JPS6056205A - Welded part detector - Google Patents

Welded part detector

Info

Publication number
JPS6056205A
JPS6056205A JP16451383A JP16451383A JPS6056205A JP S6056205 A JPS6056205 A JP S6056205A JP 16451383 A JP16451383 A JP 16451383A JP 16451383 A JP16451383 A JP 16451383A JP S6056205 A JPS6056205 A JP S6056205A
Authority
JP
Japan
Prior art keywords
photosensor
welded
weld
welded part
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16451383A
Other languages
Japanese (ja)
Inventor
Atsushi Hiwasa
日和佐 淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP16451383A priority Critical patent/JPS6056205A/en
Publication of JPS6056205A publication Critical patent/JPS6056205A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To obtain a detector light with a simple construction by checking reflected light rays from gapped parts so as to detect the position at which outputs of a 2-element photosensor element equals in the spotting of leakage of welding material in the vicinity of the welded part. CONSTITUTION:Material 1 to be detected is lighted in the vicinity of the welded part 2 by a scattered light source 8, a part of the incident light is reflected on the surface of the material 1 being detected and a part of the reflected lights are received with a 2-element photosensor 9 through a lens system 10. In welded steel pipes or the like by continuous casting, as the bead cut section 3 immediately after the bead cutting is better in the reflectance of light than that in the perimeter thereof, the intensity distribution of the reflected lights near the welded part 2 of the material 1 being detected shows a fairly rectangular form as indicated by 11. This can realize a welded part detector light with a simple construction.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は連続鋳造の溶接管等における溶接部を製造ラ
イン中で非破壊的に、しかも非接触で検出する溶接部検
出装置に関するものである。更に詳しく述べるならば、
連続鋳造の溶接管の製造では、鋼板の曲げ加工、溶接、
溶接材の洩れ出し部の削除(以後ビードカットと称す)
、溶接部の焼きなまし、裁断等の工程を連続的に1つの
ラインで行うことによって、製造時間の短縮、製造コス
トの低減が図られている。それら工程の中で溶接部の焼
きなましは溶接部付近を高周波加熱等によって局部的に
高温にし、溶接材と母材のなじみを良くするために行わ
れるのであるが、効率よく溶接部近傍を加熱するために
は、精度よく溶接部ケ検出し、溶接部に追従した加熱を
行う必要がある。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a weld detection device for non-destructively and non-contact detection of a weld in a continuously cast welded pipe or the like in a production line. To explain in more detail,
The production of continuously cast welded pipes involves bending, welding, and welding of steel plates.
Removal of leaking part of welding material (hereinafter referred to as bead cut)
By continuously performing processes such as , annealing of welded parts, and cutting on one line, it is possible to shorten manufacturing time and reduce manufacturing costs. In these processes, annealing of the weld zone is carried out by locally raising the temperature near the weld zone using high-frequency heating, etc., in order to improve the compatibility between the welding material and the base metal. In order to achieve this, it is necessary to accurately detect the welded area and perform heating that follows the welded area.

又、溶接部付近は他の部分に比べてストレスが集中し易
いし、熱影響も強く受けるので亀裂等の欠陥が生じ易い
場所であり、そのため近年溶接部近傍を特に倉入りに探
傷する傾向になってきたが。
In addition, the area near welds is more prone to stress concentration than other areas and is also strongly affected by heat, making it a place where cracks and other defects are likely to occur.Therefore, in recent years there has been a trend to inspect areas near welds, especially in the warehouse. It has become.

そのためにも精度よく溶接部を検出し、欠陥位置検出精
度を高める必要がある。
For this purpose, it is necessary to detect welds with high accuracy and improve defect position detection accuracy.

この発明は、前述したような焼ぎなまし工程や。This invention is applicable to the annealing process as described above.

オンライン探傷工程を精度よく行うために、精度よく溶
接部を検出する溶接部検出装置に関するものである。
The present invention relates to a weld detection device that accurately detects a weld in order to perform an online flaw detection process with high precision.

〔従来の技術〕[Conventional technology]

従来、この種の検出方法としては、熟練した検査員が目
視によって溶接部を検出する方法や、渦流センサを用い
て溶接部付近の組成変成部を渦電流損情報と磁気抵抗情
報からめる方法等があった。第1図に、渦電流センナを
用いて溶接部を検出する方法の原理を示す。第1図にお
いて、(1)は溶接鋼管等の被検材、(2)は溶接部、
(3)はビードカット部、(4)は送信用コイル、(5
a)、 (5b)はそれぞれ受信用コイル、(6a)、
(6b)は、送信用コイル(4)と受信用コイル(5a
)、 (5b)の間に形成される磁界。
Conventionally, this type of detection methods include a method in which a skilled inspector visually detects a weld, and a method in which an eddy current sensor is used to determine the compositionally altered area near the weld from eddy current loss information and magnetic resistance information. there were. FIG. 1 shows the principle of a method for detecting a weld using an eddy current sensor. In Figure 1, (1) is the material to be inspected such as a welded steel pipe, (2) is the welded part,
(3) is the bead cut part, (4) is the transmitting coil, (5
a), (5b) are receiving coils, (6a),
(6b) is a transmitting coil (4) and a receiving coil (5a).
), (5b).

(7)は送信用コイル(4)を駆動し、受信用コイル(
5a)(5b)の信号を検出する制御回路である。
(7) drives the transmitting coil (4) and the receiving coil (
5a) This is a control circuit that detects the signals of (5b).

次に動作について説明する。制御回路(7)から送信用
コイル(4)に低周波電流が流されると、それに応じて
送信用コイル(4)の周辺に低周波磁界が発生し、その
一部は受信用コイル(5a)、 (5b)を通る磁界(
6a) ”<b) Kなる。受信用コイk (5a)、
 (5b)は。
Next, the operation will be explained. When a low-frequency current is passed from the control circuit (7) to the transmitting coil (4), a low-frequency magnetic field is generated around the transmitting coil (4), and a part of it is transmitted to the receiving coil (5a). , (5b) through the magnetic field (
6a) ”<b) K. Receiving carp k (5a),
(5b) is.

磁界(6a)、 (6b)を検出し、磁界(6a)、 
(6b)の大きさに応じた低周波電流な制御回路(4)
に流す。この時。
Detects the magnetic field (6a), (6b), and detects the magnetic field (6a),
Low frequency current control circuit (4) according to the size of (6b)
flow to. At this time.

送信用コイル(4)、受信用コイル(5a)、 (5b
)の前面の状態が送信用コイル(4)に対して左右対称
であれば2つの受信用コイル(5a)、 (5b)の出
力は等しいが、左右が非対称、つまり、溶接部(2)が
左右のどちらかに偏っている場合や、受信用コイル(5
a)。
Transmitting coil (4), receiving coil (5a), (5b
) is symmetrical with respect to the transmitting coil (4), the outputs of the two receiving coils (5a) and (5b) are equal, but the left and right sides are asymmetrical, that is, the welded part (2) If it is biased to the left or right side, or if the receiving coil (5
a).

(5b)と被検材+11までの距離が異なる場合には磁
気抵抗や渦電流損の条件が異なるため、受信用コイル(
5a)、 (5b)の出力が等しくならない。 したが
って、制御回路(7)によって受信用コイル(5a)、
 (5b)の出力の差を検出し、その値が零になるよう
に送信用コイル(4)を受信用コイル(5a)、 (s
b)を走査することによって、溶接部(2)を検出する
ことができる。しかし、実際には送信用コイル(4)と
受信用コイル(5a)、 (5b)を内蔵した検出ヘッ
ドはピードカット部(3)の幅より大ぎくなるため、ピ
ードカット部(3)の両側のエツジにおける被検材(1
1表面の面の不連続を検出した信号の方が溶接部(2)
近傍の組成変成部を検出した信号より太ぎいのが通常で
ある。
If the distance between (5b) and the test material +11 is different, the magnetic resistance and eddy current loss conditions will be different, so the receiving coil (
The outputs of 5a) and (5b) are not equal. Therefore, the control circuit (7) controls the receiving coil (5a),
(5b) is detected, and the transmitting coil (4) is connected to the receiving coil (5a), (s
By scanning b), the weld (2) can be detected. However, in reality, the detection head that incorporates the transmitting coil (4) and the receiving coils (5a) and (5b) is larger than the width of the pea cut section (3), so the edges on both sides of the pea cut section (3) are Test material (1
The signal that detects the discontinuity of the surface 1 is the welded part (2)
Usually, the signal is thicker than the signal detected from nearby compositionally altered areas.

そのため、従来のこの方式による溶接部検出装置では、
ビードカット部(3)の両側のエツジが送信用コイル(
4)に対して対称になる位置、言い換えればビードカッ
ト部(3)の中心位置を検出することによって溶接部(
2)を検出するようになっている。
Therefore, in the conventional weld detection device using this method,
The edges on both sides of the bead cut part (3) are connected to the transmitting coil (
4), in other words, by detecting the center position of the bead cut part (3), the welding part (
2) is detected.

従来の溶接部検出装置は以上のように構成されているの
で、ビードカット部(3)の両側のエツジにおける被検
材(11表面の面の不連続が太きければ。
Since the conventional welding part detection device is configured as described above, if the discontinuity of the surface of the test material (11) at the edges on both sides of the bead cut part (3) is large.

溶接部(2)を精度よ(検出することができるが、ピー
ドカット部(3)の両側のエツジにおける不連続が小さ
い場合、あるいは、不連続の度合が両側のエツジで異な
る場合には溶接部(2)の検出精度は著しく劣化する。
The weld (2) can be detected with precision, but if the discontinuity on both edges of the peed cut (3) is small, or the degree of discontinuity is different on both edges, the weld ( The detection accuracy of 2) deteriorates significantly.

その上、磁界(6a)、 (6b)の大ぎさは。Moreover, the magnitude of the magnetic fields (6a) and (6b).

送信用コイル(4)、受信用コイル(5a)、 (5b
)と被検材(11との距離に大きく依存するため、受信
用コイルが十分な検出感度を持つためには、送信用コイ
ル(4)と受信用コイル(5a)、 (5b)を被検材
からあまり離すことができない。このことは連続鋳造ラ
イン等で稀に発生する異常形状の被検材(1)に対する
溶接部検出装置の保護の上で問題になる。
Transmitting coil (4), receiving coil (5a), (5b
) and the material to be tested (11), in order for the receiving coil to have sufficient detection sensitivity, the transmitting coil (4) and receiving coils (5a) and (5b) must be tested. The weld detection device cannot be separated from the material very much.This poses a problem in protecting the weld detection device against abnormally shaped specimens (1) that rarely occur on continuous casting lines or the like.

〔発明の概要〕[Summary of the invention]

この発明は、これらの欠点を改善するためになされたも
ので、被検材(1)から離れた位置においてピードカッ
ト部(3)を安定して捕えることができ。
This invention was made to improve these drawbacks, and it is possible to stably capture the peed cut portion (3) at a position away from the material to be inspected (1).

ピードカット部(3)の中心、即ち、溶接部(2)を精
度よく検出することのできる溶接部検出装置を提供する
ものである。
The object of the present invention is to provide a welding part detection device that can accurately detect the center of the peed cut part (3), that is, the welding part (2).

〔発明の実施例〕[Embodiments of the invention]

以下、第2図に示すこの発明の一実施例について説明す
る。第2図において、(1)は、溶接鋼管等の被検材、
(2)は溶接部、(3)はビードカット部、(8)は溶
接部(2)付近な照明するための散乱光源、(9)は溶
接部(2)付近からの反射光を検出する2素子ホトセン
サ、 !+1は溶接部(2)付近の像を2素子ホトセン
サ(9)表面で結像するためのレンズ系である。又。
An embodiment of the present invention shown in FIG. 2 will be described below. In Fig. 2, (1) indicates the material to be inspected, such as a welded steel pipe;
(2) is the welding part, (3) is the bead cut part, (8) is a scattered light source for illuminating the vicinity of the welding part (2), and (9) is detecting the reflected light from the vicinity of the welding part (2). 2-element photo sensor! +1 is a lens system for forming an image near the welding part (2) on the surface of the two-element photosensor (9). or.

0Bは溶接部(2)付近における反射光の強度分布を模
式的に示したもので、Q2は反射光強度分布aυがレン
ズ系a1によって2素子ホトセンサ(9)の表面に投、
影された様子を模式的に示したものである。
0B schematically shows the intensity distribution of the reflected light near the welding part (2), and Q2 shows the intensity distribution of the reflected light aυ projected onto the surface of the two-element photosensor (9) by the lens system a1,
This is a schematic illustration of how the image is shaded.

散乱光源(8)によって、被検材(11の溶接部(2)
付近を照明することによって、入射光の一部は、被検材
filの表面で反射され、さらに反射光の一部はレンズ
系+1(1−通して2素子ホトセンサ(9)で受光され
る。ところで、連続鋳造の溶接鋼管等では、ピードカッ
ト直後のピードカット部(3)はその周辺に比べて光の
反射率が良いので、被検材(1)の溶接部(2)付近の
反射光の強度分布はαυに示すようにかなり矩形的な分
布になる。したがって、2素子ホトセンサ(9)の表面
に投影される反射光の強度分布もα2に示すようにかな
り矩形的な分布になる。
The scattered light source (8) illuminates the welded portion (2) of the test material (11).
By illuminating the vicinity, part of the incident light is reflected on the surface of the test material fil, and further part of the reflected light is received by the two-element photosensor (9) through the lens system +1 (1-). By the way, in continuously cast welded steel pipes, etc., the peed cut part (3) immediately after the peed cut has a better light reflectance than the surrounding area, so the intensity of reflected light near the welded part (2) of the test material (1) The distribution becomes a fairly rectangular distribution as shown by αυ.Therefore, the intensity distribution of the reflected light projected onto the surface of the two-element photosensor (9) also becomes a fairly rectangular distribution as shown by α2.

第3図は、2素子ホトセンサ(9)表面に投影される反
射光の強度分布Q3と2素子ホトセンサ(9)の位置関
係を模式的に示した図であり、同時に2素子ホトセンサ
(9)の出力を溶接部(2)の検出信号として取り出す
ための信号処理回路の例も示しである。
FIG. 3 is a diagram schematically showing the intensity distribution Q3 of reflected light projected onto the surface of the two-element photosensor (9) and the positional relationship of the two-element photosensor (9). An example of a signal processing circuit for extracting the output as a detection signal of the welding part (2) is also shown.

第3図において、(9)は2素子ホトセンサ、α3は2
素子ホトセンサに内蔵されているホトセンサエレメント
、 02は2素子ホトセンサ(9)の表面に投影される
反射光の強度分布、 +141は演算増幅器である。
In Fig. 3, (9) is a two-element photosensor, and α3 is a two-element photo sensor.
A photosensor element built into the element photosensor; 02 is the intensity distribution of reflected light projected onto the surface of the two-element photosensor (9); +141 is an operational amplifier.

第3図に示したように2素子ホトセンサ(9)のホトセ
ンサエレメント0騰を互いに逆方向に並列に接続し、演
算増幅器α心によってその出力電流を電圧に変換すると
、演算増幅器の出力として。
As shown in FIG. 3, when the photo sensor elements 0 of the two-element photo sensor (9) are connected in parallel in opposite directions to each other and the output current is converted into voltage by the operational amplifier α, the output current of the operational amplifier is obtained.

Eo=(Ish、”5h2)・R(・・・・・・・・・
・・・・・・・・・(1)の電圧が得られる。ここで、
■、h4.■、h2はそれぞれのホトセンサエレメント
の出力電流であり。
Eo=(Ish,”5h2)・R(・・・・・・・・・
......The voltage of (1) is obtained. here,
■, h4. ■, h2 is the output current of each photo sensor element.

それぞれのホトセンサエレメントに入射される反射光の
強度に比例する。
It is proportional to the intensity of reflected light incident on each photosensor element.

(1)式から明らかなように、2つのホトセンサエレメ
ントの特性が等しいものとすると、2つのホトセンサエ
レメントに入射される反射光の強度が等しい時に出力電
圧E。は零になり1反射光の強度が等しくない時には、
その差分に比例した電圧が発生する。即ち、第2図に示
したように、2素子ホトセンサ(9)表面に投影される
反射光の強度分布02が2つのホトセンサエレメント0
3の中心に対して対称である場合には演算増幅器■の出
力電圧E。
As is clear from equation (1), assuming that the characteristics of the two photosensor elements are equal, the output voltage E when the intensity of the reflected light incident on the two photosensor elements is equal. becomes zero, and when the intensities of the reflected lights are not equal,
A voltage proportional to the difference is generated. That is, as shown in FIG.
If it is symmetrical about the center of 3, the output voltage E of the operational amplifier ■.

は零になり、2素子ホトセンサ(9)表面に投影される
反射光の強度分布α2が2つのホトセンサエレメントの
どちらかの方向へ移動し、2つのホトセンサエレメント
0の中心に対して対称でなくなった場合には、移動した
方向に応じてプラス、あるいはマイナスの出力電圧が発
生するので、演算増幅器Iの出力電圧をモニターしなが
ら、出力電圧が零になるように散乱光源+81. 2素
子ホトセンサ(9)。
becomes zero, and the intensity distribution α2 of the reflected light projected onto the surface of the two-element photosensor (9) moves in either direction of the two photosensor elements and becomes symmetrical with respect to the center of the two photosensor elements 0. If the output voltage is zero, a positive or negative output voltage will be generated depending on the direction of movement, so while monitoring the output voltage of the operational amplifier I, the scattered light source +81. Two-element photosensor (9).

レンズ光取りを移動してやることによって反射光の強度
分布圓の中心、即ち、溶接部(21ff検出することが
できる。
By moving the lens light collector, the center of the intensity distribution circle of the reflected light, that is, the welding area (21ff) can be detected.

なお、以上は連続鋳造の溶接鋼管における溶接部検出の
場合について説明したが、この発明はこれに限らず、溶
接後ビードカットを施した被検材で、ピードカット部と
その周辺部の光の反射効率の違いが観測されるものであ
ればすべてに適用することができる。
Although the above description describes the case of detecting welds in continuously cast welded steel pipes, the present invention is not limited to this, and the present invention is not limited to this. It can be applied to anything where a difference in efficiency can be observed.

〔発明の効果」 以上のように、この発明によれば構成が簡単で軽量な溶
接部検出装置を実現できる利点がある。
[Effects of the Invention] As described above, the present invention has the advantage of being able to realize a welding part detection device that is simple in structure and lightweight.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の溶接部検出装置の動作原理な説明する図
、第2図は本発明の一実施例を示した図。 第3図は、2素子ホトセンサ(9)表面に投影される反
射光の強度分布の例と1本発明による溶接部(2)検出
のための信号処理系の例な示した図である。 図中、(1)は被検材、(2)は溶接部、(3)はピー
ドカット部、(4)は送信用コイル、(5a)、 (5
b)は受信用コイル、(6a)、 (6b)は磁界、(
7)は制御回路、(8)は照明装置、(9)は2素子ホ
トセンサ、0IIIはレンズ系、 +111は反射光の
強度分布、a2は投影反射光の強度分布。 Q3はホトセンサエレメント、04は演算増幅器である
。なお1図中、同一あるいは相当部分には同一符号を付
して示しである。 代理人大岩増雄 第1図 第3図 第2図
FIG. 1 is a diagram illustrating the operating principle of a conventional weld detection device, and FIG. 2 is a diagram showing an embodiment of the present invention. FIG. 3 is a diagram showing an example of the intensity distribution of reflected light projected onto the surface of the two-element photosensor (9) and an example of a signal processing system for detecting the weld (2) according to the present invention. In the figure, (1) is the test material, (2) is the welded part, (3) is the peed cut part, (4) is the transmitting coil, (5a), (5
b) is the receiving coil, (6a) and (6b) are the magnetic fields, (
7) is a control circuit, (8) is a lighting device, (9) is a two-element photosensor, 0III is a lens system, +111 is the intensity distribution of reflected light, and a2 is the intensity distribution of projected reflected light. Q3 is a photosensor element, and 04 is an operational amplifier. In FIG. 1, the same or corresponding parts are designated by the same reference numerals. Agent Masuo Oiwa Figure 1 Figure 3 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 連続鋳造の溶接鋼管等の溶接部を非破壊的に検出する溶
接部検出装置において、前記溶接部付近を照明する手段
と、被溶接材表面に平行でかつ溶接ラインに垂直方向に
配列した2素子のホトセンサエレメントからなるホトセ
ンサと、前記ホトセンサ表面に前記溶接部付近の像を結
像するように配置したレンズ系とな有し、前記溶接部付
近の溶接材洩れ出しを削除した部分からの反射光を前記
ホトセンサで検出し、前記2素子のホトセンサエレメン
ト出力が等しくなる位置を検出することによって前記溶
接部を検出することを特徴とする溶接部検出装置。
A weld detection device for non-destructively detecting a weld of a continuously cast welded steel pipe, etc., comprising means for illuminating the vicinity of the weld, and two elements arranged parallel to the surface of the welded material and perpendicular to the welding line. a photo sensor consisting of a photo sensor element, and a lens system arranged to form an image near the welding part on the surface of the photosensor, and the reflection from the part where welding material leakage near the welding part is removed. A welding part detection device, characterized in that the welding part is detected by detecting light with the photosensor and detecting a position where the outputs of the two photosensor elements are equal.
JP16451383A 1983-09-07 1983-09-07 Welded part detector Pending JPS6056205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16451383A JPS6056205A (en) 1983-09-07 1983-09-07 Welded part detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16451383A JPS6056205A (en) 1983-09-07 1983-09-07 Welded part detector

Publications (1)

Publication Number Publication Date
JPS6056205A true JPS6056205A (en) 1985-04-01

Family

ID=15794587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16451383A Pending JPS6056205A (en) 1983-09-07 1983-09-07 Welded part detector

Country Status (1)

Country Link
JP (1) JPS6056205A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100797239B1 (en) 2005-12-23 2008-01-23 주식회사 포스코 Apparatus and method for on-line detecting welding part of strip
CN110715600A (en) * 2019-10-18 2020-01-21 济南蓝动激光技术有限公司 Steel rail welding seam misalignment online detection system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51121359A (en) * 1975-04-16 1976-10-23 Kobe Steel Ltd Hot measurement of large-sized forging dimensions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51121359A (en) * 1975-04-16 1976-10-23 Kobe Steel Ltd Hot measurement of large-sized forging dimensions

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100797239B1 (en) 2005-12-23 2008-01-23 주식회사 포스코 Apparatus and method for on-line detecting welding part of strip
US8149409B2 (en) * 2005-12-23 2012-04-03 Posco Apparatus and method for on-line detecting welding part of strip
CN110715600A (en) * 2019-10-18 2020-01-21 济南蓝动激光技术有限公司 Steel rail welding seam misalignment online detection system
CN110715600B (en) * 2019-10-18 2021-07-30 济南蓝动激光技术有限公司 Steel rail welding seam misalignment online detection system

Similar Documents

Publication Publication Date Title
JP5593347B2 (en) Circular wire optical defect detection apparatus and optical defect detection method
US5389794A (en) Surface pit and mound detection and discrimination system and method
CN108593710B (en) Thermal imaging detection system and method for surface defects of high-reflectivity material
JPH10148619A (en) Method and device for inspecting face defect of substrate under inspection
JP2006170684A (en) Method and device for inspecting press failure
GB1567166A (en) Apparatus and method for the non-destructive testing of ferromagnetic material
JPS6056205A (en) Welded part detector
JPH0760459A (en) Method and device for detecting welding position of electric resistance welded tube
SE0000152L (en) Procedure for assessing the purity of metallic materials based on error determination with ultrasound and metallic materials provided with purity assessment
JP2006138784A (en) Eddy current flaw detection probe and eddy current flaw detection system
JPS6056204A (en) Welded part detector
JPH10103938A (en) Method and apparatus for visual examination of cast product
JPS6342744B2 (en)
WO2020051780A1 (en) Image sensor surface defect detection method and detection system
JPH03135754A (en) Optically defect detecting device for solid surface
JPS6056206A (en) Welded part detector
CN106181144B (en) A kind of detection method of concave welding bead position
JPS61149814A (en) Lighting method for detecting surface defect of hot metallic material
JPS58204356A (en) Method for detecting flaw on surface of metallic object
JPS6310778B2 (en)
JP3389692B2 (en) Magnetic particle flaw detection method and apparatus
JPH05216211A (en) Method and device for inspecting mask
JP2000230908A (en) Method and apparatus for inspecting surface flaw of disk substrate
JPH11271278A (en) Defect detecting method for steel
JPS5892937A (en) Automatic inspecting device for surface flaw