JPS605650B2 - Method for cleaning organic solvents used in solvent extraction methods - Google Patents

Method for cleaning organic solvents used in solvent extraction methods

Info

Publication number
JPS605650B2
JPS605650B2 JP53086736A JP8673678A JPS605650B2 JP S605650 B2 JPS605650 B2 JP S605650B2 JP 53086736 A JP53086736 A JP 53086736A JP 8673678 A JP8673678 A JP 8673678A JP S605650 B2 JPS605650 B2 JP S605650B2
Authority
JP
Japan
Prior art keywords
organic solvent
extraction
solvent
phase
extractant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53086736A
Other languages
Japanese (ja)
Other versions
JPS5515602A (en
Inventor
俊 緒方
積 藤井
広 沖野
英雄 玉野井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP53086736A priority Critical patent/JPS605650B2/en
Publication of JPS5515602A publication Critical patent/JPS5515602A/en
Publication of JPS605650B2 publication Critical patent/JPS605650B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は、溶媒抽出法において使用される有機溶媒の洗
浄方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for washing organic solvents used in solvent extraction methods.

湿式冶金分野において、溶媒抽出法として知られる処理
方法が幾つかの金属の選択的分離抽出に利用されている
In the field of hydrometallurgy, a process known as solvent extraction is used for the selective separation and extraction of some metals.

更に、この溶媒抽出法は近年、廃液からの金属の選択的
回収、医薬品の分離精製等にも広く応用されるようにな
っている。抽出剤の選定に当っては、その抽出剤が目的
金属を含む水溶液への溶解度が小さいこと、および水溶
液から目的金属イオンを選択的に且つ効率的に抽出する
性能を具備していること等が考慮されねばならない。更
に、抽出剤はその粘性を低下せしめかつ抽出剤の分散を
良くし、抽出剤の接触表面積を大きくする等のため希釈
剤(溶剤)で薄めて使用されるため、希釈剤によく溶け
ることが必要である。本明細書において、このように抽
出剤を溶剤に溶かした状態の、目的金属を含む溶液と接
触される液を有機溶媒と呼ぶ。抽出工程において、目的
金属を含む水溶液と有機溶媒とは、ミキサーセットラー
設備、抽出塔、遠心抽出機等を利用して接触混合される
Furthermore, in recent years, this solvent extraction method has been widely applied to selective recovery of metals from waste liquids, separation and purification of pharmaceuticals, and the like. When selecting an extractant, consider that the extractant has low solubility in the aqueous solution containing the target metal and has the ability to selectively and efficiently extract the target metal ion from the aqueous solution. must be taken into consideration. Furthermore, the extractant is diluted with a diluent (solvent) in order to reduce its viscosity, improve its dispersion, and increase the contact surface area of the extractant, so it does not dissolve well in the diluent. is necessary. In this specification, the liquid that is brought into contact with the solution containing the target metal in which the extractant is dissolved in the solvent is referred to as an organic solvent. In the extraction step, the aqueous solution containing the target metal and the organic solvent are mixed in contact using mixer settler equipment, an extraction tower, a centrifugal extractor, or the like.

混合温度は一般に20〜8ぴ○が適当とされ、そして水
相と有機溶媒との容積比はおおよそ10;1〜1:1の
崖度で行う。一般には、有機溶媒は繰返し使用されてい
る。しかしながら、長期にわたっての繰返し使用中、有
機溶媒はその性能を低下していく。例えば、ニッケル、
コバルト抽出分離においては、循環使用が3ケ月以上に
なると逆抽出工程において、抽出阻害物質が肉眼で見え
る程度に有機溶媒に析出し懸濁してくる。また、このと
きの抽出分離効率は使用前の2′3〜1/a陣度に低下
する。抽出分離効率低下の主因は、抽出剤および希釈剤
中の様々の成分が使用中に変質し、さらに蓄積するため
であると言われている。このように有機溶媒の使用中発
生して抽出分離効率を低下させる物質は総称して以降抽
出阻害物質と呼ぶ。抽出阻害物質は有機溶媒の抽出分離
能力を低下せしめるとともに、抽出工程後有機相(主に
有機溶媒)と水相との分離に際して両者の界面に集中し
、両者の分離を困難とする。有機溶媒の循環使用中、液
中に徴量に存在している鉄や設備等から溶出した鉄が徐
々に蓄積して抽出能力を低下させるが、本発明において
は鉄は対象外とする。従来、この対策として、発生して
くる抽出阻害物質を人力もしくは機械による汲上げや炉
別するかまたは一定期間使用後新しく入替る等の方策が
とられていたにすぎなかった。
The mixing temperature is generally 20 to 8 pi, and the volume ratio of the aqueous phase to the organic solvent is approximately 10:1 to 1:1. Generally, organic solvents are used repeatedly. However, during repeated use over a long period of time, the performance of organic solvents deteriorates. For example, nickel,
In cobalt extraction and separation, if the recycled material is used for three months or more, extraction-inhibiting substances will precipitate and become suspended in the organic solvent to the extent that they can be seen with the naked eye in the back-extraction step. Further, the extraction and separation efficiency at this time decreases to 2'3 to 1/a efficiency before use. It is said that the main reason for the reduction in extraction and separation efficiency is that various components in the extractant and diluent deteriorate and accumulate during use. Such substances that are generated during the use of an organic solvent and reduce the efficiency of extraction and separation are collectively referred to as extraction-inhibiting substances hereinafter. Extraction inhibitors reduce the extraction and separation ability of organic solvents, and when the organic phase (mainly organic solvent) and aqueous phase are separated after the extraction process, they concentrate at the interface between the two, making separation of the two difficult. During the cyclic use of an organic solvent, iron present in large amounts in the liquid and iron eluted from equipment etc. gradually accumulates and reduces the extraction ability, but iron is not a target of the present invention. Conventionally, the only countermeasures against this problem have been to manually or mechanically pump up the generated extraction inhibiting substances, separate them in a furnace, or replace them with new ones after a certain period of use.

本発明者は、このように抽出阻害物質を含む有機溶媒を
苛性アルカリと接触することにより抽出阻害物質は水に
可溶性の塩となり、有機溶媒から効果的に分離除去しう
ろことを知見した。
The present inventor has discovered that by contacting an organic solvent containing an extraction inhibiting substance with caustic alkali, the extraction inhibiting substance becomes a water-soluble salt and can be effectively separated and removed from the organic solvent.

斯くして、本発明は、溶媒抽出に使用される有機溶媒に
抽出阻害物質が蓄積する時談有機溶媒を苛性アルカリ水
溶液と接触することにより抽出阻害物質を除去すること
を特徴とする有機溶媒洗浄方法を提供する。
Thus, the present invention provides an organic solvent cleaning method in which extraction inhibiting substances accumulate in the organic solvent used for solvent extraction, which is characterized in that the extraction inhibiting substances are removed by contacting the organic solvent with an aqueous caustic solution. provide a method.

更に、本発明者は、前述した有機溶媒と苛性アルカリ水
溶液との接触により有機溶媒が溶剤と溶剤の一部を含む
抽出剤とに相分離し、その場合抽出阻害物質は溶剤相に
主に分配されることを見出した。
Furthermore, the present inventor has discovered that when the organic solvent mentioned above comes into contact with the aqueous caustic solution, the organic solvent undergoes phase separation into a solvent and an extractant containing a portion of the solvent, and in that case, the extraction-inhibiting substance is mainly distributed in the solvent phase. I found out that it can be done.

溶剤は比較的安価であるため、この分相した溶剤を新し
い溶剤と交換することによって抽出阻害物質の大半除去
された有機溶媒を得ることができる。斯くして、本発明
はまた溶媒抽出に使用される有機溶媒に抽出阻害物質が
蓄積する時該有機溶媒と苛性アルカリ水溶液とを接触さ
せて後苛性アルカリ水溶液相を除くと共に、分相した溶
剤を新しい溶剤と交換することを特徴とする有機溶媒洗
浄方法をも提供する。
Since the solvent is relatively inexpensive, by replacing the phase-separated solvent with a new solvent, it is possible to obtain an organic solvent from which most of the extraction-inhibiting substances have been removed. Thus, the present invention also provides a method for removing the aqueous caustic solution phase and removing the phase-separated solvent by contacting the organic solvent with an aqueous caustic solution when extraction inhibitory substances are accumulated in the organic solvent used for solvent extraction. A method of cleaning an organic solvent is also provided, which is characterized by replacing the solvent with fresh solvent.

以下、本発明について具体的に説明する。The present invention will be explained in detail below.

本発明に従えば、有機溶媒はその繰返し使用中抽出阻害
物質が蓄積してくると抽出工程から適宜取出されて洗浄
操作工程へと移される。
According to the present invention, when the organic solvent accumulates extraction-inhibiting substances during its repeated use, it is appropriately removed from the extraction step and transferred to the washing operation step.

洗浄操作は、抜出された有機溶媒と苛性アルカリ(水酸
化ナトリウム、水酸化カリウム)水溶液とを損洋槽等の
混合容器に入れ、充分なる鷹浮浪合後静遣して、有機溶
媒相と苛性アルカリ水相とに分相せしめ、有機溶媒を回
収することにより実施される。
In the cleaning operation, the extracted organic solvent and caustic alkali (sodium hydroxide, potassium hydroxide) aqueous solution are placed in a mixing container such as a tank, and after sufficient floating time, the organic solvent phase is allowed to stand still. This is carried out by phase separation into a caustic aqueous phase and recovery of the organic solvent.

抽出阻害物質の大半は水に可溶性の塩となり水相中に溶
けてしまうので、回収される有機溶媒中から抽出阻害物
質は大半除去される。洗浄操作は必要に応じ2回以上繰
返してもよい。抽出阻害物質については、有機成分が空
気中の酸素等の影響によりあるいはその他の反応を通し
て変化したものと考えられ、その物質が何であるかの解
明は充分には為されていないがその一部にカルボン酸を
含むものと思われる。洗浄操作に当って使用される苛性
アルカリ水溶液は、アルカリ濃度があまりに低いと当然
所望の0洗浄効果が得られず、1〜20%のアルカリ濃
度の使用が好ましい。
Most of the extraction-inhibiting substances become water-soluble salts and are dissolved in the aqueous phase, so that most of the extraction-inhibiting substances are removed from the recovered organic solvent. The washing operation may be repeated two or more times if necessary. Extraction inhibitors are thought to be organic components that have changed due to the influence of oxygen in the air or through other reactions, and although the identity of these substances has not been fully elucidated, some of them It seems to contain carboxylic acid. If the aqueous caustic alkali solution used in the cleaning operation has an extremely low alkaline concentration, the desired zero cleaning effect cannot be obtained, so it is preferable to use an alkali concentration of 1 to 20%.

有機溶媒と苛性アルカリ水溶液との比(0/A)は小さ
い程有効ではあるが、使用しうる混合設備の混合能力、
容量、洗浄有機溶媒の種類および量によって大きく左右
され一義的夕には定められない。図1一A,1−B及び
1−Cは、有機溶媒の使用前(図1−A)、3ケ月使用
後(図1−B)および3ケ月使用後の有機溶媒を本発明
方法で1回洗浄後(図1−C)の赤外線吸収スペクトル
の変化の様相を示す。
The smaller the ratio (0/A) of the organic solvent to the caustic aqueous solution, the more effective it is, but the mixing capacity of the mixing equipment that can be used,
It is largely influenced by the capacity, type and amount of the washing organic solvent, and cannot be determined unambiguously. Figures 1-A, 1-B, and 1-C show how organic solvents were treated using the method of the present invention before (Figure 1-A), after 3 months of use (Figure 1-B), and after 3 months of use. It shows the changes in the infrared absorption spectrum after washing twice (FIG. 1-C).

有機溶媒としては、ニッケルーコバルト水溶液からコバ
ルトの分離抽出に使用される、2ーェチルヘキシルホス
ホン酸モノ2ーェチルヘキシルヱステル(M2EHPA
と以下称する)を主成分とする抽出剤をケロシン中に2
0%溶かした溶液を使用した。図1−Bからわかるよう
に、3ケ月の使用によりカルボン酸に含まれるC=○の
赤外線吸収線スペクトルの波数である1720弧‐1の
波数のピークが大きくなる。これは使用中における抽出
阻害物質の発生によるものである。これを80タ′そN
aOHで1回洗浄すると(0/A=1)、図1−Cに示
すごとくピークが相当に小さくなることがわかる。この
事実は抽出阻害物質が大半除去されたことを意味する。
この洗浄操作により有機溶媒の抽出分離能が回復するこ
とを確認するために洗浄後の有機溶媒の抽出分離能8を
測定した。
As an organic solvent, mono-2-ethylhexyl ester 2-ethylhexylphosphonate (M2EHPA), which is used for separating and extracting cobalt from a nickel-cobalt aqueous solution, is used.
(hereinafter referred to as)) is added to the kerosene.
A 0% solution was used. As can be seen from FIG. 1-B, after three months of use, the peak of the wave number of 1720 arc-1, which is the wave number of the infrared absorption line spectrum of C=◯ contained in the carboxylic acid, increases. This is due to the generation of extraction inhibiting substances during use. 80 t's of this
It can be seen that when washed once with aOH (0/A=1), the peak becomes considerably smaller as shown in FIG. 1-C. This fact means that most of the extraction-inhibiting substances were removed.
In order to confirm that the extraction separation ability of the organic solvent was recovered by this washing operation, the extraction separation ability 8 of the organic solvent after washing was measured.

溶媒としては前述したのと同じものを用い、Ni29.
4タ′〆およびCol4.7夕/そを含む水溶液からの
Coの抽出を行った。0/A比およびpH値を変えての
2種の試験の結果を下表に示す。
Using the same solvent as mentioned above, Ni29.
Co was extracted from an aqueous solution containing Co4 and Col4.7. The results of two tests with varying 0/A ratios and pH values are shown in the table below.

表から、洗浄操作によって8値、即ち抽出分離効率が大
中に改善されることがわかる。ここで8値は抽出後の昼
機相lのコバルト字鰹堺 水相中のコバルト濃度比を抽出後の 有機相≠のニッケル濃& 水相中のニッケル濃度比で除した値であり、値**の大
きい程抽出分離効率が高いことを示す。
From the table, it can be seen that the washing operation significantly improves the 8 value, that is, the extraction separation efficiency. Here, the 8 value is the value obtained by dividing the cobalt concentration ratio in the cobalt-shaped Katsuo Sakai aqueous phase of the daytime phase l after extraction by the nickel concentration ratio of the organic phase ≠ nickel concentration in the aqueous phase after extraction, and the value The larger the **, the higher the extraction separation efficiency.

上述した方法は、抽出阻害物質を水溶性のアルZカリ塩
に変えることに塞くものであるが、本発明に従えば、回
収される有機溶媒の洗浄度はその溶剤を新しい溶剤と交
換することにより一層向上されうる。即ち、有機溶媒は
苛性アルカリ水溶液との接触によって、溶媒自体が溶剤
とそれを一部含Zむ抽出剤という2相に分離しやすい。
この分離傾向は溶剤の極性に応じて変わるが、たとえば
、バーサチツク酸ーメルマルパラフインやD2EHPA
−ケロシン、MギHPA−ケロシンのような極性の小さ
い溶剤と抽出剤との組合せにおいて起りやす2い。この
ように分相した場合、抽出阻害物質は溶剤相中に分配さ
れることが図2〜4によりわかる。図2〜図3において
示めすごとく、3ケ月の使用により、1720肌‐1の
波数のところの赤外線吸収2スペクトルのピ−クが、使
用前のM2EHPA(図2−B)と使用後のM2EHP
A(図3−B)の変化に比べ、使用前の溶剤(ケロシン
)(図2−A)と使用後の溶剤(ケロシン主体の上相)
(図3一A)の変化が非常に大きいことがわかる。
While the methods described above are limited to converting extraction inhibitors into water-soluble alkali salts, according to the present invention, the cleanliness of the recovered organic solvent is improved by replacing the solvent with fresh solvent. This can be further improved. That is, when an organic solvent comes into contact with an aqueous caustic solution, the solvent itself tends to separate into two phases: the solvent and the extractant partially containing the organic solvent.
This separation tendency varies depending on the polarity of the solvent, but for example, versatic acid-melmal paraffin and D2EHPA
- Kerosene, MgiHPA - This is more likely to occur in combinations of extractants and less polar solvents such as kerosene. It can be seen from FIGS. 2 to 4 that when the phases are separated in this manner, the extraction-inhibiting substance is distributed into the solvent phase. As shown in Figures 2 and 3, after 3 months of use, the peak of the infrared absorption 2 spectrum at the wave number of 1720 skin-1 has changed between M2EHPA before use (Figure 2-B) and M2EHP after use.
Compared to the change in A (Figure 3-B), the solvent before use (kerosene) (Figure 2-A) and the solvent after use (upper phase mainly composed of kerosene)
It can be seen that the change in (FIG. 31A) is very large.

す3なわち、抽出阻害物質が溶剤に多く存在することが
わかる。図4−A及び4−Bに、3ケ月使用後の抽出剤
と溶剤とが演った有機溶媒図4一Aと、本願発明の苛性
ソーダ洗浄後溶剤のみを入れかえた後の有機溶媒図4−
Bを比較するとピークが処3理後の方が小さくなってい
ることがわかる。また図1−Cと比べた場合においても
、図4一Bの方がピクが小さく、図1一Aの使用前のピ
ークにほぼ近いものとなることがわかる。従って「清浄
な抽出剤相が分相し、それを回収した後新しい溶剤を加
えることによって使用前の有機溶媒に近いきわめて抽出
分離効率の高い再生有機溶媒を得ることができる。溶剤
は比較的安価であるから、その交換も左程に不経済では
ない。有機溶媒はその使用前にも製造工程上の制限から
抽出阻害物質を少なからず含んでいる場合がある。
In other words, it can be seen that many extraction-inhibiting substances are present in the solvent. Figures 4-A and 4-B show an organic solvent diagram 4-A in which the extractant and solvent are used after three months of use, and an organic solvent diagram 4-A after replacing only the solvent after washing with caustic soda according to the present invention.
Comparing B, it can be seen that the peak is smaller after the third treatment. Also, when compared with FIG. 1-C, it can be seen that the peak in FIG. 4-B is smaller and is almost close to the peak before use in FIG. 1-A. Therefore, by separating the clean extractant phase, collecting it, and adding new solvent, it is possible to obtain a regenerated organic solvent with extremely high extraction and separation efficiency, which is close to the organic solvent before use.Solvents are relatively inexpensive. Therefore, its exchange is not so uneconomical.Even before its use, organic solvents may contain a considerable amount of extraction-inhibiting substances due to limitations in the manufacturing process.

本発明の原理に従う洗浄法は使用前の抽出剤を希釈剤に
とかしたものあるいは抽出剤の洗浄にも有効に応用する
ことができる。更に「苛性アルカ川こよる洗浄後、中和
の目的で酸洗浄を施すことが好ましいことが見出された
The cleaning method according to the principles of the present invention can also be effectively applied to cleaning the extractant dissolved in a diluent or the extractant before use. Furthermore, it has been found that after washing with a caustic alkali river, it is preferable to perform acid washing for the purpose of neutralization.

酸としては硫酸が一般的である。以上説明したように、
本発明は有機溶媒の使用中蓄積した抽出阻害物質を抽出
工程系外で回分または連続して洗浄することにより、有
機溶媒の抽出分離能力を回復するものであり、抽出工程
の操業管理をきわめて容易に軽減するものである。
Sulfuric acid is commonly used as the acid. As explained above,
The present invention recovers the extraction and separation ability of the organic solvent by washing extraction inhibitory substances that have accumulated during use of the organic solvent in batches or continuously outside the extraction process system, which greatly facilitates the operational management of the extraction process. This will reduce the

【図面の簡単な説明】[Brief explanation of drawings]

図1一A,1−B及び1−Cは、使用前、使用後および
洗浄後の有機溶媒の赤外線吸収スペクトルの変化の様相
を示す。 図2一A及び2一Bは使用前のケロシン及びM2EHP
Aそれぞれのスペクトルを示す。図3一A及び3一Bは
3ケ月使用後アルカリ液にて分離させた上相(ケロシン
主体)及び同下相(M2EHPA主体)それぞれのスペ
クトルを示す。図4一A及び4一Bは3ケ月使用後の有
機溶媒(上相+下相)及び本方法の処理により上相のみ
を入替えた有機溶媒それぞれのスペクトルを示す。図1
−A 図1‐B 図1‐C 図2‐A 図2‐B 図3‐A 図3‐B 図ムーA 図ム‐B
FIGS. 11A, 1-B, and 1-C show changes in the infrared absorption spectrum of the organic solvent before use, after use, and after washing. Figures 21A and 21B show kerosene and M2EHP before use.
A shows each spectrum. FIGS. 31A and 31B show spectra of the upper phase (mainly kerosene) and the lower phase (mainly M2EHPA) separated using an alkaline solution after three months of use. Figures 41A and 41B show spectra of the organic solvent (upper phase + lower phase) after 3 months of use and of the organic solvent with only the upper phase replaced by the treatment of this method, respectively. Figure 1
-A Figure 1-B Figure 1-C Figure 2-A Figure 2-B Figure 3-A Figure 3-B Figure A Figure Mo-B

Claims (1)

【特許請求の範囲】 1 2−エチルヘキシルホスホン酸モノ−2−エチルヘ
キシルエステルを主成分とする抽出剤と希釈剤とから成
る有機溶媒に抽出阻害物質(但し鉄を除く)が蓄積する
時該有機溶媒を苛性アルカリ水溶液と接触することによ
り抽出阻害物質を除去することを特徴とする有機溶媒洗
浄方法。 2 2−エチルヘキシルホスホン酸モノ−2−エチルヘ
キシルエステルを主成分とする抽出剤と希釈剤とから成
る有機溶媒に抽出阻害物質(但し鉄を除く)が蓄積する
時該有機溶媒と苛性アルカリ水溶液とを接触させて後苛
性アルカリ水溶液相を除くと共に、分相した溶剤を新し
い溶剤と交換することを特徴とする有機溶媒洗浄方法。
[Claims] 1. When extraction inhibiting substances (excluding iron) accumulate in an organic solvent consisting of an extractant and a diluent whose main components are 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester, the organic solvent An organic solvent cleaning method characterized by removing extraction inhibiting substances by contacting with an aqueous caustic solution. 2. When extraction inhibiting substances (excluding iron) accumulate in an organic solvent consisting of an extractant and a diluent whose main components are 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester, the organic solvent and an aqueous caustic alkali solution are accumulated. An organic solvent cleaning method characterized by removing the aqueous caustic solution phase by contacting the solvent and replacing the phase-separated solvent with a new solvent.
JP53086736A 1978-07-18 1978-07-18 Method for cleaning organic solvents used in solvent extraction methods Expired JPS605650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53086736A JPS605650B2 (en) 1978-07-18 1978-07-18 Method for cleaning organic solvents used in solvent extraction methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53086736A JPS605650B2 (en) 1978-07-18 1978-07-18 Method for cleaning organic solvents used in solvent extraction methods

Publications (2)

Publication Number Publication Date
JPS5515602A JPS5515602A (en) 1980-02-02
JPS605650B2 true JPS605650B2 (en) 1985-02-13

Family

ID=13895097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53086736A Expired JPS605650B2 (en) 1978-07-18 1978-07-18 Method for cleaning organic solvents used in solvent extraction methods

Country Status (1)

Country Link
JP (1) JPS605650B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0231096Y2 (en) * 1985-06-10 1990-08-22

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI93973C (en) * 1992-06-18 1995-06-26 Outokumpu Harjavalta Metals Oy Method for preventing the formation of jarosite and ammonium- and alkali-based double salts in liquid-liquid extraction of acidic leaching processes
JP7425419B1 (en) * 2022-10-05 2024-01-31 住友金属鉱山株式会社 Removal method for removing organic impurities from organic solvents containing impurities

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0231096Y2 (en) * 1985-06-10 1990-08-22

Also Published As

Publication number Publication date
JPS5515602A (en) 1980-02-02

Similar Documents

Publication Publication Date Title
TWI625397B (en) Disposal method of lithium ion battery waste
KR101232574B1 (en) Method for separate recovery of nickel and lithium
JP5898021B2 (en) Method and apparatus for recycling lithium ion battery
TWI392745B (en) A method for recovering a valuable metal from a lithium battery residue containing Co, Ni, and Mn
CN101942563B (en) Method for manufacturing lithium carbonate from material recovered from lithium ion secondary batteries
JP2019530795A (en) Method for producing nickel sulfate, manganese sulfate, lithium sulfate, cobalt sulfate and tricobalt tetroxide from battery waste
CN101270415A (en) Method for recycling noble metal from battery slag containing Co, Ni, Mn
KR101853255B1 (en) Process for purifying zinc oxide
JPS5924168B2 (en) Separation method of cobalt and nickel by solvent extraction method
WO2020196046A1 (en) Method for manufacturing nickel and cobalt-containing solution from hydroxide containing nickel and cobalt
CN100473617C (en) Treatment method for recycling zinc electrolysis washing wastewater
JP5004106B2 (en) Method for separating and recovering nickel and lithium
JPH0776391B2 (en) Zinc recovery method
WO2013114089A1 (en) Nickel recovery
CN102399984A (en) Method for extracting and recovering zinc from zinc-containing waste water
JPS605650B2 (en) Method for cleaning organic solvents used in solvent extraction methods
US10710905B2 (en) Water treatment method, and associated module and facility
KR100220976B1 (en) Recovering method for co,ni,cu from the scrap of diamond tools
CN109306403B (en) Treatment method of quaternary ammonium salt alkaline extraction three-phase flocculate in metal tungsten hydrometallurgy
CN101225471A (en) Method for recovering molybdenum from water-washing molybdenum calcine wastewater
CN1942608B (en) Recovery of Gallium
Farouq et al. Solvent extraction of iron ions from hydrochloric acid Solutions
CN108330301A (en) Bastnaesite smelts the processing method of three-phase emulsion in separation
CN110339592B (en) Heavy metal ion extracting agent based on fatty acid, preparation method and extraction method
KR101187301B1 (en) Selective method of recovering valuable metal from waste catalyst of desulfurization with excellent recovery and separation efficiency