JPS6056965B2 - Incineration method and equipment for sludge, etc. - Google Patents

Incineration method and equipment for sludge, etc.

Info

Publication number
JPS6056965B2
JPS6056965B2 JP53012057A JP1205778A JPS6056965B2 JP S6056965 B2 JPS6056965 B2 JP S6056965B2 JP 53012057 A JP53012057 A JP 53012057A JP 1205778 A JP1205778 A JP 1205778A JP S6056965 B2 JPS6056965 B2 JP S6056965B2
Authority
JP
Japan
Prior art keywords
fluidized bed
air
amount
incineration
organic sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53012057A
Other languages
Japanese (ja)
Other versions
JPS54105867A (en
Inventor
操 五十嵐
益男 長谷川
靖 地田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP53012057A priority Critical patent/JPS6056965B2/en
Publication of JPS54105867A publication Critical patent/JPS54105867A/en
Publication of JPS6056965B2 publication Critical patent/JPS6056965B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】 本発明は下水汚泥や産業廃水汚泥などの有機性汚泥、
又はその類似物を焼却処理する方法及びその装置に関す
る。
[Detailed description of the invention] The present invention provides organic sludge such as sewage sludge and industrial wastewater sludge,
The present invention relates to a method and apparatus for incinerating or similar materials thereof.

従来、下水汚泥等の焼却には、多段炉、ロータリーキ
ルン、流動炉等を用いる方法が多く採用されているが、
これらいずれの方法においても、含有有機物を完全に焼
却して残渣中に未燃分を含まないようにするためには、
燃焼温度を高くするか、空気過剰率を高くして理論空気
量に比べてかなり大量の空気を送入するか、或いはその
両方を併用することが必要である。
Conventionally, methods using multi-stage furnaces, rotary kilns, fluidized bed furnaces, etc. have been widely used to incinerate sewage sludge, etc.
In any of these methods, in order to completely incinerate the organic matter contained so that no unburned matter is included in the residue,
It is necessary to raise the combustion temperature, to increase the excess air ratio to introduce a considerably larger amount of air than the theoretical amount of air, or to use both in combination.

しかし、このように燃焼温度及び/又は空気過剰率を
高くする方法を採用すると、燃焼排ガス中のN0x濃度
が高くなり、また被焼却物中に含まれるクロム金属の6
価クロムの転化率が高まつて、燃焼残渣中に可溶性の6
価クロムが混入し、従つて2次公害の原因になる等の問
題が生じる。
However, if such a method of increasing the combustion temperature and/or excess air ratio is adopted, the NOx concentration in the combustion exhaust gas will increase, and the chromium metal 6 contained in the incinerated material will increase.
The conversion rate of valent chromium is increased and soluble 6 is added to the combustion residue.
Problems arise such as chromium being mixed in and causing secondary pollution.

このため、これら従来型焼却炉の欠点を改善する方法
として、多段炉において、空気過剰率を減じることによ
り還元雰囲気下で燃焼を行い、これによつて6価クロム
の生成を抑制すると共に、燃焼ガスは脱臭を目的として
後燃焼を行う方法、或いは流動燃焼炉において、微粉炭
などの固形補助は燃料等を還元剤として添加し、6価ク
ロム及びNOxの発生を抑制する方法(特開昭50−8
0674、特開昭50−120175)が開発されてい
る。特に特開昭50−80674号記載の従来方法を本
発明方法に係わる限りにおいて再録すれば、通常の流動
炉は、その請止時粒子層高さが500〜1000m!t
1温度が750〜850℃の流動層を形成するものであ
り、ここに過剰空気率(1.1〜1.3)を少なく供給
して形成する(第5欄8行〜第7欄1桁目)ものであつ
て、かつ二次空気をその供給口と流動層上面と間の所謂
Nj部N(明細書中に図示)にλ〉1(即ち、過剰空気
率1.0以上)として供給する(第10欄3行〜8行目
)ことにより、高含水率の、燃焼性の悪い脱水ケーキを
焼却する方法が示されてる。そして、汚泥を焼却する場
合に通常の方法で焼却すると、汚泥中に含まれるクロム
金属の大部分が酸化されて可溶性の6価クロムに転化す
る。本発明者等は、この6価クロムへの転化防止を要旨
とし、有機汚泥とその類似物の焼却処理について研究と
実験を行ない、幾つかの新しい知見を得た。表1は実験
の成果の1つである。知見のその1は、被焼却物中のク
ロム金属の6価クロムへの転化防止は、燃焼時の空気過
剰率を流動層内において1.0以下に抑制して低く保持
することによつて可能であり、その2は、流動層内を空
気過剰率を低くすることによつて還元雰囲気に保有する
とともに、有機物の未燃分をできるだけ低くして流動層
の上部で燃焼する未燃分処理量を小さくすることにより
、良好な焼却処理条件を保持し得、その結果、残渣中の
未燃分をほぼ完全に流動層内て処理可能とし得ることに
あり、更にその3は、流動層を所定の温度に確実に維持
するためには、充分な上方を有する流動層を燃焼過程.
の補助燃料が好適に拡散できる流動層下部の適当な位置
に補助燃料を直接供給することが、局部加熱を避け、使
用燃料の有効効率を高めることとなる、との知見であつ
た。
Therefore, as a method to improve these drawbacks of conventional incinerators, combustion is performed in a reducing atmosphere by reducing the excess air ratio in a multi-stage incinerator, thereby suppressing the production of hexavalent chromium, and Gas can be post-combusted for the purpose of deodorization, or solid supplements such as pulverized coal can be added as a reducing agent in a fluidized combustion furnace to suppress the generation of hexavalent chromium and NOx (Japanese Unexamined Patent Application Publication No. 1983-1982). -8
0674, Japanese Unexamined Patent Publication No. 50-120175) has been developed. In particular, if the conventional method described in JP-A-50-80674 is reproduced as far as it relates to the method of the present invention, a normal fluidized bed furnace has a particle bed height of 500 to 1000 m at the time of discharge! t
1. A fluidized bed with a temperature of 750 to 850°C is formed by supplying a small amount of excess air (1.1 to 1.3) (column 5, line 8 to column 7, 1 digit). 1), and the secondary air is supplied to the so-called Nj part N (shown in the specification) between the supply port and the upper surface of the fluidized bed at λ>1 (i.e., excess air ratio 1.0 or more). (Column 10, lines 3 to 8) shows a method for incinerating dehydrated cakes with high moisture content and poor combustibility. When sludge is incinerated using a normal method, most of the chromium metal contained in the sludge is oxidized and converted to soluble hexavalent chromium. The present inventors have carried out research and experiments on the incineration treatment of organic sludge and its analogues, with the aim of preventing the conversion to hexavalent chromium, and have obtained several new findings. Table 1 is one of the results of the experiment. Knowledge No. 1 is that it is possible to prevent the conversion of chromium metal in materials to be incinerated to hexavalent chromium by keeping the excess air ratio during combustion at a low level of 1.0 or less in the fluidized bed. The second method is to keep the fluidized bed in a reducing atmosphere by lowering the excess air ratio, and to reduce the amount of unburned organic matter that is burned in the upper part of the fluidized bed by keeping the amount of unburned organic matter as low as possible. By reducing the amount of incineration, good incineration treatment conditions can be maintained, and as a result, unburned matter in the residue can be almost completely treated in the fluidized bed. During the combustion process, a fluidized bed with sufficient overflow is required to ensure that the temperature is maintained at .
It was found that directly supplying the auxiliary fuel to an appropriate position at the bottom of the fluidized bed where the auxiliary fuel can diffuse properly avoids local heating and increases the effective efficiency of the fuel used.

(なお、表1は流動炉で汚泥を燃焼させた場合における
空気過剰率と6価一クロム生成量との関係を示したもの
であり、これより両者には明確な相関があり、空気過剰
率が1.0乃至0.9以下になると6価クロムは殆んど
生成しないことが知見される。)一方、燃焼時に発生す
るNOxは燃焼温度によ・つて生成量が異るが、燃焼雰
囲気に炭素の如き還元物質が存在すると、NOxが還元
されてその発生と放散が抑制される。
(Table 1 shows the relationship between the excess air ratio and the amount of hexavalent monochromium produced when sludge is burned in a fluidized fluidized furnace. From this, there is a clear correlation between the two, and the excess air ratio (It is known that hexavalent chromium is hardly produced when the When a reducing substance such as carbon is present in the fuel, NOx is reduced and its generation and emission are suppressed.

従つて、このように空気過剰率を抑制したり、還元物質
を添加する方法は、6価クロム及びNOxの生成抑制に
有効である。しかるに、上述の両改良法においても、多
段炉を用いて空気過剰率を抑制する前者の方法は、燃焼
残渣中の未燃物量を減少させることが困難であること、
及び燃焼ガス生成排ガス)の後燃焼を行う必要があり、
この際に高温の雰囲気になるのでNOxの発生が避けら
れない等の問題があり、また流動層の固形の還元性補助
燃料を加える後者の方法は、この還元性補助燃料を完全
に燃焼させる必要があるために高温の反応を必要とし、
このため排ガスからの熱回収装置が大型化し、また微粉
炭等の上記補助燃料の混和装置が必要とされるなど、設
備費上昇の要因になる等の問題がある。
Therefore, the method of suppressing the excess air ratio or adding a reducing substance in this way is effective in suppressing the production of hexavalent chromium and NOx. However, in both of the above-mentioned improved methods, the former method, which uses a multi-stage furnace to suppress the excess air ratio, has difficulty in reducing the amount of unburned matter in the combustion residue;
It is necessary to carry out after-combustion (of combustion gas generation exhaust gas),
At this time, there are problems such as the generation of NOx due to the high temperature atmosphere, and the latter method, in which solid reducing auxiliary fuel in a fluidized bed is added, requires complete combustion of this reducing auxiliary fuel. requires a high temperature reaction,
For this reason, there are problems such as an increase in the size of the heat recovery device from the exhaust gas and a need for a mixing device for the above-mentioned auxiliary fuel such as pulverized coal, which causes an increase in equipment costs.

更に、従来型の流動炉を使用する場合の懸念すべき問題
点として、空気過剰率を低くして運転しても、上記多段
炉の場合と同様に、6価クロム、NOxの生成は抑制さ
れるものの、被焼却物中の有機物の燃焼が極めて不完全
になる等が挙げられる。本発明は上述したような従来の
汚泥焼却法及び焼却装置の欠点を改善するためになされ
たもので、その目的とするところは、低コストてしかも
比較的簡便な方法により、6価クロム、NOx等の生成
を抑制して、2次公害の発生を確実に防止すると共に、
被焼却物中の有機物を殆んど完全に分解、燃焼し得て、
生成残渣中の未燃分を殆んどなくすることがてき、かつ
装置の構造も比較的簡単で安価に製作し得る有機性汚泥
等の焼却方法及びその装置を提供するものである。
Furthermore, a worrying problem when using a conventional fluidized fluidized furnace is that even if it is operated with a low excess air ratio, the production of hexavalent chromium and NOx is suppressed, as in the case of the multistage furnace described above. However, the combustion of organic matter in the materials to be incinerated becomes extremely incomplete. The present invention was made in order to improve the drawbacks of the conventional sludge incineration method and incineration equipment as described above, and its purpose is to eliminate hexavalent chromium, NOx, etc. by a low-cost and relatively simple method. In addition to suppressing the generation of such substances and reliably preventing the occurrence of secondary pollution,
It can almost completely decompose and burn the organic matter in the incinerated material,
The present invention provides a method for incinerating organic sludge, etc., and an apparatus for incinerating organic sludge, etc., which can almost eliminate unburned content in the generated residue, and the structure of the apparatus is relatively simple and can be manufactured at low cost.

即ち、本発明では、上記の目的を達成するため、硅砂等
の通常平均粒径が0.4〜0.5Tnの無機質粒子を熱
媒体として流動焼却炉本体内に充填し、この粒子を燃焼
用の空気で流動させて形成される流動層の有機性汚泥等
の被焼却物を供給し、流動層内で急激に被焼却物と熱媒
体とを混合攪拌させて、加熱、乾燥、燃焼を行う流動焼
却炉において、流動層の運転時の層高(通常静止時の1
.5倍程度)を1.5m,以上2.5m.以下とする従
来炉より深い流動層を形成し、更に空気量については実
際の燃焼に必要な空気量のうち、理論空気量の85乃至
100%に相当する量を流動層の下部から供給し、残り
の20乃至35%に相当する空気を二次空気として流動
層の上端部付近に供給するようにした汚泥等の焼却方法
であつて、更に本発明方法の一実施態様として、前記流
動層の下部ほぼ113までの部分に補助燃料を直接供給
するようにしたことを特徴とするものてある。
That is, in the present invention, in order to achieve the above object, inorganic particles such as silica sand having a normal average particle size of 0.4 to 0.5 Tn are filled into the body of a fluidized fluidized incinerator as a heat medium, and these particles are used for combustion. Materials to be incinerated, such as organic sludge, are supplied to a fluidized bed formed by fluidization with air, and the materials to be incinerated and a heat medium are rapidly mixed and stirred in the fluidized bed to heat, dry, and burn. In a fluidized bed incinerator, the bed height during operation of the fluidized bed (normally 1 when stationary)
.. 5 times) for 1.5m, or more than 2.5m. A fluidized bed deeper than that of conventional furnaces is formed as described below, and an amount of air corresponding to 85 to 100% of the theoretical air amount required for actual combustion is supplied from the bottom of the fluidized bed, A method for incinerating sludge, etc., in which air corresponding to the remaining 20 to 35% is supplied as secondary air to the vicinity of the upper end of the fluidized bed. It is characterized in that the auxiliary fuel is directly supplied to the lower part up to approximately 113.

本発明装置は、流動層内部に運転時において層高1.5
TrL以上2.5TrL,以下の無機質熱媒体粒子によ
る流動層が形成されると共に、下部に空気吹込ノズルを
有する分散板が配設され、かつ上部に排ガス抜出口が設
けられてなる流動焼却炉本体と、理論空気量の85〜1
00%に相当する量の空気を上記分散板を介して上記流
動層の下部に供給すると共に、理論空気量の25〜30
%に相当する量の二次空気を上記流動層の上端部付近に
供給する空気供給気構と、上記流動層内に有機性汚泥等
の被焼却物を供給する被焼却物供給機構と、及び燃焼残
渣の溢流機構とを具備したことを特徴とし、その一実施
態様として、上記流動層の下部ほぼ113までの部分に
補助燃料を供給する補.助燃料供給機構を備えたことを
特徴とするものである。以下、本発明の一実施例につき
図面を参照して説明する。
The device of the present invention has a bed height of 1.5 mm inside the fluidized bed during operation.
A fluidized incinerator body in which a fluidized bed is formed by inorganic heat transfer medium particles of TrL or more and 2.5TrL or less, a dispersion plate having an air blowing nozzle is disposed in the lower part, and an exhaust gas outlet is provided in the upper part. and the theoretical air amount of 85~1
00% of the air is supplied to the lower part of the fluidized bed through the distribution plate, and the theoretical air amount is 25 to 30%.
% of secondary air near the upper end of the fluidized bed, an incineration material supply mechanism that supplies incineration material such as organic sludge into the fluidized bed, and One embodiment of the invention is characterized in that it is equipped with a combustion residue overflow mechanism, and as one embodiment thereof, an auxiliary fuel is provided to the lower part of the fluidized bed up to approximately 113. It is characterized by being equipped with an auxiliary fuel supply mechanism. Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は流動焼却炉の一例を示すもので、図中.1は断
熱材及び外装鋼板によつて形成されるほぼ円筒状の流動
焼却炉本体であり、この本体1の底部には空気吹込ノズ
ル2を多数具備した分散板3が本体1の下端開口部を閉
塞する如く配設されている。
Figure 1 shows an example of a fluidized incinerator. Reference numeral 1 denotes a substantially cylindrical fluidized incinerator body made of a heat insulating material and an exterior steel plate. At the bottom of the body 1, a dispersion plate 3 equipped with a number of air blowing nozzles 2 connects the opening at the lower end of the body 1. It is arranged so that it is closed.

上記本体1の下端面には、空気供給主管一(風箱)4が
取り付けられており、その空気吹込口5より供給された
高温空気が上記ノズル2内を通つて本体1内に下方から
上方に向けて吹込まれるようになつており、また上記本
体1内に充填された通常平均粒径0.4〜0.5wft
のけい砂等の無機質粒子6が空気の流入によつて流動化
し、上記無機質粒子6を熱媒体粒子とする層高1.5〜
2.5mの流動層7が上記分散板3の上方に形成される
ようになつている。流動層深さの下限値1.5m,は、
有機物の未燃分の許容レベルまで低下させる必要な補助
燃料の拡散域を良好に保つ要件として決まるものであり
、その上限値2.5TrL,はNOx生成が下限となる
レベルであつて、この上限値以上の設定は不・要である
。また、上記本体1の内部には、上記流動層7の上方に
流動気体の流速を低下させて流動熱媒体である無機質固
体及び燃焼残渣のうち粒径の大きいものを分離する固体
分離部8が形成され、ここで生成燃焼排ガスに随伴する
比較的粒径の大きい固体粒子が分離されると共に、固体
粒子を分離した燃焼排ガスが本体1上端開口部の排ガス
抜出口9より排出されるようになつている。上記本体1
の下側部には、上記流動層7の下部ほぼ113の位置(
上記分散板3からほぼ0.5〜0.8m程度の高さの位
置)に重油等の補助燃料Fを供給する補助燃料供給管1
0の一端が配設されていると共に、第1図に図示するよ
うに、上記流動層7のほぼ中間部にあつて、少くとも補
助燃料供給管10の上方に位置する有機性汚泥等の被焼
却物Sを供給するスクリューフィーダー(被焼却物供給
装置)11の先端部が配設され、また本体1側部の上記
流動層7と固体分離部8との境界付近に位置して、流動
層7上端部付近に二次空気を供給する二次空気供給管1
2が所定数周方向に沿つて配設されている。なお、図中
13は熱媒体粒子(無機質粒子)6の供給管、14は熱
媒体粒子排出管、15は流動層上端部付近に連通する燃
焼残渣の溢流管である。第2図は上記構成の焼却炉を組
込んだ燃焼装置全体のフローシートを示すもので、一端
が燃焼空気ブロワー16に連結されていると共に、熱交
換器17及び流量計18がそれぞれ介装された導管19
の他端が上記風箱4に連結し、また一端が上記導管19
の熱交換器17と流量計18との間の所定箇所に連結さ
れていると共に、調節弁20及び流量計21がそれぞれ
介装された分岐管22の他端が上記空気供給管12に連
結しており、上記調節弁20を適宜調節することにより
、ブロワー16から上記導管19、風箱4内を順次通つ
て流動層7の下部に理論空気量の85〜100%に相当
する量の一次空気が供給されると共に、導管19より分
岐管22、空気供給管12内の順次通つて流動層7の上
端部付近に理論空気量の35〜25%(前記した一次空
気%表示に順記)に相当する量の二次空気が供給される
ようになつている。
An air supply main pipe (wind box) 4 is attached to the lower end surface of the main body 1, and high temperature air supplied from the air inlet 5 passes through the nozzle 2 and enters the main body 1 from below to above. The particles filled in the main body 1 usually have an average diameter of 0.4 to 0.5 wft.
Inorganic particles 6 such as silica sand are fluidized by the inflow of air, and the layer height is 1.5 to 1.5 with the inorganic particles 6 as heat transfer particles.
A fluidized bed 7 of 2.5 m is formed above the distribution plate 3. The lower limit of fluidized bed depth is 1.5m.
This is determined as a requirement to maintain a good diffusion area for the necessary auxiliary fuel to reduce unburned organic matter to an acceptable level, and its upper limit of 2.5 TrL is the lower limit for NOx generation, and this upper limit Settings greater than the value are unnecessary/necessary. Further, inside the main body 1, there is a solid separation section 8 above the fluidized bed 7 that reduces the flow velocity of the fluidized gas to separate inorganic solids, which are fluidized heat carriers, and combustion residues with large particle sizes. Here, solid particles with a relatively large particle size accompanying the generated combustion exhaust gas are separated, and the combustion exhaust gas from which the solid particles have been separated is discharged from the exhaust gas outlet 9 at the upper end opening of the main body 1. ing. Main body 1 above
On the lower side of the fluidized bed 7, there is a position (approximately 113) below the fluidized bed 7.
Auxiliary fuel supply pipe 1 that supplies auxiliary fuel F such as heavy oil to a position approximately 0.5 to 0.8 m above the distribution plate 3
As shown in FIG. The tip of a screw feeder (combustible material supply device) 11 that supplies the incineration material S is disposed, and the fluidized bed is located near the boundary between the fluidized bed 7 and the solid separation section 8 on the side of the main body 1. 7 Secondary air supply pipe 1 that supplies secondary air near the upper end
2 are arranged along the circumferential direction for a predetermined number of times. In the figure, 13 is a supply pipe for heat medium particles (inorganic particles) 6, 14 is a heat medium particle discharge pipe, and 15 is an overflow pipe for combustion residues communicating with the vicinity of the upper end of the fluidized bed. FIG. 2 shows a flow sheet of the entire combustion apparatus incorporating the incinerator configured as described above, in which one end is connected to the combustion air blower 16, and a heat exchanger 17 and a flow meter 18 are interposed. Conduit 19
The other end is connected to the wind box 4, and one end is connected to the conduit 19.
The branch pipe 22 is connected to a predetermined location between the heat exchanger 17 and the flow meter 18, and the other end of the branch pipe 22 is connected to the air supply pipe 12, and the control valve 20 and the flow meter 21 are interposed therein. By appropriately adjusting the control valve 20, an amount of primary air corresponding to 85 to 100% of the theoretical air amount is supplied to the lower part of the fluidized bed 7 through the blower 16, the conduit 19, and the inside of the wind box 4. At the same time, air is supplied from the conduit 19 through the branch pipe 22 and the air supply pipe 12 to the vicinity of the upper end of the fluidized bed 7 at a concentration of 35 to 25% of the theoretical air amount (as indicated in the above-mentioned primary air percentage display). A corresponding amount of secondary air is provided.

また、上記本体1上端開口部の抜出口9は導管23を介
してサイクロン24内部と連通しており、このサイクロ
ン24は導管25を介してマルチサイクロン26と連結
し、かつこのマルチサイクロン26は導管27を介して
上記熱交換器17と連結している。そして上記抜出口9
より排出された燃焼排ガスが、上記両サイクロン24,
26内を順次通過し、この際随伴するフライアッシュを
分離した後、熱交換器17より導管28を経て、必要に
より電気集塵器(図示せず)等て更に浄化した後、大気
に放出されるようになつていると共に、上記サイクロン
24で分離されたフライアッシュは導管29を介して本
体1内に返送され、またマルチサイクロン26のフライ
アッシュは導管30を経て系外に排出されるようになつ
ている。次に、上記構成の流動焼却炉を組込んだ装置を
使用して、下水汚泥、産業廃水汚泥などの有機性汚泥、
その他の被焼却物を焼却する方法につき説明する。
Further, the extraction port 9 at the upper end opening of the main body 1 communicates with the inside of the cyclone 24 via a conduit 23, and this cyclone 24 is connected to a multi-cyclone 26 via a conduit 25, and this multi-cyclone 26 is connected to a conduit. It is connected to the heat exchanger 17 via 27. And the above-mentioned extraction port 9
The combustion exhaust gas discharged from the cyclones 24,
After passing through the heat exchanger 17 and the conduit 28, the air is further purified by an electrostatic precipitator (not shown) if necessary, and then released into the atmosphere. At the same time, the fly ash separated by the cyclone 24 is returned to the main body 1 through the conduit 29, and the fly ash from the multi-cyclone 26 is discharged outside the system through the conduit 30. It's summery. Next, organic sludge such as sewage sludge, industrial wastewater sludge, etc.
A method for incinerating other items to be incinerated will be explained.

まず、運転開始時は、熱媒体粒子供給管13より硅砂等
の平均粒径0.4〜0.5Tn程度の無機質耐熱性熱媒
体粒子6を流動焼却炉本体1に供給すると共に、ブロワ
ー16を作動させて空気吹込口5より風箱4及び吹込ノ
ズル2内を順次通して加熱した空気を上記本体1内の下
端部から上方に向けて吹込み、上記粒子6を流動化させ
、層高1.5〜2.5mの流動層7を形成する。
First, at the start of operation, inorganic heat-resistant heat transfer medium particles 6 such as silica sand having an average particle diameter of about 0.4 to 0.5 Tn are supplied from the heat transfer medium particle supply pipe 13 to the fluidized fluidized incinerator main body 1, and the blower 16 is turned on. When activated, heated air is blown through the air box 4 and the blowing nozzle 2 sequentially from the air blowing port 5 upward from the lower end of the main body 1, fluidizing the particles 6 and increasing the bed height to 1. A fluidized bed 7 of .5 to 2.5 m is formed.

そして、上記粒子6の温度が重油等の補助燃料Fの着火
温度に達した時点で、補助燃料供給管10より補助燃料
Fを供給して燃焼させ、流動層7の温度を所定温度、通
常600〜850′C1まで昇温し、しかる後に被焼却
物供給装置11より被焼却物Sを供給する。そうすると
、流動層7内に供給された被焼却物Sは、直ちに乾燥し
、含有有機物が燃焼する。この場合、酸素の消費量が増
加するので、二次空気供給管12より上記流動層7の上
端部付近にも二次空気を供給する。次いで、上記被焼却
物の焼却処理により発生する燃焼排ガスは、ガス抜出口
9を通つて更に後述するように系外に排出されるが、こ
の排出ガス中の酸素濃度を測定し、これに基いて全体と
しての空気過剰率が1.1〜1.2になるように送入空
気量を調節すると共に、更に、調節弁20を適宜調節す
ることにより、燃焼空気プロア16で昇圧され、熱交換
器17で加熱された送入空気のうち、理論空気量の85
〜100%に相当する量の空気が、一次空気として流量
計18を通り、更に上記風箱牡ノズル2内を通つて流動
層7の下部に供給されるように調節し、かつ残りの理論
空気量の25〜35%に相当する量の空気が、二次空気
として調節弁20を通り、流量計21で計量された後、
二次空気供給管12内を通つて流動層7の上端部付近に
供給されるように調節し、以後上記状態を保持して運転
を継続し、被焼却物Sを連続的に処理する。
Then, when the temperature of the particles 6 reaches the ignition temperature of the auxiliary fuel F such as heavy oil, the auxiliary fuel F is supplied from the auxiliary fuel supply pipe 10 and combusted, and the temperature of the fluidized bed 7 is set to a predetermined temperature, usually 600°C. The temperature is raised to ~850'C1, and then the material to be incinerated S is supplied from the material to be incinerated supply device 11. Then, the material to be incinerated S supplied into the fluidized bed 7 is immediately dried, and the organic matter contained therein is combusted. In this case, since the amount of oxygen consumed increases, secondary air is also supplied to the vicinity of the upper end of the fluidized bed 7 from the secondary air supply pipe 12. Next, the combustion exhaust gas generated by the incineration process of the materials to be incinerated is discharged outside the system through the gas outlet 9 as will be described later. The oxygen concentration in this exhaust gas is measured, and the By adjusting the amount of air to be fed so that the overall excess air ratio is 1.1 to 1.2, and further adjusting the control valve 20 as appropriate, the combustion air is pressurized by the combustion air blower 16, and heat exchange is performed. Of the inlet air heated in the container 17, the theoretical air amount is 85
Adjustment is made so that an amount of air corresponding to ~100% of the primary air passes through the flow meter 18 and further passes through the wind box male nozzle 2 to the lower part of the fluidized bed 7, and the remaining theoretical air After an amount of air corresponding to 25 to 35% of the amount passes through the control valve 20 as secondary air and is measured by the flow meter 21,
The secondary air is adjusted so that it is supplied to the vicinity of the upper end of the fluidized bed 7 through the interior of the secondary air supply pipe 12, and thereafter the operation is continued while maintaining the above state, and the material to be incinerated S is continuously processed.

このようにして被焼却物Sが焼却処理されるが、このと
き発生する燃焼排ガスは固体分離部8で随伴する流動熱
媒体6と燃焼残渣のうちかなり粒径の大きいものを分離
した後、抜出口9より導管23を経てサイクロン24内
に流入し、ここで粒径の大きいアッシュ等を捕集、分離
し、続いて導管24を経てマルチサイクロン2内に入り
、更に細かいアッシュを捕集、分離し、次いで熱交換器
17で熱回収を行ない、更に必要に応じて電気集塵機等
て浄化した後、大気へ放散する。一方、被焼却物Sの焼
却により生成する燃焼残渣は溢流管15より排出し、ま
た上記サイクロン24て捕集されたアッシュ等は導管2
9内を通つて本体1・内に戻し、マルチサイクロン26
て捕集されたアッシュは系外に排出する。次に本発明の
作用について説明する。
In this way, the material to be incinerated S is incinerated, and the combustion exhaust gas generated at this time is extracted after separating the accompanying fluid heat medium 6 and the combustion residue, which have relatively large particle sizes, in the solid separation section 8. It flows from the outlet 9 through the conduit 23 into the cyclone 24, where it collects and separates ash with large particle size, and then enters the multi-cyclone 2 through the conduit 24, where it collects and separates finer ash. Then, the heat is recovered by a heat exchanger 17, and if necessary, after being purified by an electrostatic precipitator or the like, it is released into the atmosphere. On the other hand, combustion residue generated by incineration of the material to be incinerated S is discharged from the overflow pipe 15, and ash etc. collected by the cyclone 24 is discharged from the conduit 2.
9 and return to the inside of the main body 1, and the multi-cyclone 26
The collected ash is discharged outside the system. Next, the operation of the present invention will be explained.

本発明にて取扱う下水汚泥等の含水率が高く、燃焼性の
悪い、かつ含有物中に6価クロムへの転化率の高いクロ
ム金属を有する被焼却物の焼却処理においては、1.5
〜2.5TrLという深い流動層7を形成し、この流動
層7の下部に理論空気量85〜100%に相当する量の
一次空気を供給するとともに、上記流動層7の上端部付
近に理論空気量の35〜25%(前記Lした一次空気%
表示に順記)に相当する量の二次空気を供給することに
より、流動層7が安定した良好な状態で形成され、その
層内では還元雰囲気下にあるので、クロム金属があつて
もその6価クロムへの転化は抑制され、流動層の下限深
さが充分であり、従つて補助燃料の上向拡散域が確保さ
れているので、有機活性汚泥等の被焼却物が確実に処理
される。流動層内の理論空気比を1.0以下にすること
により生ずる可燃性排ガス、流動層内の燃焼残渣中の未
燃物、即ち未燃の可燃性の含有有機物は、流動層上部の
固液分離部において、二次空気の供給を受けて殆んど完
全に燃焼させることができる。かつ、生成NOx量を低
減できると共に、特に被焼却物中にクロム金属が含有さ
れていても、その酸化による6価クロムへの転化がなく
、2次公害の発生を確実に防止することができる。即ち
、流動層7を従来のように浅く形成すると、上述したよ
うにNOx及び6価クロムの生成量が増大するという危
険性を招き、かつこれを防止するため空気過剰率を低く
すれば、良好な焼却処理が行われず、残渣中にかなりの
未燃分が含まれる等の問題を生じ、また流動層を2.5
w1.を越えてかなり深く形成する場合には、流動層の
深さの増加に伴つて必要空気圧力が増加し、効力の損失
となる上、NOxの生成は流動層の高さ2.5TrL,
程度でほぼ下限に達するので、特にこれ以上高くする必
要は無く、かつまた送入空気の殆んど全てを流動層の下
部から供給すると、6価クロムの生成量が増大する等の
問題を生じ、逆に流動層下部への供給空気量が少な過ぎ
ると良好な流動層が形成されす、被焼却物も良好に処理
されない等の問題を生じる。しかし、本発明では層高1
.5〜2.5mの適度に深い流動層7を形成し、かつそ
の下部より理論空気量の85〜100%の空気を供給す
るので、流動層7内は還元雰囲気下に保たれ、6価クロ
ムの生成が確実に抑制され、NOxの発生量も低減させ
ることができ、しかも流動層7の形成に必要な空気圧力
も無闇に高くなく、効力の損失が少い状態で安定した流
動層が形成されて、被焼却物の処理が支障なく行われる
と共に、上記流動層7の上端部付近に理論空気量の25
〜35%の二次空気を供給するので、被焼却物中の有機
物及び生成排ガスが確実に燃焼せしめられ、燃焼残渣中
にかなりの不燃分が残る如き不都合は生じない。更に、
流動層7の下部ほぼ1′3の部分に重油等の補助燃料を
直接供給することにより、流動層7が所定の温度に確実
に維持され、被焼却物を良好に処理することができる。
従つて、本発明においては、空気過剰率を全体として無
闇に低下させる方式を採用することなく、6価クロム、
M奴の生成を抑制でき、かつ微粉炭等の還元性固体補助
燃料を添加する必要もなく、硅砂等の無機物粒子のみを
熱媒体粒子として流動化させて被焼却物を処理でき、操
作性も良好で、能率よく簡単に焼却処理操作を行うこと
ができ、しかも装置の大型化、複雑化を伴うこともなく
、経済性も優れている。
In the incineration treatment of materials to be incinerated, such as sewage sludge handled in the present invention, which have a high moisture content, poor combustibility, and contain chromium metal with a high conversion rate to hexavalent chromium, 1.5
A deep fluidized bed 7 of ~2.5 TrL is formed, and an amount of primary air corresponding to 85 to 100% of the theoretical air amount is supplied to the lower part of this fluidized bed 7, and theoretical air is supplied near the upper end of the fluidized bed 7. 35-25% of the amount (L primary air%)
By supplying secondary air in an amount equivalent to Conversion to hexavalent chromium is suppressed, the minimum depth of the fluidized bed is sufficient, and an upward diffusion area for auxiliary fuel is secured, so incineration materials such as organic activated sludge can be reliably treated. Ru. Combustible exhaust gas generated by reducing the stoichiometric air ratio in the fluidized bed to 1.0 or less, unburned matter in the combustion residue in the fluidized bed, that is, unburned combustible organic matter contained in the solid-liquid at the top of the fluidized bed. In the separation section, secondary air is supplied to achieve almost complete combustion. In addition, the amount of NOx generated can be reduced, and even if chromium metal is contained in the incinerated material, it will not be converted to hexavalent chromium due to oxidation, and the generation of secondary pollution can be reliably prevented. . That is, if the fluidized bed 7 is formed shallowly as in the conventional method, there is a risk that the amount of NOx and hexavalent chromium produced increases as described above. The incineration process was not carried out properly, resulting in problems such as a considerable amount of unburned matter being included in the residue, and the fluidized bed was
w1. If the bed is formed considerably deeper than 2.5 TrL, the required air pressure will increase as the depth of the fluidized bed increases, resulting in a loss of effectiveness.
There is no need to raise the temperature any higher than this, and if almost all of the air is supplied from the bottom of the fluidized bed, problems such as an increase in the amount of hexavalent chromium produced may occur. On the other hand, if the amount of air supplied to the lower part of the fluidized bed is too small, a good fluidized bed will not be formed and the materials to be incinerated will not be properly processed. However, in the present invention, the layer height is 1
.. Since a moderately deep fluidized bed 7 of 5 to 2.5 m is formed, and 85 to 100% of the theoretical air amount is supplied from the bottom, the inside of the fluidized bed 7 is maintained in a reducing atmosphere, and hexavalent chromium is The generation of NOx can be reliably suppressed and the amount of NOx generated can be reduced, and the air pressure required to form the fluidized bed 7 is not unnecessarily high, so a stable fluidized bed can be formed with little loss of effectiveness. Therefore, the waste to be incinerated can be processed without any trouble, and the theoretical air amount of 25
Since ~35% of secondary air is supplied, the organic matter in the material to be incinerated and the generated exhaust gas are reliably combusted, and the inconvenience that a considerable amount of non-combustible matter remains in the combustion residue does not occur. Furthermore,
By directly supplying auxiliary fuel such as heavy oil to approximately 1'3 of the lower portion of the fluidized bed 7, the fluidized bed 7 can be reliably maintained at a predetermined temperature, and the materials to be incinerated can be treated satisfactorily.
Therefore, in the present invention, without adopting a method of reducing the excess air ratio as a whole, hexavalent chromium,
It is possible to suppress the generation of Mn, and there is no need to add reducing solid auxiliary fuel such as pulverized coal, and the incineration material can be treated by fluidizing only inorganic particles such as silica sand as heat carrier particles, and it is easy to operate. The incineration process can be carried out efficiently and easily, and the equipment does not need to be large or complicated, and it is also economical.

次に、上述した方法により下水汚泥を実際に焼却処理し
た場合の結果を表2に示す。
Next, Table 2 shows the results when sewage sludge was actually incinerated using the method described above.

なお、本実施例において使用した流動焼却炉本体の内径
は2m1高さは約87TLである。表2に示したように
、流動層の深さを増加し、燃焼用空気を2段に分割して
供給し、なおかつ補助燃料を流動層下部に直接供給する
方法は、燃焼排ガス中のNOxを低減させ、燃焼残渣中
の6価クロムを零とし、更に残渣(アッシュ)中の未燃
分を低くする上で極めて有効であることが明らかである
The fluidized incinerator body used in this example had an inner diameter of 2 m and a height of approximately 87 TL. As shown in Table 2, the method of increasing the depth of the fluidized bed, supplying combustion air in two stages, and directly supplying auxiliary fuel to the bottom of the fluidized bed reduces NOx in the combustion exhaust gas. It is clear that it is extremely effective in reducing the amount of hexavalent chromium in the combustion residue to zero and further lowering the unburned content in the residue (ash).

なお、上記実施例ては、被焼却物供給装置11を流動層
7に連通するようにしたが、これに限られることはなく
、固体分離部8に連通するように配設することができ、
また殆んどの汚泥の焼却処理に際しては、熱収支上補助
燃料を必要とするが、高温空気の導入と被焼却物の燃焼
による熱エネルギーの発生により熱収支上問題がなけれ
ば、補助燃料の供給を必ずしも行う必要はない。
In the above embodiment, the incineration material supply device 11 is connected to the fluidized bed 7, but it is not limited to this, and it can be arranged to communicate with the solid separation section 8.
In addition, when incinerating most sludge, auxiliary fuel is required for heat balance, but if there is no problem in heat balance due to the introduction of high-temperature air and the generation of thermal energy by combustion of the material to be incinerated, auxiliary fuel can be supplied. It is not necessary to do so.

しかし、補助燃料を供給する場合は、上述したように流
動層7の下部総層高のほぼ113の高さ、もしくはこれ
より低い部分に直接投入することが好ましい。なおまた
、上記実施例ては、流動層7の下部及び上部への投入空
気量の制御を分岐管22を介=装した制御弁20により
行つたが、それ以外に従来公知の種々の方式を採用する
ことがてき、その他の構成についても本発明の要旨を逸
脱しない範囲で種々変更して差支えない。以上説明した
ように、本発明によれば、6価クロム、NOx等の生成
を抑制して低公害の状態で下水汚泥、廃業廃水汚泥等の
被焼却物を焼却処理することができ、2次公害の発生を
確実に防止することができると共に、被焼却物中の有機
物を殆んど完全に分解、燃焼し得て、生成残渣中の未燃
分を殆んどなくすることができ、しかも確実かつ簡便に
、また能率的に被焼却物を処理し得る上、経済的てあり
、更に装置の構造も比較的簡単で安価に製作できる等の
利点を有する。
However, when supplementary fuel is supplied, it is preferable to directly inject it into the fluidized bed 7 at a height of about 113 of the total lower bed height or lower than this as described above. Furthermore, in the above embodiment, the amount of air introduced into the lower and upper parts of the fluidized bed 7 was controlled by the control valve 20 installed through the branch pipe 22, but various conventionally known methods may be used in addition to this. Various modifications may be made to other configurations without departing from the gist of the present invention. As explained above, according to the present invention, it is possible to suppress the generation of hexavalent chromium, NOx, etc., and incinerate materials such as sewage sludge and industrial wastewater sludge in a low-pollution state. In addition to reliably preventing the occurrence of pollution, it is also possible to almost completely decompose and burn the organic matter in the incinerated materials, and almost eliminate unburned matter in the generated residue. In addition to being able to reliably, easily, and efficiently process incinerated materials, it is also economical, and has the advantage that the structure of the device is relatively simple and can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る流動焼却炉の一例を示す縦断面図
、第2図は同焼却炉を用いて被焼却物を処理する場合の
フローシート図である。 1・・・流動焼却炉本体、2・・・空気吹込ノズル、3
・・・分散板、4・・・風箱、6・・・熱媒体粒子、7
・・・流動層、9・・・排ガス抜出口、10・・・補助
燃料供給管、11・・・被焼却物供給装置、12・・・
二次空気供給管、15・・・燃焼残渣溢流管、16・・
・ブロワー、20・・・制御弁。
FIG. 1 is a longitudinal cross-sectional view showing an example of a fluidized incinerator according to the present invention, and FIG. 2 is a flow sheet diagram for processing materials to be incinerated using the same incinerator. 1... Fluidized incinerator body, 2... Air blowing nozzle, 3
... Dispersion plate, 4 ... Wind box, 6 ... Heat carrier particles, 7
...Fluidized bed, 9...Exhaust gas outlet, 10...Auxiliary fuel supply pipe, 11...Incineration material supply device, 12...
Secondary air supply pipe, 15... Combustion residue overflow pipe, 16...
・Blower, 20...control valve.

Claims (1)

【特許請求の範囲】 1 無機質の熱媒体粒子を気体で流動させることによつ
て形成される流動層内で有機性汚泥等の被焼却物を焼却
処理する流動層方式による有機性汚泥等の焼却方法にお
いて、上記流動層の運転時の高さを1.5m以上2.5
m以下に保つと共に、この流動層の下部に理論空気量の
85〜100%に相当する量の空気を流動用気体を兼ね
て供給し、かつ上記流動層の上端部付近に理論空気量の
25〜35%に相当する量の二次空気を供給して、上記
流動層内に供給された有機性汚泥等の被焼却物を焼却処
理することを特徴とする有機性汚泥等の焼却方法。 2 上記流動層の下部ほぼ1/3までの部分に補助燃料
を直接供給する特許請求の範囲第1項記載の有機性汚泥
等の焼却方法。 3 内部に運転時において層高1.5m以上2.5m以
下の無機質媒体粒子による流動層が形成されると共に、
下部に空気吹込ノズルを有する分散板が配設され、かつ
上部に排ガス抜出口が設けられてなる流動焼却炉本体と
、理論空気量の85〜100%に相当する量の空気を上
記分散板を介して上記流動層の下部に供給すると共に、
理論空気量の25〜30%に相当する量の二次空気を上
記流動層の上端部付近に供給する空気供給機構と、上記
流動層内に有機性汚泥等の被焼却物を供給する被焼却物
供給機構と、及び燃焼残渣の溢流機構とを具備したこと
を特徴とする有機性汚泥等の焼却装置。 4 上記流動層の下部ほぼ1/3までの部分に補助燃料
を供給する補助燃料供給機構を備えた特許請求の範囲第
3項記載の有機性汚泥等の焼却装置。
[Scope of Claims] 1. Incineration of organic sludge, etc. using a fluidized bed method, in which incineration of organic sludge, etc. is incinerated in a fluidized bed formed by fluidizing inorganic heat transfer medium particles with gas. In the method, the height of the fluidized bed during operation is set to 1.5 m or more and 2.5 m or more.
m or less, and an amount of air equivalent to 85 to 100% of the theoretical air amount is supplied to the lower part of the fluidized bed to also serve as a fluidizing gas, and 25 to 100% of the theoretical air amount is supplied near the upper end of the fluidized bed. A method for incinerating organic sludge, etc., characterized in that the material to be incinerated, such as organic sludge, supplied into the fluidized bed is incinerated by supplying secondary air in an amount corresponding to ~35%. 2. The method for incinerating organic sludge, etc. according to claim 1, wherein auxiliary fuel is directly supplied to approximately the lower one-third of the fluidized bed. 3. During operation, a fluidized bed of inorganic media particles with a bed height of 1.5 m or more and 2.5 m or less is formed inside, and
A fluidized incinerator body is provided with a dispersion plate having an air blowing nozzle in the lower part and an exhaust gas outlet in the upper part, and an amount of air corresponding to 85 to 100% of the theoretical air amount is passed through the dispersion plate. and supplying the fluidized bed to the lower part of the fluidized bed through the
An air supply mechanism that supplies secondary air in an amount equivalent to 25 to 30% of the theoretical air amount near the upper end of the fluidized bed, and an incineration material that supplies incineration materials such as organic sludge into the fluidized bed. An incineration device for organic sludge, etc., characterized by comprising a material supply mechanism and a combustion residue overflow mechanism. 4. The incineration apparatus for organic sludge, etc. according to claim 3, comprising an auxiliary fuel supply mechanism that supplies auxiliary fuel to approximately the lower one-third of the fluidized bed.
JP53012057A 1978-02-06 1978-02-06 Incineration method and equipment for sludge, etc. Expired JPS6056965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53012057A JPS6056965B2 (en) 1978-02-06 1978-02-06 Incineration method and equipment for sludge, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53012057A JPS6056965B2 (en) 1978-02-06 1978-02-06 Incineration method and equipment for sludge, etc.

Publications (2)

Publication Number Publication Date
JPS54105867A JPS54105867A (en) 1979-08-20
JPS6056965B2 true JPS6056965B2 (en) 1985-12-12

Family

ID=11794963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53012057A Expired JPS6056965B2 (en) 1978-02-06 1978-02-06 Incineration method and equipment for sludge, etc.

Country Status (1)

Country Link
JP (1) JPS6056965B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6718296B2 (en) * 2016-04-26 2020-07-08 三菱重工業株式会社 Fluidized bed combustion furnace

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226022A (en) * 1975-08-22 1977-02-26 Mitsubishi Heavy Ind Ltd Flowing combustion process with low nox
JPS5488673A (en) * 1977-11-25 1979-07-13 Mitsui Eng & Shipbuild Co Ltd Fluidized combustion method for combusting nitrogen containing combustible waste

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226022A (en) * 1975-08-22 1977-02-26 Mitsubishi Heavy Ind Ltd Flowing combustion process with low nox
JPS5488673A (en) * 1977-11-25 1979-07-13 Mitsui Eng & Shipbuild Co Ltd Fluidized combustion method for combusting nitrogen containing combustible waste

Also Published As

Publication number Publication date
JPS54105867A (en) 1979-08-20

Similar Documents

Publication Publication Date Title
JP2657896B2 (en) Fluid bed reactor and combustion method
US4583468A (en) Method and apparatus for combustion of diverse materials and heat utilization
CN101849140B (en) Fluidized-bed incinerator and method of fluidized-bed incineration of sludge with the same
GB1007734A (en) Disposal of waste sludges
US4724777A (en) Apparatus for combustion of diverse materials and heat utilization
WO1997048950A1 (en) Method and apparatus for gasifying fluidized bed
EP0577759B1 (en) Concurrent-flow multiple hearth furnace for the incineration of sewage sludge filter-cake
US20040020415A1 (en) Regenerative thermal waste incineration system
KR100654478B1 (en) A method and apparatus for reducing a feed material in a rotary hearth furnace
JPS6056965B2 (en) Incineration method and equipment for sludge, etc.
KR100727628B1 (en) Apparatus for processing waste by molten aeration and method thereof
JP2000283427A (en) Reaction type refuse incinerating furnace and method for incinerating refuse using the same
JPS6025687B2 (en) fluidized bed incinerator
JP3790418B2 (en) Operating method of external circulating fluidized bed furnace for waste incinerator with high water content and high volatility such as sewage sludge
JPH0481692B2 (en)
JP2000111025A (en) Secondary combustion furnace
JP3270447B2 (en) Waste treatment method and gasification and melting equipment
JPH037697Y2 (en)
JP2991639B2 (en) Waste incineration equipment
JPS61134519A (en) Sludge reduction reaction device
JP2002115829A (en) Method for waste treatment and gasification and melting apparatus
JP3270454B1 (en) Waste treatment method and gasification and melting equipment
JPS6310326B2 (en)
JPH0737843B2 (en) Operating method of fluidized bed high water content waste incinerator
CN115560340A (en) Device and method for treating biomass fuel in cylindrical layer manner