JPS6056065B2 - Control method for reactive power compensation type cycloconverter - Google Patents

Control method for reactive power compensation type cycloconverter

Info

Publication number
JPS6056065B2
JPS6056065B2 JP3717980A JP3717980A JPS6056065B2 JP S6056065 B2 JPS6056065 B2 JP S6056065B2 JP 3717980 A JP3717980 A JP 3717980A JP 3717980 A JP3717980 A JP 3717980A JP S6056065 B2 JPS6056065 B2 JP S6056065B2
Authority
JP
Japan
Prior art keywords
phase
cycloconverter
reactive power
current
circulating current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3717980A
Other languages
Japanese (ja)
Other versions
JPS56133984A (en
Inventor
茂 田中
和敏 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP3717980A priority Critical patent/JPS6056065B2/en
Publication of JPS56133984A publication Critical patent/JPS56133984A/en
Publication of JPS6056065B2 publication Critical patent/JPS6056065B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/25Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M5/27Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means for conversion of frequency
    • H02M5/271Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means for conversion of frequency from a three phase input voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)
  • Ac-Ac Conversion (AREA)

Description

【発明の詳細な説明】 本発明は電源側から見た基本波力率が常に1になるよ
うに制御する無効電力補償形サイクロコンバータの制御
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling a reactive power compensating cycloconverter such that the fundamental wave power factor as viewed from the power supply side is always 1.

サイクロコンバータは一定周波数の交流電力を他の異
なる周波数の交流電力に直接変換する装置てあるが、そ
の構成素子たるサイリスタを電源電圧によつて転流させ
るため電源から多くの無効電力をとる欠点がある。
A cycloconverter is a device that directly converts alternating current power at a constant frequency into alternating current power at a different frequency, but it has the disadvantage that it takes a lot of reactive power from the power source because its component thyristor is commutated by the power supply voltage. be.

またその無効電力は負荷側の周波数に同期して常に変動
している。このため、電源系統設備の容量を増大させる
だけでなく同一系統に接続された電気機器に種々の悪影
響を及ほ七ている。 第1図は、従来の代表的な無効電
力補償装置を 示すもので、BUSは3相交流電線路、
c/cはサイクロコンバータ、Cは進相コンデンサ、5
5はサイリスタブリッジ回路、L。
Moreover, the reactive power constantly fluctuates in synchronization with the frequency on the load side. This not only increases the capacity of power supply system equipment, but also has various negative effects on electrical equipment connected to the same system. Figure 1 shows a typical conventional reactive power compensator, where BUS is a three-phase AC power line,
c/c is a cycloconverter, C is a phase advancing capacitor, 5
5 is a thyristor bridge circuit, L.

は直流リアクトルである。電源側の無効電力Qを検出し
それが常に零になるようにサイリスタブリッジ回路の点
弧角を変えて直流サ、イリスタLoに流れる電流10を
制御する。 第2図はこの従来の無効電力補償装置の電
線路BUSの1相分の電圧と各部に流れる電流の関係を
示すベクトル図である。
is a DC reactor. The reactive power Q on the power supply side is detected and the firing angle of the thyristor bridge circuit is changed so that the reactive power Q on the power supply side is always zero, thereby controlling the current 10 flowing through the DC resistor and the iristor Lo. FIG. 2 is a vector diagram showing the relationship between the voltage for one phase of the electric line BUS and the current flowing through each part of this conventional reactive power compensator.

電源電圧V、に対して、サイクロコンバータc/cには
ある瞬時、Iccなる電流が流れている。このIccの
大きさ及び位相角αは、負荷に流れる交流電流に同期し
て刻々と変化している。また、進相コンデンサCにはV
sより900進んだIcapなる一定電流が流れている
。このとき無効電力補償装置(サイリスタブリッジ回路
55+直流リアクトルL。に10’■Icap−Icc
−sinαなる遅れ電流を流すことにより電源電流1、
は、電圧V、と同相成分だけとなる。I’ccの大きさ
及び位相角αが変化しても、それに応じて、10’■k
loを制御してやれは、電圧V、と電流1、は常に同相
となり、電源側から見た基本波力率は常に1で運転され
ていることになる。 この従来の無効電力補償装置は、
サイクロコンバータとは別にサイリスタブリッジ回路5
5を要するため、高価なものとなる欠点があつた。本発
明は前述の点に鑑みてなされたもので、上記従来のサイ
リスタブリッジ回路等の特別な無効電力補償装置を設け
ることなく、サイクロコンバータの無効電力の変動をな
くし、電源側から見た基本波力率を常に1に制御出来る
無効電力補償形サイクロコンバータの制御方法を提供す
ることを目白勺とする。第3図は、本発明の無効電力補
償形サイクロコンバータ装置の実施例の構成図てある。
With respect to the power supply voltage V, a current Icc flows through the cycloconverter c/c at a certain instant. The magnitude of Icc and the phase angle α are constantly changing in synchronization with the alternating current flowing through the load. In addition, the phase advance capacitor C has V
A constant current Icap, which is 900 ahead of s, is flowing. At this time, the reactive power compensator (thyristor bridge circuit 55 + DC reactor L.
-sin α, the power supply current 1,
has only the in-phase component with the voltage V. Even if the magnitude of I'cc and the phase angle α change, 10'■k
If lo is controlled, voltage V and current 1 will always be in phase, and the fundamental wave power factor seen from the power supply side will always be operating at 1. This conventional reactive power compensator is
Thyristor bridge circuit 5 separate from cycloconverter
5, it had the disadvantage of being expensive. The present invention has been made in view of the above points, and eliminates fluctuations in the reactive power of the cycloconverter without providing a special reactive power compensator such as the conventional thyristor bridge circuit described above. The objective is to provide a control method for a reactive power compensated cycloconverter that can always control the power factor to 1. FIG. 3 is a block diagram of an embodiment of the reactive power compensation type cycloconverter device of the present invention.

図中BUSは3相交流電源の電線路、CはΔまたは人接
続された進相コンデンサ、TrU,TrV,TrWは電
源トランス、CC−U,CC−V,CC−Wは各々U相
、V相、W相の循環電流式サイクロコンバータ、LOA
Du,LOADv,LOAD嗣ま三相負荷である。U相
のサイクロコンバータCC−Uの中は正群コンバータS
S−P1負群コンバータSS−N1中間タップ付直流リ
アクトルLOl,LO2から構成されており、その制御
回路として、負荷電流検出器CTLU、正群コンバータ
の出力電流検出器CTpu、負群コンバータの出力電流
検出V−TNUl加算器A1〜A,、比較器Q,C2,
C3、演算増幅器KO,Kl,K2、反転回路1N■、
絶対値回路.ABSl位相制御回路PH−P,PH−N
が用いられる。V相及びW相のサイクロコンバータも同
様に構成されており、2点鎖線て囲まれた制御回路CO
NT一V及びCONT−Wは、U相の制御回路CONT
−Uと同様に構成されている。また、無効電力制御回路
として、受電端の3相交流電圧を検出する変成器PT、
3相交流電流を検出する変流器CTSl無効電力演算回
路■AR、.無効電力設定器Q*、比較器C1、制御補
償回路[1(s)、配分回路DISがある。
In the figure, BUS is the electrical line of the three-phase AC power supply, C is the Δ or connected phase advance capacitor, TrU, TrV, TrW are the power transformer, CC-U, CC-V, CC-W are the U phase, V phase, W phase circulating current type cycloconverter, LOA
Du, LOADv, LOAD are three-phase loads. Inside the U-phase cycloconverter CC-U is a positive group converter S.
S-P1 Negative group converter SS-N1 Consists of DC reactors LOl and LO2 with intermediate taps, and its control circuit includes a load current detector CTLU, an output current detector CTpu of the positive group converter, and an output current of the negative group converter. Detection V-TNUl adders A1 to A, comparators Q, C2,
C3, operational amplifier KO, Kl, K2, inverting circuit 1N■,
Absolute value circuit. ABSl phase control circuit PH-P, PH-N
is used. The V-phase and W-phase cycloconverters are similarly configured, and the control circuit CO surrounded by the two-dot chain line
NT-V and CONT-W are the U-phase control circuit CONT
- It is configured similarly to U. In addition, as a reactive power control circuit, a transformer PT that detects the three-phase AC voltage at the receiving end,
Current transformer CTSL reactive power calculation circuit that detects three-phase alternating current ■AR, . There is a reactive power setter Q*, a comparator C1, a control compensation circuit [1(s)], and a distribution circuit DIS.

まず循環電流式サイクロコンバータの負荷電流制御の動
作をU相を例にとつて説明する。
First, the operation of load current control of the circulating current type cycloconverter will be explained using the U phase as an example.

負荷電流指令1L1uと実際に流れる負荷電流1LU.
の検出値を比較し、その偏差ε3に比例した電圧をサイ
クロコンバータCC−Uから発生するように位相制御回
路PH−P,PH−Nを制御する。
Load current command 1L1u and actually flowing load current 1LU.
The detected values are compared, and the phase control circuits PH-P and PH-N are controlled so that the cycloconverter CC-U generates a voltage proportional to the deviation ε3.

PH−Pの出力位相α,Llに対して、PH−Nの出力
位相αNUはαNu=180に−α,uの関係を保つよ
う・に増幅器K2から反転回路1NVを介して、PH−
Nに入力される。すなわちSS−Pの出力電圧■Pu=
Kv・■s−COSapu.l5SS−Nの出力電圧V
NU=Kv●■・COSaNU=ーVPUは負荷端子で
、つり合つた状態で通常の運転が行なわれる。電流指令
ILIuを正弦波状に変化させると、それに応じて偏差
ε3も変化し、負荷に正弦波電流1Lが流れるように前
記αPu及びαNUが制御される。この通常の運転ては
SS−Pの電圧とSS−Nの電圧は等しく、つり合つて
いるため循環電流1。はほとんど流れない。■相、W相
の負荷電流しV,IL,.も同様に制御される。
With respect to the output phase α, Ll of PH-P, the output phase αNU of PH-N is changed from the amplifier K2 to the inverter 1NV through the inverting circuit 1NV so that αNu=180, maintaining the relationship of -α,u.
It is input to N. In other words, the output voltage of SS-P ■Pu=
Kv・■s-COSapu. l5SS-N output voltage V
NU=Kv●■・COSaNU=-VPU is the load terminal, and normal operation is performed in a balanced state. When the current command ILIu is changed in a sinusoidal manner, the deviation ε3 is also changed accordingly, and the αPu and αNU are controlled so that a sinusoidal current 1L flows through the load. In this normal operation, the SS-P voltage and the SS-N voltage are equal and balanced, so the circulating current is 1. There is almost no flow. The load currents of the ■phase and W phase are V, IL, . are similarly controlled.

次に、循環電流10の制御動作を説明する。Next, the control operation of the circulating current 10 will be explained.

ここでもU相のサイクロコンバータを例にとつて説明す
る。循環電流10uは次のようにして検出する。
Here again, the explanation will be given using the U-phase cycloconverter as an example. The circulating current 10u is detected as follows.

すなわち、正群コンバータSS−Pの出力電流し。の検
出値と負群コンバータSS−Nの出力電流1NUの検出
値の和をとりそれから、負荷電流1LUの検出値の絶対
値を差し引いて、112倍したものが、循環電流10u
である。その関係式は次のようになる。このようにして
求めた循環電流10uは、その指令値1。
That is, the output current of the positive group converter SS-P. The sum of the detected value and the detected value of the output current 1NU of the negative group converter SS-N, subtracting the absolute value of the detected value of the load current 1LU, and multiplying by 112 is the circulating current 10u.
It is. The relational expression is as follows. The circulating current 10u obtained in this way is its command value 1.

Uと比較される。偏差E2=IOIu−100は増幅器
K1を介して、加算器A3及ひA,に入力される。従つ
て、PH−Nへの入力E4及びE5は各々、次のように
なる。
Compared to U. The deviation E2=IOIu-100 is input to the adders A3 and A via the amplifier K1. Therefore, the inputs E4 and E5 to the PH-N are each as follows.

故に、αNu=1800−αPuの関係はくすれK,・
E2に比例した分だけ、SS−Pの出力電圧VpuとS
S−Nの出力電圧VNUとが不平衡になる。
Therefore, the relationship αNu = 1800 - αPu becomes dull K,・
SS-P output voltage Vpu and S are proportional to E2.
The output voltage VNU of S-N becomes unbalanced.

その差電圧が直流リアクトルLOl及ひLO2に印加さ
れ循環電流10uが流れる。IOLlが指令値1系より
流れすぎれば、ε2が減少しで上記差電圧を小さくする
。結果的には、循環電流10uはその指令値I売に等し
くなるように制御される。V相、W相のコンバータの循
環電流1。
The differential voltage is applied to the DC reactors LO1 and LO2, and a circulating current 10u flows. If IOLl flows too much than the command value 1 system, ε2 decreases and the differential voltage is reduced. As a result, the circulating current 10u is controlled to be equal to its command value I. Circulating current 1 of V-phase and W-phase converters.

v及びIOwもその指令値10I1v及びIO8wに従
つて、同様に制御される。一方、無効電力制御は次のよ
うにして行なわれる。
v and IOw are similarly controlled according to the command values 10I1v and IO8w. On the other hand, reactive power control is performed as follows.

受電端には電流検出器CT3及び電圧検出器PTが設置
され、VARによつて、その無効電力Qが演算される。
A current detector CT3 and a voltage detector PT are installed at the power receiving end, and their reactive power Q is calculated by VAR.

無効電力の指定値Q1(は通常零に設定され、比較器q
によつて偏差ε1が発生させられる。制御補償回路H(
s)は、定常偏差ε1を零にするため通常、積分要素が
使われその出力10*が循環電流の指令値となる。すな
わち、進相コンデンサの進み無効電流1capより、サ
イクロコンバータ三相分の遅れ無効電流IREACTが
小さくなつた場合、受電端の無効電力は進みとなり、Q
は負の値となる。
The specified reactive power value Q1 (is normally set to zero, and the comparator q
A deviation ε1 is generated by . Control compensation circuit H (
s), an integral element is normally used to make the steady-state deviation ε1 zero, and its output 10* becomes the command value for the circulating current. In other words, when the lagging reactive current IREACT for the three phases of the cycloconverter becomes smaller than the leading reactive current 1cap of the phase-advancing capacitor, the reactive power at the receiving end becomes advanced, and Q
is a negative value.

従つて、ε1=Q*−Q=ーQは正となり、積分回路H
(s)を介してIO*を増加させる。すると、配分回路
DISを介したIOu.IOIv.Iム不増加し、サイ
クロコンバータの循環電流を増加させる。この循環電流
は電源側から見た場合、遅れ無効電流成分であるから、
上記1REA0,を増加させる役目をする。逆に循環電
流が流れすぎて、受電端の無効電力が遅れとなつた場合
Qは正の値となり、ε1=Q水−Q=ーQは負となり、
IO水を減少させ、循環電流を減少させる。ここで、循
環電流の指令値10*をそのまま各相の循環電流の指令
値1。
Therefore, ε1=Q*-Q=-Q is positive, and the integration circuit H
(s) to increase IO*. Then, IOu. via the distribution circuit DIS. IOIv. IM increases, increasing the circulating current of the cycloconverter. This circulating current is a delayed reactive current component when viewed from the power supply side, so
It serves to increase the above 1REA0. Conversely, if the circulating current flows too much and the reactive power at the receiving end lags, Q will be a positive value, and ε1 = Q water - Q = -Q will be negative,
Reduces IO water and reduces circulating current. Here, the circulating current command value 10* is directly changed to the circulating current command value 1 for each phase.

Iu,I08v,I0Iwとしてもよいのであるが、そ
の場合次のような欠点を生じる。第4図は三相負荷の電
流し。
Iu, I08v, I0Iw may be used, but in that case, the following drawbacks occur. Figure 4 shows the current of a three-phase load.

,ILV,しぃとサイクロコンバータの出力電圧Vu,
Vv,Vw及びそのときの正群コンバータの制御位相角
α,U,α,V,の波形を表わしたもので、図示の如く
、α,U,αPv,及びαPwは、0の〜180のの範
囲を位相をずらしながら変化している。なお、負群コン
バータの制御位相角は、各々αNU″.180ン−α,
ぃα、v≠180相−αPVlαNW≠1800−αP
wの関係を保ちながら変化している。この図のa点(α
,o=00、αP■=αPw=1200)において、循
環電流1。u,I0v,I0wを流した場合、その無効
電流成分は、となる。
, ILV, output voltage Vu of the cycloconverter,
It represents the waveforms of Vv, Vw and the control phase angles α, U, α, V, of the positive group converter at that time. As shown in the figure, α, U, αPv, and αPw are 0 to 180. The range changes while shifting the phase. Note that the control phase angles of the negative group converter are αNU″.180n−α,
α, v≠180 phase-αPVlαNW≠1800-αP
It is changing while maintaining the relationship w. Point a (α
, o=00, αP■=αPw=1200), the circulating current is 1. When u, I0v, and I0w flow, the reactive current component is as follows.

これは、同じ循環電流を流しても各相の制御位相角によ
つて効果が異なることを意味している。例えば、U相の
場合、a点ではα。=0ててあるから、いくら循環電流
を流しても無効電流成分1。U(REAC,>は増加せ
ず、無駄な電流を流していることになる。この無駄な電
流は、サイクロコンバータの構成素子たるサイリスタの
電流容量を増大させる。従つて出来れば、このとき(a
点では)U相のサイクロコンバータの循環電流10uは
流さない方が望ましい。第3図の配分回路DISは、各
相のサイクロコン 木
木 木バータの循環電流の指令値10u,I0v
,I0wを当該各相のサイクロコンバータの点弧制御角
αの正弦値Slnαに比例して配分させるものである。
This means that even if the same circulating current is passed, the effect will differ depending on the control phase angle of each phase. For example, in the case of U phase, α at point a. = 0, so no matter how much circulating current flows, the reactive current component is 1. U(REAC, > does not increase, and a wasted current is flowing. This wasted current increases the current capacity of the thyristor, which is a component of the cycloconverter. Therefore, if possible, at this time (a
It is preferable not to allow the circulating current 10u of the U-phase cycloconverter to flow. The distribution circuit DIS in Figure 3 is a cycloconverter for each phase.
Wood Wood vata circulating current command value 10u, I0v
, I0w are distributed in proportion to the sine value Slnα of the firing control angle α of the cycloconverter of each phase.

第5図は、上記配分回路DISの具体的な実施例を示す
構成図である。図中、KaO,Kav,Kαゅは比例増
幅器、LMu,LMv,LMwはりミッタ回路、SQu
,SQv,SQwは2乗演算回路、A5U,A5V,A
5ぃは加算器、SQRLj,SQRv,SQRwは平方
根演算回路、Mu,Mv,Mぃは乗算器を示す。VaO
は第3図の増幅器K2の出力信号で、U相サイクロコン
バータCC−Uの位相制御信号となるものである。すな
わち、正群コンバータSS一Pの位相制御角αPuと負
群コンバータSS−Nに位相制御角αNUとの間にαN
u−.180−−αPuの関係が成り立つと考えれば、
SS−Pの出力電圧V,O及びSS−Nの出力電圧VN
Uは前に述べたように次の如く表わせる。言い換えれば
、VQOは位相制御角αPOの余弦値に比例していると
考えることがてきる。
FIG. 5 is a block diagram showing a specific embodiment of the distribution circuit DIS. In the figure, KaO, Kav, Kαu are proportional amplifiers, LMu, LMv, LMw beam transmitter circuits, SQu
, SQv, SQw are square calculation circuits, A5U, A5V, A
5 is an adder, SQRLj, SQRv, and SQRw are square root calculation circuits, and Mu, Mv, and M are multipliers. VaO
is the output signal of the amplifier K2 in FIG. 3, which serves as a phase control signal for the U-phase cycloconverter CC-U. That is, αN exists between the phase control angle αPu of the positive group converter SS-P and the phase control angle αNU of the negative group converter SS-N.
u-. If we consider that the relationship 180−−αPu holds,
SS-P output voltage V, O and SS-N output voltage VN
As mentioned before, U can be expressed as follows. In other words, VQO can be considered to be proportional to the cosine value of the phase control angle αPO.

そこで第5図にもどつて、配分回路DISの説明を行な
う。
Therefore, returning to FIG. 5, the distribution circuit DIS will be explained.

比例増幅器KaOは、位相制御信号VaOを単位化する
ためのものである。
The proportional amplifier KaO is for unitizing the phase control signal VaO.

従つて、VauXKau=COsauとなる。しかし、
当該制御信号VaOは偏差E2に応じていくらでも大き
くなることができるのに対し、位相制御角αUは00〜
1800の範囲に限られている。すなわち−1くCOs
aOく1でなければならない。りミッタ回路LMuはそ
の制限値を考慮したものである。次にその余弦値COs
αoを2乗演算回路SQuで2乗し(COsau)2を
求める。加算器A5Uは単位電圧1から上記(COsα
u)2を差し引くもので、その結果1−(COSαu)
2を平方根演算回路SQRuに入力する。故にSQRO
の出力は!1−COsau)2となり正弦値Sinαo
が求まる。乗算器Muは無効電力制御の補償回路H(s
)の出力10*に上記U相サイクロコンバータの位相制
御角αUの正弦値Sinauを乗するもので、その出力
1。1[J=■o木・SinaOがU相サイクロコンバ
ータの循環電流10uの指令値となる。
Therefore, VauXKau=COsau. but,
The control signal VaO can be increased as much as desired according to the deviation E2, whereas the phase control angle αU is in the range of 00 to
Limited to 1800 range. That is -1 COs
It must be aOku1. The limiter circuit LMu takes this limit value into consideration. Next, its cosine value COs
αo is squared using a square calculation circuit SQu to obtain (COsau)2. The adder A5U converts the unit voltage 1 to the above (COsα
u) subtracts 2, resulting in 1-(COSαu)
2 is input to the square root calculation circuit SQRu. Therefore SQRO
The output is! 1-COsau)2, which is the sine value Sinαo
is found. The multiplier Mu is a compensation circuit H(s
) is multiplied by the sine value Sinau of the phase control angle αU of the U-phase cycloconverter, and the output 1.1 [J=■o tree・SinaO is the command for the circulating current 10u of the U-phase cycloconverter value.

同様に、V相及びW相のサイクロコンバータの位相制御
信号Vav,vawからも各々SinaVlsinaぃ
が求められる。
Similarly, SinaVlsinai can be obtained from the phase control signals Vav and vaw of the V-phase and W-phase cycloconverters, respectively.

従つて、乗算器Mv及びMvvの出力は各々IOIv=
IO*●Sina、及びI品=IO水・Sinawとな
る。このように各相のサイクロコンバータの循環電流1
0u910v910wは〜当該各相コンバータの点弧位
相制御角α。
Therefore, the outputs of multipliers Mv and Mvv are respectively IOIv=
IO*●Sina, and I product = IO water/Sinaw. In this way, the circulating current 1 of the cycloconverter for each phase is
0u910v910w is the firing phase control angle α of the respective phase converter.

,αV,αぃの正弦値に比例して配分される。従つて電
源側の無効電流成分として大きく寄与する相のサイクロ
コンバータの循環電流は多く流れ、また無効電流成分に
あまり寄与しない相のサイクロコンバータの循環電流は
少なく流れるように制御される。故に無駄な循環電流を
流すことがなくなり効率の良い無効電力補償を行なうこ
とができる。以上のように、本発明に係る無効電力補償
形サイクロコンバータ装置は、従来の特別の無効電力補
償装置を用いることなく電源側から見た基本波力率を常
に1になるように制御できる。
, αV, αi are distributed in proportion to the sine values of αi. Therefore, a large amount of circulating current flows in the cycloconverter of the phase that largely contributes to the reactive current component on the power supply side, and a small amount of circulating current flows in the cycloconverter of the phase that does not contribute much to the reactive current component. Therefore, unnecessary circulating current is not caused to flow, and efficient reactive power compensation can be performed. As described above, the reactive power compensation type cycloconverter device according to the present invention can control the fundamental wave power factor as viewed from the power source side to always be 1 without using a conventional special reactive power compensation device.

また当該各相のサイクロコンバータの循環電流の割合を
各相サイクロコンバータの点弧制御角αの正弦値Sln
αに比例して配分し制御しているため、無駄な循環電流
を流すことがなくなり効率の良い無効電力補償を行なう
ことができる。なお、実施例では三相出力のサイクロコ
ンバータについて説明したが、二相以上の多相出力サイ
クロコンバータに適用できることはいうまでもない。
In addition, the proportion of the circulating current of the cycloconverter of each phase is determined by the sine value Sln of the firing control angle α of the cycloconverter of each phase.
Since the power is distributed and controlled in proportion to α, no wasteful circulating current is allowed to flow, and efficient reactive power compensation can be performed. In the embodiment, a three-phase output cycloconverter has been described, but it goes without saying that the present invention can be applied to a two-phase or more polyphase output cycloconverter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の代表的な無効電力補償装置の構成図、第
2図は第1図の動作を説明するためのベクトル図、第3
図は本発明の無効電力補償形サイクロコンバータ装置の
一実施例の構成図、第4図は第3図の動作を説明するた
めの各部波形図、第5図は第3図の配分回路の具体例を
示す構成図である。 CC−U−CC−W・・・・・・循環電流式サイクロコ
ンバータ、TrU−TrW・・・・・・電源トランス、
SS−P・・・・・・正群コンバータ、SS−N・・・
・・・負群コンバータ、LOl,LO2・・・・・・直
流リアクトル、LOADu〜LOADvq・・・・・・
負荷、BUS・・・・・・三相電線路、C・・・・・・
進相コンデンサ、CT,,CTNO,CTpu,CTL
u・・・・・・変流器、PT・・・・・・変成器、C1
〜C3・・・・・・比較器、A1〜入・・・・・・加算
器、PH−P,PH−N・・・・・・位相制御回路、A
BS・・・・・・絶対値回路、■NV・・・・・・反転
回路、4〜K2・・・・・・増幅器、DIS・・・・・
・配分回路、Kαo−Ka9・・・・・・増幅器、LM
u上Mw・・・・・・りミッタ回路、SQu−SQw・
・・・・・2乗演算回路、A5O−A5W・・・・・・
加算器、SQRu−SQRw・・・・・・平方根演算回
路、MO−Mw・・・・・・乗算器。
Fig. 1 is a block diagram of a typical conventional reactive power compensator, Fig. 2 is a vector diagram for explaining the operation of Fig. 1, and Fig. 3 is a block diagram of a typical conventional reactive power compensator.
The figure is a block diagram of one embodiment of the reactive power compensation type cycloconverter device of the present invention, FIG. 4 is a waveform diagram of each part for explaining the operation of FIG. 3, and FIG. 5 is a concrete diagram of the distribution circuit of FIG. 3. It is a block diagram which shows an example. CC-U-CC-W... Circulating current type cycloconverter, TrU-TrW... Power transformer,
SS-P...Positive group converter, SS-N...
...Negative group converter, LOl, LO2...DC reactor, LOADu~LOADvq...
Load, BUS... Three-phase electric line, C...
Phase advance capacitor, CT,, CTNO, CTpu, CTL
u...Current transformer, PT...Transformer, C1
~C3... Comparator, A1 ~ Input... Adder, PH-P, PH-N... Phase control circuit, A
BS: Absolute value circuit, NV: Inverting circuit, 4 to K2: Amplifier, DIS:
・Distribution circuit, Kαo-Ka9...Amplifier, LM
Mw on u...Remitter circuit, SQu-SQw・
...Squaring calculation circuit, A5O-A5W...
Adder, SQRu-SQRw... Square root operation circuit, MO-Mw... Multiplier.

Claims (1)

【特許請求の範囲】[Claims] 1 多相負荷に対して各相毎に可変周波数の交流電流を
供給する循環電流式のサイクロコンバータにおいてその
共通電源端子に進相コンデンサを接続し、前記各相のサ
イクロコンバータの遅れ無効電力の和と前記進相コンデ
ンサの進み無効電力とが互いに打消し合うように前記各
相のサイクロコンバータの循環電流を制御する場合前記
各相のサイクロコンバータの循環電流の割合を各相サイ
クロコンバータの点弧制御角αの正弦値sinαに比例
して配分し制御することを特徴とする無効電力補償形サ
イクロコンバータの制御方法。
1. In a circulating current type cycloconverter that supplies variable frequency alternating current for each phase to a multiphase load, a phase advancing capacitor is connected to its common power supply terminal, and the sum of the delayed reactive power of the cycloconverters of each phase is calculated. When the circulating current of the cycloconverter of each phase is controlled so that the leading reactive power of the phase advancing capacitor cancels each other, the proportion of the circulating current of the cycloconverter of each phase is controlled to ignite the cycloconverter of each phase. A method for controlling a reactive power compensation type cycloconverter, characterized in that the control is performed by distributing the angle in proportion to the sine value sin α of the angle α.
JP3717980A 1980-03-24 1980-03-24 Control method for reactive power compensation type cycloconverter Expired JPS6056065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3717980A JPS6056065B2 (en) 1980-03-24 1980-03-24 Control method for reactive power compensation type cycloconverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3717980A JPS6056065B2 (en) 1980-03-24 1980-03-24 Control method for reactive power compensation type cycloconverter

Publications (2)

Publication Number Publication Date
JPS56133984A JPS56133984A (en) 1981-10-20
JPS6056065B2 true JPS6056065B2 (en) 1985-12-07

Family

ID=12490356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3717980A Expired JPS6056065B2 (en) 1980-03-24 1980-03-24 Control method for reactive power compensation type cycloconverter

Country Status (1)

Country Link
JP (1) JPS6056065B2 (en)

Also Published As

Publication number Publication date
JPS56133984A (en) 1981-10-20

Similar Documents

Publication Publication Date Title
US4555755A (en) AC Current control system
KR880004620A (en) Reactive Power Compensation Device by Current Converter
US4673823A (en) Apparatus for operating cycloconverters in parallel fashion
US4418380A (en) Method and apparatus for controlling the circulating current of a cycloconverter
JPH0779574A (en) Control circuit for three-level inverter
US4074348A (en) Circuit arrangement with a number of cycloconverters, particularly direct cycloconverters in y-connection
JP2708648B2 (en) Parallel operation control device
AU2018377305B2 (en) Voltage compensation device
JP3296065B2 (en) Control circuit of PWM converter
EP0186513B1 (en) Control method for cycloconverter and control apparatus therefor
JPS6056065B2 (en) Control method for reactive power compensation type cycloconverter
JPH07135782A (en) Control circuit for three-level inverter
JPS6295973A (en) Power converter
JP2843220B2 (en) Cycloconverter device
JP3379130B2 (en) Parallel converter for cycloconverter
JPS6053552B2 (en) Control method for reactive power compensation type cycloconverter
JPH0682305B2 (en) Reactive power compensator
JPS5914987B2 (en) Control method for reactive power compensation type cycloconverter
JPS6155347B2 (en)
JPH0477550B2 (en)
JPH0154952B2 (en)
KR19980054431A (en) Converter current / voltage controller
JPH01315266A (en) Controlling circuit for power converter
KR970072618A (en) Three-phase inverter voltage control device and control method
JPS6155346B2 (en)