JPS6056469A - Production of longitudinally short casting ingot - Google Patents

Production of longitudinally short casting ingot

Info

Publication number
JPS6056469A
JPS6056469A JP16616983A JP16616983A JPS6056469A JP S6056469 A JPS6056469 A JP S6056469A JP 16616983 A JP16616983 A JP 16616983A JP 16616983 A JP16616983 A JP 16616983A JP S6056469 A JPS6056469 A JP S6056469A
Authority
JP
Japan
Prior art keywords
molten metal
molten
heat insulating
hydrogen
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16616983A
Other languages
Japanese (ja)
Inventor
Setsuo Okamoto
岡本 節男
Hiroshi Kiguchi
城口 弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP16616983A priority Critical patent/JPS6056469A/en
Publication of JPS6056469A publication Critical patent/JPS6056469A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • B22D27/045Directionally solidified castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/06Ingot moulds or their manufacture
    • B22D7/10Hot tops therefor
    • B22D7/102Hot tops therefor from refractorial material only

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To produce a longitudinally short steel ingot having less hydrogen blownholes and good quality at a high yield by interposing a molten slab having an adequate thickness in the head part of the cast molten metal, holding the same with a holding material and solidifying unidirectionally the same upward from the base part. CONSTITUTION:Molten slag 6 having >=3mm. thickness and a holding material 5 such as a heat insulating flux or the like having meltability for preventing the solidification from the head part of a molten metal and further carbonized chaff 7 are successively packed atop the molten metal 3 in a casting mold constituted to prevent cooling and solidifying of the molten metal 3 from the side wall as far as possible by adhereing a heat insulating material 4 such as ceramic fibers or the like to the inside circumferential wall of a casting mold 2 placed on a molding board 1. The unidirectional solidification upward from the base part is thus caused in the molten metal 3 to prevent generation of a defect such as segregation as well as to prevent the hydrogen generated from the material 4 and the material 5 from entering the inside of the molten metal 3.

Description

【発明の詳細な説明】 本発明は鋼板類を製造するための縦短鋼塊の製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing vertical and short steel ingots for manufacturing steel plates.

通常鋼板類は、連続鋳造法によって直接スラブに鋳造さ
れるものを除いて、正錐又は逆錐形の縦長の@型に鋳込
んで造坑した後、鋼塊の長手方向に圧延して製造される
。従って、下注ぎ上注ぎを問わず冷却が主に鋳型側壁を
介して行われるため偏析等の欠陥の発生が避けられない
Normally, steel plates are manufactured by casting into a vertically elongated @-type with a regular or inverted conical shape, and then rolling the steel ingot in the longitudinal direction, except for those that are directly cast into slabs using the continuous casting method. be done. Therefore, regardless of bottom pouring or top pouring, cooling is mainly performed through the side walls of the mold, so defects such as segregation are unavoidable.

ところで、鋼塊の高さくH)に対する水平方向短辺(D
)との比(H/D)が1以下の銅塊(以下、縦短鋼塊と
云う)は、底面から上方に向って実質的な一方向凝固が
行なわれることによって従来より大きな問題となってい
た偏析及びザク欠陥の問題が改善されて鋼塊の内質向上
が計られると共に、歩留りの向上も合わせて期待できる
ことから、このような実質的な一方向凝固を実現するた
めの多くの提案が本出願人等からなされているl(例え
ば特公昭53−19290号公報、特開昭57−228
64号公報)が、未だ改良の余地が多分に残されている
のが実情である。特に、l侍開昭57−22864号公
報には、逆V偏析、頭部(C)偏析等の欠陥を軽減する
ために保温蓋を用いることが提案されている。しかし上
記公報の方法でも、鋳造した縦短鋼塊には、水素が5p
pm以上介在し、圧延工程で圧着しないブローホールが
鋼塊内に発生することがちシ、極厚鋼板製造上内質的に
問題が必る。
By the way, the horizontal short side (D) with respect to the height H) of the steel ingot
) Copper ingots with a ratio (H/D) of 1 or less (hereinafter referred to as vertical and short steel ingots) have become a bigger problem than before because solidification is substantially unidirectional from the bottom upwards. Many proposals have been made to achieve this kind of substantial unidirectional solidification, as it is expected that the internal quality of the steel ingot will be improved by improving the segregation and hollow defects that had previously occurred, and that the yield will also be improved. have been made by the present applicant (for example, Japanese Patent Publication No. 53-19290, Japanese Unexamined Patent Publication No. 57-228)
The reality is that there is still a lot of room for improvement. In particular, Samurai Publication No. 57-22864 proposes the use of a heat-insulating lid to reduce defects such as inverted V segregation and head (C) segregation. However, even with the method disclosed in the above publication, 5p of hydrogen was added to the cast vertically short steel ingot.
pm or more, and blowholes that are not crimped during the rolling process are likely to occur in the steel ingot, which inevitably causes problems in the production of extra-thick steel plates.

本発明者らは、圧延工程で圧着しないブローホールに関
して基礎実験及び実操業試験による研究を続けた結果、
ブローホールの発生は一方向凝固鋼塊の製造上必要な断
熱材及び保温剤中に含まれる炭化水素が分mして発生す
る水素ガス及び断熱材及び保温剤中に含まれる4〜7%
の水分による水蒸気中の水素に起因することを確認し、
下記によって定義される水素性ブローボール指数が2以
下であるとスラブの性状が特に問題ないことを知見した
As a result of continuing research through basic experiments and actual operational tests regarding blowholes that are not crimped during the rolling process, the present inventors found that
Blowholes occur due to hydrogen gas generated by the amount of hydrocarbons contained in the heat insulating material and heat insulating material necessary for the production of directionally solidified steel ingots, and 4 to 7% of the hydrogen gas contained in the heat insulating material and heat insulating material.
It was confirmed that this is caused by hydrogen in water vapor due to moisture in
It has been found that when the hydrogen blowball index defined below is 2 or less, the properties of the slab are not particularly problematic.

ここに、水素性ブローホール指数とは、鋼塊のサンプル
でダイチェック及びUST(超音波探傷)にて水素性ブ
ローホールの個数をX&結果を下表の通り指数化したも
のである。
Here, the hydrogen blowhole index is the number of hydrogen blowholes obtained by die checking and UST (ultrasonic flaw detection) on a sample of a steel ingot.

本発明に係る縦短鋼塊の製造方法は、鋳型内周壁を断熱
材で被覆した鋳型を使用し、該鋳型への鋳込溶湯頭部を
保温剤を用いて保温することにょシ鋳型内の溶湯を鋳W
!底面よシ冷却してその凝固を夾質的に底面部よシ上方
に向う一方向凝固とする方法において、溶湯頭部と保温
剤間に3鴎以上の厚さを有する溶融スラグを介在せしめ
鋼中への水素侵入を抑制することを特徴とするものであ
る。
The method for producing a vertical and short steel ingot according to the present invention uses a mold whose inner peripheral wall is covered with a heat insulating material, and the head of the molten metal poured into the mold is kept warm using a heat insulating agent. Casting molten metal
! In a method in which the bottom surface is cooled and the solidification is unidirectionally solidified from the bottom surface upwards, a molten slag having a thickness of 3 mm or more is interposed between the molten metal head and the heat insulating agent. It is characterized by suppressing hydrogen intrusion into the interior.

ここで、溶湯頭部と保温剤間に鋼中への水素侵入を抑制
すべく介在せしめる溶融スラグの厚みを3 mm以上と
限定したのは、第1図より明らかな如く、溶融スラグ厚
みが3 mmまでは水素性ブローホール指数が大きく、
3鴎を境として、水素性ブローホール指数が小さくなシ
横ばい状態となるためである。従って、効果的な鋼中へ
の水素侵入/抑制溶融スラグ厚みは3問以上が適尚であ
る。なお上記溶融スラグをつくるための7ラツクスとし
ては、生石灰系、ソーダ灰系、螢石系等が使用できるが
、溶融スラグをつくるための7ラツクスの塩基度(Ca
O/)が1.5を越えるとCaOの含有量810゜ が大となり、スラグ自体による水素ピックアップの原因
となることがあるので、/Sin、 ’ ”・5である
のが望ましい。又、フラックス中のT、0 (全炭素升
)はフラックスの滓化促進のために必要であるが、20
チを越えると溶fi (0)のアップとなるので2=0
%以下が良い。
Here, the thickness of the molten slag interposed between the molten metal head and the heat insulator was limited to 3 mm or more in order to suppress hydrogen intrusion into the steel, as is clear from Fig. 1. Up to mm, the hydrogen blowhole index is large;
This is because the hydrogen blowhole index becomes small and level off after reaching 3. Therefore, it is appropriate for the thickness of molten slag to be 3 or more to effectively inhibit/infiltrate hydrogen into steel. Note that as the 7 lacs for making the above molten slag, quicklime-based, soda ash-based, fluorite-based, etc. can be used, but the basicity (Ca
If O/) exceeds 1.5, the CaO content of 810° becomes large, which may cause hydrogen pickup by the slag itself, so it is desirable that /Sin, ' 5. T,0 (total carbon square) is necessary to promote flux slag formation, but 20
If it exceeds the chi, it will be an increase of melt fi (0), so 2=0
% or less is better.

以下本発明に係る縦短鋼塊の製造方法の一実施例を図面
に基づいて詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the method for producing a vertically short steel ingot according to the present invention will be described in detail below with reference to the drawings.

第2図は本発明方法を説明する鋳型の略式断面図でアシ
、図中(1)は定盤、(2)はこの定盤(1)上に載置
されて、その内部に溶湯(3)が鋳込まれる鋳型である
。(4)は上記鋳型(2)の内周壁に貼設された断熱材
(骨材人りセ之ミックファイバー二以下セラミックファ
イバーと言う)で6p、鋳型(2)側壁からの冷却に起
因する溶湯(3)の凝固を可及的に防止するものである
。溶湯(3)の上面には溶融スラグ(6)及び、更にそ
の上面には溶融性の断熱フラックス等の保温剤参秒詐称
齢針(以下初期発熱剤という)(5)が、更にその上に
焼モミガラ(7)が充填され、溶湯頭部の保温を行なっ
て溶湯頭部からの凝固を防止すると共に、溶湯中へ水素
侵入を防止している。
Fig. 2 is a schematic cross-sectional view of a mold for explaining the method of the present invention. ) is the mold into which it is cast. (4) is a heat insulating material (hereinafter referred to as ceramic fiber) attached to the inner circumferential wall of the mold (2), and the molten metal due to cooling from the side walls of the mold (2). (3) The coagulation is prevented as much as possible. On the upper surface of the molten metal (3) is a molten slag (6), and further on the upper surface is a heat insulating agent (hereinafter referred to as an initial exothermic agent) (5) such as a molten heat insulating flux. Roasted rice hulls (7) are filled to keep the head of the molten metal warm and prevent solidification from the head of the molten metal, as well as to prevent hydrogen from penetrating into the molten metal.

〔実施例〕〔Example〕

第1表に示す組成の溶鍋を1580℃で第2図に示す鋳
型(2)に鋳込んだ。本実施例の場合、鋳型厚さは30
0 mrl s鋳型の全内周壁に貼設したセラミックフ
ァイバー厚さは7omt+t、貼設前のセラミックファ
イバーの含有水分は0.05 % 、鋳込高さは600
電、700mm、800問、900m眠1000 rr
、m、1100+m、1200+u+1について実施し
た。本実施例では、溶鋼注入過程でフラックスを溶畑1
トン当り、7〜149投入、更にその上に、含有水分0
.9%の初期発熱剤(5)を600 Kp投入し、更に
乾燥焼モミガラを150〜添加し、保温性を向上せしめ
溶湯(3)中への水素侵入を防止すると共に、溶湯(3
)の頭部および側面からの断熱を完全にして凝固を防止
し、底面からのみ一方向凝固を行わせた。
A molten pot having the composition shown in Table 1 was poured into a mold (2) shown in FIG. 2 at 1580°C. In the case of this example, the mold thickness is 30
The thickness of the ceramic fiber attached to the entire inner peripheral wall of the 0 mrl s mold is 7 omt+t, the moisture content of the ceramic fiber before attachment is 0.05%, and the casting height is 600 mm.
Electric, 700mm, 800 questions, 900m sleep 1000 rr
, m, 1100+m, and 1200+u+1. In this example, flux is applied to the molten field 1 during the molten steel injection process.
7 to 149 input per ton, and on top of that, 0 moisture content
.. 600 Kp of 9% initial exothermic agent (5) is added, and 150 Kp of dried roasted rice hulls are added to improve heat retention and prevent hydrogen from entering the molten metal (3).
) was completely insulated from the head and sides to prevent solidification, and unidirectional solidification was performed only from the bottom.

クスの成分は夫々第2表、第3表、第4表、第5表に示
すとおシである。
The ingredients of the rice cake are shown in Tables 2, 3, 4, and 5, respectively.

第1表溶鋼成分 (%) 第2表鋳型内寸法 (目) 第3表 初期発熱保温剤成分 (チ) 第4表 セラミックファイバー成分(チ)及び特性第5
表 7ラツクス成分 け) 第1図は上記本発明方法にて製造した鋼塊の造塊時の溶
融スラグ厚さくm→と、製品となってがらの水素性ブロ
ーホール指数の関係を、前記鋳込高さの異なる7種類の
スラブについて得たデータの平均値で示したものである
Table 1: Molten steel composition (%) Table 2: Mold internal dimensions (mm) Table 3: Initial heat generation heat insulating agent composition (1) Table 4: Ceramic fiber composition (1) and properties No. 5
Figure 1 shows the relationship between the molten slag thickness m→ during ingot making of the steel ingot produced by the method of the present invention and the hydrogen blowhole index of the product. This is the average value of data obtained for seven types of slabs with different filling heights.

第1図よシ明らかな如く、溶融スラグを介在せしめるこ
とによって、水素起因によるブローホールが著しく好転
しておシ、特に溶融スラグ厚さ3mポ以上で顕著で心シ
、錦塊内質の向上は歴然としている。尚、鋼塊中の水素
はいずれも最高値2.5ppm以下が得られた。 これ
は溶融スラグ厚さ3mm以上と、セラミックファイバー
と初期発熱剤中の水分を3チ以下の相乗効果によるもの
、である。
As is clear from Figure 1, by interposing the molten slag, the blowholes caused by hydrogen are significantly improved, and this is especially noticeable when the molten slag has a thickness of 3 m or more, improving the core quality and internal quality of the brocade ingot. is obvious. In addition, the maximum value of hydrogen in the steel ingots was 2.5 ppm or less in all cases. This is due to the synergistic effect of the molten slag thickness being 3 mm or more and the moisture content in the ceramic fiber and the initial exothermic agent being 3 mm or less.

上記実施例からも明らかな如く1本発明法によれば、厚
さ3 mm以上の溶融スラグを縦短鋼塊の鋳造後、溶湯
頭部と初期発熱剤(5)の間に介在せしめ、水分3%以
下の初期発熱剤及びセラミックファイバーを使用すると
、セラミックファイバー(4)及び初期発熱剤(5)よ
シ発生する水素ガス及び水蒸気中の水素が溶鋼中に侵入
するのを抑制し、銅塊中の水素が4 ppm以下となり
、水素性ブローホールの発生が顕著に少なくなって畑塊
内質が改善され、かつ歩留りが向上する等、極めて大き
い効果を奏するものである。
As is clear from the above examples, according to one method of the present invention, after casting a molten slag with a thickness of 3 mm or more into a vertically short steel ingot, it is interposed between the head of the molten metal and the initial exothermic agent (5), and the water is removed. If 3% or less of the initial heating agent and ceramic fiber are used, the hydrogen in the hydrogen gas and water vapor generated by the ceramic fiber (4) and the initial heating agent (5) will be suppressed from penetrating into the molten steel, and the copper ingot will be The hydrogen content in the field is reduced to 4 ppm or less, the occurrence of hydrogen blowholes is significantly reduced, the internal quality of the field mass is improved, and the yield is improved, resulting in extremely large effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶融スラグ厚さと水素性ブローホール指数との
関係を示す図表、第2図は本発明方法において使用する
鋳型等の略式断面図である。 1・・・・・・定盤、2・・・・・・部屋、3・・・・
・・溶湯、4・・・・・・断熱材、5・・・・・・保温
剤、6・・・・・・溶融スラグ、7・・・・・・・・焼
モミガラ。 出願人 住友金鵜工業株式会社
FIG. 1 is a chart showing the relationship between molten slag thickness and hydrogen blowhole index, and FIG. 2 is a schematic cross-sectional view of a mold, etc. used in the method of the present invention. 1...Surface plate, 2...Room, 3...
... Molten metal, 4 ... Insulating material, 5 ... Heat retaining agent, 6 ... Molten slag, 7 ... Burnt rice husk. Applicant Sumitomo Metal Cormorant Industries Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 鋳型内周壁を断熱材で被覆した鋳型を使用し、該鋳型へ
の鋳込溶湯頭部を保温剤を用いて保温することによシ鋳
型内の溶湯を鋳型底面よシ冷却して、その凝固を実質的
に底面部より上方に向う一方向凝固とする方法において
、溶湯頭部と保温剤間に3問以上の厚さを有する溶融ス
ラグを介在せしめ鋼中への水素侵入を抑制することf:
q!f徴とする縦短缶坑の製造方法。
By using a mold whose inner peripheral wall is covered with a heat insulating material and keeping the head of the molten metal poured into the mold warm with a heat insulating agent, the molten metal in the mold is cooled from the bottom of the mold and solidified. In a method of unidirectional solidification substantially upward from the bottom part, a molten slag having a thickness of three or more layers is interposed between the molten metal head and the heat insulating agent to suppress hydrogen intrusion into the steel. :
q! A method for manufacturing a vertical and short can pit with f characteristics.
JP16616983A 1983-09-08 1983-09-08 Production of longitudinally short casting ingot Pending JPS6056469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16616983A JPS6056469A (en) 1983-09-08 1983-09-08 Production of longitudinally short casting ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16616983A JPS6056469A (en) 1983-09-08 1983-09-08 Production of longitudinally short casting ingot

Publications (1)

Publication Number Publication Date
JPS6056469A true JPS6056469A (en) 1985-04-02

Family

ID=15826347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16616983A Pending JPS6056469A (en) 1983-09-08 1983-09-08 Production of longitudinally short casting ingot

Country Status (1)

Country Link
JP (1) JPS6056469A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2674156A1 (en) * 1991-03-22 1992-09-25 Daussan & Co Powdered, insulating and purifying coating for receiving the liquid metal from a metallurgical vessel, and method relating thereto
CN102430726A (en) * 2011-12-26 2012-05-02 昆山全亚冠环保科技有限公司 Method for increasing yield rate of casting ingots
CN113337670A (en) * 2021-05-21 2021-09-03 武汉钢铁有限公司 Molten steel heat-preservation covering agent capable of supplementing heat

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2674156A1 (en) * 1991-03-22 1992-09-25 Daussan & Co Powdered, insulating and purifying coating for receiving the liquid metal from a metallurgical vessel, and method relating thereto
US5332418A (en) * 1991-03-22 1994-07-26 Daussan Et Compagnie Covering for molten metal and process for producing the same
CN102430726A (en) * 2011-12-26 2012-05-02 昆山全亚冠环保科技有限公司 Method for increasing yield rate of casting ingots
CN113337670A (en) * 2021-05-21 2021-09-03 武汉钢铁有限公司 Molten steel heat-preservation covering agent capable of supplementing heat

Similar Documents

Publication Publication Date Title
JPS6056469A (en) Production of longitudinally short casting ingot
US1814584A (en) Method for purifying steel
US1978996A (en) Method of and means for producing ingots
US3373794A (en) Ferroalloy casting process
JPS5847255B2 (en) Steel ingot making method
RU97114953A (en) METHOD FOR MANUFACTURING CAST DETAILS MOLD IN THE FORM OF ONE ITEM HAVING ADJUSTABLE CHANGES OF CAST IRON AND SEALED CAST IRON
JPH10137895A (en) Die for casting, and casting method
SU778920A1 (en) Casting mould for producing cast-iron castings
US1564369A (en) Method of casting copper
JPS59153548A (en) Casting mold for ingot making and making method thereof
CA1074976A (en) Method of producing steel ingots from unkilled steel
US4922992A (en) Melt-holding vessel and method of and apparatus for countergravity casting
CA1136376A (en) Method of producing ingot mold stools
US786359A (en) Process of perfecting cast-steel ingots.
JPS6054826B2 (en) Head electric heating agglomeration method
SU1491606A1 (en) Method of laminated ingot
JPS60177933A (en) Production of non-segregated steel ingot
US1828200A (en) Ingot mold and method of making same
SU1217558A1 (en) Method of shaping and heating in flasks laminated shell moulds
SU789210A1 (en) Method of producing steel ingots
SU1668014A1 (en) Method for producing ingots of rimming steel
JPH0329497B2 (en)
JPS5952013B2 (en) Continuous casting method for seawater resistant steel
SU967671A1 (en) Method of pouring rimmed steel with chemical capping of ingots
RU1782186C (en) Method for production of steel ingots