an electric vehicle in a large case using such a control device will be explained.
いま、第6図に示すように、地点■にある駅を出発して
地点[F]にある駅まで電気車を運行させ大場合を想定
する0
電気車は■地点を出発(加速)し、速度を上げてゆくが
、このとき、地点■から■までの区間では特に速度制限
がないため、運転士は■地点出発後に70Km/hの定
速指令(第3図のMCを5ノツチに′rる)を出してい
るとすれば、電気車は出発後から速度が60Km/hK
達するまでは最大けん引力(例えばα−3,0Km/h
/s)で加速し、速度が60Km/hに達したあとは第
5図に示すように加速偏差にし六がって順次けん引力を
小さくし、70Km/hの定走行速度に収まるようにし
て走行を続ける。Now, as shown in Figure 6, assume a major case in which an electric car departs from the station at point ■ and reaches the station at point [F].0 The electric car departs (accelerates) from point ■, The speed increases, but at this time, since there is no particular speed limit in the section from point If the electric car is running at a speed of 60km/hK after departure,
Maximum traction force (e.g. α-3,0Km/h)
/s), and after reaching a speed of 60 km/h, as shown in Figure 5, the traction force is gradually reduced according to the acceleration deviation, until the speed stays at a constant running speed of 70 km/h. Continue running.
しかして、地点■と00間の区間が55Km/hの速度
制限になってい六とすれば、この地点■に電気車が達す
るまでに運転士は速度を55Km/h以下に落さなけれ
ばならない。However, if the section between point ■ and 00 has a speed limit of 55 km/h, the driver must reduce the speed to 55 km/h or less before the electric car reaches point ■. .
そこで、運転士は地点■の手前の所定の地点■を想定し
、この地点■で定速指令’t:501(m/hに切換え
る(MCa:ノツチ位置4にする)。このとき、地点■
では、電気車の実速度は指令値よりも20Km/hも高
い(70Km/hの定速度走行にあつ7F)から、この
地点■の直後では電気車に最大のブレーキ力(例えば、
β= 3.5 Km/ h/ s )が働く0そして、
電気車が減速して50Km/hに近ずくにつれてブレー
キ力も弱くなり、地点■付近で50Km/hの定速度に
なる。Therefore, the driver assumes a predetermined point ■ before point ■, and at this point ■ changes the constant speed command 't: 501 (m/h) (MCa: notch position 4).At this time, at point ■
Then, since the electric car's actual speed is 20 km/h higher than the command value (7F, running at a constant speed of 70 km/h), immediately after this point
β = 3.5 Km/h/s) works 0 and,
As the electric car decelerates and approaches 50 km/h, the braking force becomes weaker, and the speed reaches a constant speed of 50 km/h near point ■.
以後、地点0で運転士は定速指令値を再び70Km/h
K上げ、次の制限区間の開始地点00手前の所定の地点
■で定速指令値’i50Km/hに下げ地点0から[F
]壕での区間で50Km/hの定速走行が得られるよう
にし、その後、地点[F]においてブレーキ操作を開始
し、地点[F]で電気車を停止させる大めの停止制御に
入シ、[F]地点で正しく停止するようKする。After that, at point 0, the driver changed the constant speed command value to 70km/h again.
K is raised, and at a predetermined point ■ before the start point 00 of the next restriction section, the constant speed command value 'i is lowered to 50 Km/h from point 0 to [F
] A constant speed of 50 km/h can be obtained in the trench section, and then the brake operation is started at point [F], and a larger stop control is started to stop the electric vehicle at point [F]. , K to stop correctly at point [F].
ところで、このような定走行速度制御機能を用いた電気
車の運行に′おいては、次のような問題点がある。By the way, there are the following problems in operating an electric vehicle using such a constant running speed control function.
塘ず、このような運行状態における電気車のブレーキ力
とけん引力、つ1シ主電動機のトルクの変化についてみ
ると、定速運転指令速度を切換え六時点、つまり第6図
の地点■lo%それに地点■においてトルクの変化が最
大になっておシ、一方、電気車の速度が指令値(目標値
)に収まつ六ときに最小の変化となっている。Looking at the changes in the braking force and traction force of the electric vehicle and the torque of the main motor under such operating conditions, we can see that the change in the constant-speed operation command speed occurs at the 6th point, that is, at the point ■lo% in Figure 6. In addition, the change in torque is maximum at point 2, while the change is minimum at point 6, when the speed of the electric vehicle falls within the command value (target value).
従って、このような制御装置では、走行中の加速度、減
速度が大きくなシ、良好な乗シ心地を保つのが困難であ
る。Therefore, with such a control device, it is difficult to maintain good riding comfort when acceleration and deceleration are large during driving.
次K、鉄道線路には一般的に勾配や曲fJ1々どが存在
し、かつ、それらの条件も種々異なっている。Next, railway tracks generally have slopes, curves, etc., and the conditions for these are also various.
そして、それらは運行区間ごとに必ずしも同じ状態には
ならず、むしろ必ず異なったものとなっているのがほと
んどである。例えば、第6図では、地点■、O間55K
m/h制限区間では、その手前から25%の下)勾配で
、その後、0地点からしばらくは25%の上#)e配と
なっておシ、一方、地点◎、[F]間の制限区間では平
担路となっている。In addition, these conditions are not necessarily the same for each section of operation; in fact, they are almost always different. For example, in Figure 6, 55K between points ■ and O
In the m/h restriction section, the gradient is 25% below from this point, and then the gradient is above 25% for a while from point 0. On the other hand, the limit between points ◎ and [F] This section is a flat road.
一方、上記した制御装置では、定走行速度制御の大めに
ミ第5図に示すように目標値速度と実速度との偏差に応
じてブレーキ力又はけん引力、つまり主電動機のトルク
を所定値に制御するようになっており、このため定速走
行指令全切換えたときに電気車に与えられ゛る加速度又
は減速度の大きさは、そのときの線路条件によって変化
し、速度偏差から一義的には決1らない。On the other hand, in the above-mentioned control device, the braking force or traction force, that is, the torque of the main motor, is set to a predetermined value according to the deviation between the target value speed and the actual speed, as shown in Figure 5. Therefore, the magnitude of the acceleration or deceleration given to the electric vehicle when the constant speed running command is fully switched changes depending on the track conditions at that time, and is uniquely controlled from the speed deviation. I can't decide.
このため、上記した制御装置では、定速走行指令を切換
え六とき、新水な目標速度に電気車の速度が収斂するま
での距離が線路条件によって変化し、例えば、第6図で
は、地点■から■までの距離ΔS8 と、地点■から0
までの距離ΔS2 とが等しくなっていない。従って、
運転士は、新たな定走行速度に設定丁べき地点に対して
、そのための定速走行指令の切換えを行なうべき地点を
、単に距離だけで決めることができず、常に線路の条件
などを勘案して定めなければならないため、この判断の
大めにかなりの熟練を要するという問題点がある。Therefore, in the above-mentioned control device, when the constant speed running command is switched, the distance until the speed of the electric car converges to the new target speed changes depending on the track conditions. For example, in FIG. Distance ΔS8 from to ■ and 0 from point ■
The distances ΔS2 and ΔS2 are not equal. Therefore,
The driver cannot determine the point at which to set the new constant speed and change the constant speed command based solely on the distance, but must always take into account track conditions, etc. Therefore, there is a problem in that this judgment requires considerable skill.
つまり、以上に説明し大従来の制御装置では、定走行速
度指令金具った速度に切換えたとき、大きなトルク変化
を生じて乗シ心地が悪化し六シ、新7’(K設定し大室
走行速度に収斂する地点を正確に予測するのが困難であ
るという欠点があった。In other words, with the conventional control device explained above, when switching to a speed with a constant running speed command, a large torque change occurs and the riding comfort worsens. The drawback is that it is difficult to accurately predict the point at which the vehicle speed will converge.
本発明の目的は、上記した従来技術の欠点を除き、定速
走行速度を切換えたときでのトルク変化が少くて乗り心
地が悪化する虞れが少く、しかも新′fcな定走行速度
に収斂するまでの距離が線路条件々どと無関係にほぼ一
定に保たれ、運転扱いが容易な″電気車の制御装置を提
供するにある。The object of the present invention is to eliminate the above-mentioned drawbacks of the prior art, reduce the torque change when changing the constant running speed, reduce the risk of deterioration of ride comfort, and converge to a new 'FC' constant running speed. To provide a control device for an electric vehicle in which the distance to the vehicle is kept almost constant regardless of track conditions and is easy to operate.
この目的を達成するため、本発明は、定走行速度指令が
切換えられ、折々な定走行速度に収斂するまでの制御領
域中の少くとも一部に、定加速度制御領域及び定加速度
制御領域の少くとも一方を含むようにした点を特徴とす
る0
〔発明の実施例〕
以下、本発明による電気車制御装置の実施例を図面につ
いて説明する0
第7図は本発明による制御回路の一実施例で、主回路の
構成は第1図と同じであシ、従って、その動作も第2図
の説明図と同じである。In order to achieve this object, the present invention provides a constant acceleration control area and a small portion of the constant acceleration control area in at least a part of the control area until the constant driving speed command is switched and converges to the constant driving speed from time to time. [Embodiments of the Invention] Hereinafter, embodiments of the electric vehicle control device according to the present invention will be described with reference to the drawings.0 Fig. 7 is an embodiment of the control circuit according to the present invention. The configuration of the main circuit is the same as that in FIG. 1, and therefore its operation is also the same as in the explanatory diagram of FIG.
さて、第7図において、A−BDは加速度・減速度偏差
検出器、LLIICは低位優先回路であり、その他は第
3図の従来例と同じである。Now, in FIG. 7, A-BD is an acceleration/deceleration deviation detector, LLIIC is a low priority circuit, and the rest is the same as the conventional example shown in FIG.
A−BDはT−Gの出力信号に基づいて電気車の加速度
α及び減速度βを表わす電圧信号を発生すると共に、加
速度が2Km/h/sK相当する加速目標電圧Ectと
、減速度が2.5Km/h/sに相当する減速目標電圧
Eβをもち、電気車の加速度と2 K m / h /
sの加速目標値との偏差を表わす加速度偏差信号αd
と、電気車の減速度と2.5Km/ h / s の減
速目標値との偏差を表わす減速度偏差信号βdとを発生
する働きをする。A-BD generates a voltage signal representing the acceleration α and deceleration β of the electric vehicle based on the output signal of T-G, and also generates an acceleration target voltage Ect corresponding to an acceleration of 2 Km/h/sK and a deceleration corresponding to 2 Km/h/sK. It has a deceleration target voltage Eβ corresponding to .5 Km/h/s, and the acceleration of the electric vehicle is 2 Km/h/s.
Acceleration deviation signal αd representing the deviation from the acceleration target value of s
and a deceleration deviation signal βd representing the deviation between the deceleration of the electric vehicle and the deceleration target value of 2.5 Km/h/s.
LL@Cは2つの入力のうち、電圧の低い方の入力を出
力に取シ出す#Iきをするもので、ダイオードと抵抗器
、それに直流電源などからなるアナログ・ダイオード論
理回路などで構成されたものである。LL@C is a #I function that takes out the lower voltage input of two inputs as an output, and is composed of an analog diode logic circuit consisting of a diode, a resistor, and a DC power supply. It is something that
次に、この実施例の動作について説明する。Next, the operation of this embodiment will be explained.
まず、MCのノツチ位置が1から3までの制御動作と、
Bvによる回生ブレーキ制御動作とは第3図の従来例と
同じである。First, the control operation for the MC notch position from 1 to 3,
The regenerative brake control operation using Bv is the same as the conventional example shown in FIG.
次に、MCのノツチ會4又は5KLl定走行速度制御領
域では、LLllCの働きでSDDからの信号sd及び
A−BDからの信号αd又はβdのいずれか一方のうち
で、そのときに低い電圧値を有する方の信号だけがPT
−C8K供給され、この結果、PT・C8から発生す
る信号によって主電動機のトルクが制御されるようにな
る。Next, in the MC Notchkai 4 or 5KLl constant running speed control region, the signal sd from the SDD and either the signal αd or βd from the A-BD are set to the lowest voltage value at that time by the action of the LLllC. Only the signal with PT
-C8K is supplied, and as a result, the torque of the main motor is controlled by the signal generated from PT.C8.
そこで、いま、第6図の場合と同じ運行状態を想定して
みると、第8図のようになシ、この紀8図において、■
地点を出発し大電気車が0点で70Km/h の定走行
速度制御、つまシMCのノツチ位置が5に切換えられ六
とする。Therefore, if we now assume the same operating conditions as in Figure 6, we will see the same situation as in Figure 8.
Starting from the point, the large electric car is controlled at a constant running speed of 70 km/h at the 0 point, and the notch position of the knob MC is switched to 5 and 6.
そうすると、このときには、指令速度に対して実速度が
低い大め、A−BDの出力はαdとなシ、さらK(sd
)αd)となる大め、LL・Cの出力は加速度偏差信号
αdとなる。Then, at this time, the output of A-BD is αd, where the actual speed is lower than the commanded speed, and furthermore, K(sd
) αd), the output of LL・C becomes the acceleration deviation signal αd.
この結果、電気車は0点からα=2.0Km/h/Sの
一定加速度となるように加速制御でれ、走行速度を上げ
てゆく。そして、07点で実速度が指令速度に対して所
定の範囲内に近ずくと、(sd≦αd)の状態になシ、
ここでLL@Cの出力は速度偏差信号Saに変り、以後
、電気車は速度偏差に応じて制御され、指定され大70
Km/hの速度で定速走行Vζ入ることに々る。As a result, the electric vehicle is accelerated from the zero point to a constant acceleration of α=2.0 Km/h/S, increasing its running speed. Then, when the actual speed approaches the commanded speed within a predetermined range at point 07, the state of (sd≦αd) is reached.
Here, the output of LL@C changes to the speed deviation signal Sa, and from then on, the electric car is controlled according to the speed deviation, and the specified large 70
Constant speed travel Vζ is often entered at a speed of Km/h.
次に、55Km/hの制限区間の手前の所定の地点■に
電気車が達し六ので、この点■′においてそれまでの7
0Km/hの定走行速度指定から50Km/hの速度指
令に切換えられ六とする。つ寸〕、この点■′でMe(
2)ノツチ位置が5から4に移され六とする。Next, the electric car reaches a predetermined point ■ before the 55 km/h restriction section, so at this point
The constant traveling speed designation of 0 Km/h is switched to the speed command of 50 Km/h. tsu size], at this point ■' Me(
2) The notch position is moved from 5 to 4 and becomes 6.
そうすると、このときには、実速度が指令速度よシ高い
大め、A−BDの出力はβdとカリ、かつ(sd )β
d)となるため、LL−Cの出力は減速度偏差信号βd
となる。Then, at this time, the actual speed is higher than the commanded speed, the output of A-BD is βd, and (sd) β.
d), so the output of LL-C is the deceleration deviation signal βd
becomes.
そこで、電気車は■′点から2.5Km/h/sの一定
減速度となるようにして減速制御され、走行速度を下げ
てゆく。そして、■″点で実速度が指令速度に対して所
定範囲内に近ずく六め、(sd≦βd)となシ、ここで
LL@Cの出力は速度偏差信号adに変シ、以後、電気
車は指令速度からの偏差に応じて制御され、指令された
50Km/hの速度で定速走行に入ることになる。以下
、地点0,0間での加速と定速走行制御、及び地点■、
@間での減速と定速走行制御も同様に、定加速又は定減
速状態で行なわれる。Therefore, the electric vehicle is decelerated to a constant deceleration of 2.5 Km/h/s from point 2', and the traveling speed is lowered. Then, at point ■'', when the actual speed approaches the specified range with respect to the command speed, (sd≦βd), the output of LL@C changes to the speed deviation signal ad, and henceforth, The electric vehicle is controlled according to the deviation from the commanded speed, and starts running at a constant speed at the commanded speed of 50 km/h.Hereinafter, the acceleration and constant speed running control between points 0 and 0, and the points ■,
Similarly, deceleration and constant speed traveling control between @ and constant acceleration are performed in a constant acceleration or constant deceleration state.
従って、この実施例によれば、運転士によシ定゛走行速
度が切換えられたとき、電気車に与えられる加速度や減
速度ヲ所定値に保つことができるからそれらを乗シ心地
上適当な値に予め設定しておくことによフ、乗客などに
不快感を与える虞れがない。Therefore, according to this embodiment, when the driver changes the fixed running speed, the acceleration and deceleration applied to the electric vehicle can be maintained at predetermined values, so that they can be adjusted to suit the riding comfort. By setting the value in advance, there is no risk of causing discomfort to passengers.
また、この実施例によれば、定走行速度を切換え大とき
に、電気車の速度が折々な定走行速度に移行するまでの
速度変化がほぼ定加速状態又は定減速状態で行なわれる
なめ、定走行速度を切換えた地点から新人な定走行速度
KN、気車0速度が収斂する地点塘での電2車の走行距
離は、線路状態や列車の載荷条件と無関係にほぼ一定に
保たれ、例えば躯8図では(Δ511−8=Δ512)
とすることができ、従って、運転扱い上、運転速度切換
点を一義的に決めることかでさることに′fx、シ、運
転扱いを容易にすることができる。Further, according to this embodiment, when the constant traveling speed is changed over, the speed change of the electric vehicle until the speed changes from time to time to the constant traveling speed is performed almost in a constant acceleration state or a constant deceleration state. The traveling distance of the two electric cars at the point where the new constant traveling speed KN and the zero speed of the train converge from the point where the traveling speed is changed is kept almost constant regardless of the track condition or the loading condition of the train. In the body diagram 8 (Δ511-8=Δ512)
Therefore, by uniquely determining the operating speed switching point, it is possible to simplify the operation handling.
なお、以上の実施例は、主電動機として直流複巻電動機
を用いて説明し大が、直巻電動機や交流の誘導電動機を
主電動機としfc電気車の場合でも、トルク制御の具体
的構成が異なるだけであシ、これらに対しても本発明の
実施が可能なことはいう壕でもない。Note that the above embodiments have been explained using a DC compound-wound motor as the main motor, but even in the case of an FC electric car where a series-wound motor or an AC induction motor is used as the main motor, the specific configuration of torque control will differ. However, it is not impossible to say that the present invention can be implemented for these as well.
1六、以上の実施例では、電気車の制御装置に適用した
例について示し六が、自動列車運転装置など、電気車の
速度制御装置に対して制御出力指令を与える装置に本発
明を適用してもよいのはもちろんである。16. In the above embodiments, an example is shown in which the present invention is applied to a control device of an electric vehicle, and 6. The present invention is applied to a device that gives a control output command to a speed control device of an electric vehicle, such as an automatic train operation device. Of course you can.
以上説明したように、本発明によれば、従来の制御装置
に僅かな付加変更を施こすだけで従来技術の欠点を除き
、乗り心地が良好でしかも運転扱いが容易な電気車の制
御装置を提供することができる。As explained above, according to the present invention, a control device for an electric vehicle that eliminates the drawbacks of the conventional technology and provides a comfortable ride and is easy to drive can be created by making slight additions and changes to the conventional control device. can be provided.
第1図は電気車制御装置の従来例における主回路の構成
を示す回路図、第2図はその動作説明図、第3図は同じ
く制御系の構成を示す回路図、第4図はノツチ曲線図、
第5図は速度偏差量とけん引力及びブレーキ力の関係を
示す説明図、第6図は従来例による電気車走行モード図
、第7図は本発明による電気車制御装置の制御系の一実
施例を示す回路図、第8図は本発明による電気車走行モ
ード図である。
LL−C・・・・・・低量優先回路、A−BD・・・・
・・加速度・減速度偏差検出器。
第4図
1115図
第6図
JP尚庄Figure 1 is a circuit diagram showing the configuration of the main circuit in a conventional electric vehicle control device, Figure 2 is an explanatory diagram of its operation, Figure 3 is a circuit diagram also showing the configuration of the control system, and Figure 4 is a notch curve. figure,
FIG. 5 is an explanatory diagram showing the relationship between speed deviation amount, traction force, and braking force, FIG. 6 is a diagram of the electric vehicle running mode according to the conventional example, and FIG. 7 is an implementation of the control system of the electric vehicle control device according to the present invention. FIG. 8, a circuit diagram showing an example, is a diagram of the electric vehicle running mode according to the present invention. LL-C...Low priority circuit, A-BD...
...Acceleration/deceleration deviation detector. Figure 4 1115 Figure 6 JP Naosho
Claims (1)
制御可能な定走行速度制御機能を備えた電気車の制御装
置において、電気車の加速度及び減上記定走行速度目標
値が切換えられ、電気車の速度が成る定走行速度目標値
から他の定走行速度目標値に収斂するまでの制御領域の
少くとも一部に、上記定加減速度制御手段による制御領
域を含むように構成したことを特徴とする電気軍制装置
。 2、特許請求の範囲第1項において、上記定加減速度制
御手段による制御領域が、上記定走行速度目標値が切換
えられ六時点から電気車の速度が折々な定走行速度目標
値に対して所定の速度偏差以内に達するまでの゛期間に
設定されていることを特徴とする電気車制御装置。[Scope of Claims] 1. In an electric vehicle control device equipped with a constant traveling speed control function that can be controlled by switching to a constant traveling speed target value of a plurality of different speeds, At least a part of the control region in which the target value is switched and the speed of the electric vehicle converges from the constant traveling speed target value to another constant traveling speed target value includes a control region by the constant acceleration/deceleration control means. An electric military control device characterized by being configured as follows. 2. In claim 1, the control range by the constant acceleration/deceleration control means is such that the speed of the electric vehicle is set to a predetermined value with respect to the constant traveling speed target value from time to time after the constant traveling speed target value is switched. An electric vehicle control device characterized in that the electric vehicle control device is set to a period of time until the speed deviation reaches within the speed deviation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58111915A JPS605703A (en) | 1983-06-23 | 1983-06-23 | Controller for electric railcar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58111915A JPS605703A (en) | 1983-06-23 | 1983-06-23 | Controller for electric railcar |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS605703A true JPS605703A (en) | 1985-01-12 |
Family
ID=14573301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58111915A Pending JPS605703A (en) | 1983-06-23 | 1983-06-23 | Controller for electric railcar |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS605703A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019155536A1 (en) * | 2018-02-07 | 2019-08-15 | 三菱電機株式会社 | Vehicle drive device |
-
1983
- 1983-06-23 JP JP58111915A patent/JPS605703A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019155536A1 (en) * | 2018-02-07 | 2019-08-15 | 三菱電機株式会社 | Vehicle drive device |
JPWO2019155536A1 (en) * | 2018-02-07 | 2020-09-03 | 三菱電機株式会社 | Vehicle drive |
US12036876B2 (en) | 2018-02-07 | 2024-07-16 | Mitsubishi Electric Corporation | Vehicle drive device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105549587B (en) | A kind of train automatic Pilot control method and system for sleet sky | |
CN109070765B (en) | Train control device, method and computer-readable recording medium | |
GB2460528A (en) | Fixed-position automatic stop control for an electric vehicle | |
US714196A (en) | Regenerative system. | |
US4282466A (en) | Transit vehicle motor effort control apparatus and method | |
JPH0976914A (en) | Train running operation control method and device | |
JPS605703A (en) | Controller for electric railcar | |
JP6226759B2 (en) | Automatic train driving device | |
US2331228A (en) | Motor control system | |
US2669679A (en) | Dynamic-braking motor-protection | |
JPS59163275A (en) | Controller for alternating current elevator | |
US4370603A (en) | Shunt field control apparatus and method | |
US2525507A (en) | Automatic control for booster relay on electric vehicles | |
US2626374A (en) | Locomotive regeneration control | |
US3299834A (en) | Control system for railway trains | |
US3037461A (en) | Railway control system | |
US3656037A (en) | Car propulsion scheme utilizing married pairs of propulsion units | |
US2318331A (en) | Motor control system | |
US2479397A (en) | Traction motor braking system | |
US2436330A (en) | Dynamic braking system for series motors | |
US2637009A (en) | Sheetsxsheet i | |
JPS5942521B2 (en) | electric car protection device | |
JPS6212304A (en) | Controller of electric railcar | |
US2331256A (en) | Control system | |
JPS62135207A (en) | Controller for electric railway car |