JPS5914987B2 - Control method for reactive power compensation type cycloconverter - Google Patents

Control method for reactive power compensation type cycloconverter

Info

Publication number
JPS5914987B2
JPS5914987B2 JP10553779A JP10553779A JPS5914987B2 JP S5914987 B2 JPS5914987 B2 JP S5914987B2 JP 10553779 A JP10553779 A JP 10553779A JP 10553779 A JP10553779 A JP 10553779A JP S5914987 B2 JPS5914987 B2 JP S5914987B2
Authority
JP
Japan
Prior art keywords
phase
cycloconverter
current
reactive power
circulating current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10553779A
Other languages
Japanese (ja)
Other versions
JPS5631371A (en
Inventor
茂 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP10553779A priority Critical patent/JPS5914987B2/en
Publication of JPS5631371A publication Critical patent/JPS5631371A/en
Publication of JPS5914987B2 publication Critical patent/JPS5914987B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/25Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M5/27Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means for conversion of frequency
    • H02M5/271Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means for conversion of frequency from a three phase input voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ac-Ac Conversion (AREA)

Description

【発明の詳細な説明】 本発明は電源側から見た基本波力率が常に1になるよう
に制御する無効電力補償形のサイクロコンバータの制御
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of controlling a reactive power compensation type cycloconverter, which controls the fundamental wave power factor as viewed from the power source side to always be 1.

サイクロコンバータは一定周波数の交流電力を他の異な
る周波数の交流電力に直接交換する装置であるが、その
構成素子たるサイリスタを電源電圧によつて転流させる
ため電源から多くの無効電力をとる欠点がある。
A cycloconverter is a device that directly exchanges alternating current power at a constant frequency with alternating current power at a different frequency, but it has the disadvantage that it takes a lot of reactive power from the power source because its component thyristor is commutated by the power supply voltage. be.

またその無効電力は負荷側 この周波数に同期して常に
変動している。このため、電源系統設備の容量を増大さ
せるだけでなく同一系統に接続された電気機器に種々の
悪影響を及ぼしている。第1図は、従来の代表的な無効
電力補償装置を示すもので、BUSは3相交流電線路、
c/cは5 サイクロコンバータ、Cは進相コンデンサ
、55はサイリスタブリッジ回路、Loは直流リアクト
ルである。
Also, the reactive power on the load side constantly fluctuates in synchronization with this frequency. This not only increases the capacity of power supply system equipment, but also has various negative effects on electrical equipment connected to the same system. Figure 1 shows a typical conventional reactive power compensator, where BUS is a three-phase AC power line,
c/c is 5 cycloconverter, C is a phase advancing capacitor, 55 is a thyristor bridge circuit, and Lo is a DC reactor.

電源側の無効電力Qを検出しそれが常に零になるように
サイリスタブリッジ回路の点弧角を変えて直流リアクト
ルLoに流れる電流10を10制御する。第2図はこの
従来の無効電力補償装置の電線路BUSの1相分の電圧
と各部に流れる電流の関係を示すベクトル図である。
The reactive power Q on the power supply side is detected, and the firing angle of the thyristor bridge circuit is changed to control the current 10 flowing through the DC reactor Lo so that it is always zero. FIG. 2 is a vector diagram showing the relationship between the voltage for one phase of the electric line BUS and the current flowing through each part of this conventional reactive power compensator.

電源電圧Vsに対して、サイクロコンバータc/cには
ある瞬時、Iccなj5る電流が流れている。このIc
cの大きさ及び位相角αは、負荷に流れる交流電流に同
期して刻々と変化している。また、進相コンデンサCに
はVsより900進んだIcapなる一定電流が流れて
いる。このとき無効電力補償装置(サイリスタブリツジ
フ0 回路55+直流リアクトルLo)に10’■Ic
ap−Icc−slnαなる遅れ電流を流すことにより
電源電流Isは、電圧Vsと同相成分だけとなる。Ic
cの大きさ及び位相角αが変化しても、それに応じて、
10’■kloを制御してやれば、電圧Vs・5 と電
流Isは常に同相となり、電源側から見た基本波力率は
常に1で運転されていることになる。この従来の無効電
力補償装置は、サイクロコンバータとは別にサイリスタ
ブリッジ回路55を要するため、高価なものとなる欠点
があつた。’0 本発明は前述の点に鑑みてなされたも
ので、上記従来のサイリスタブリッジ回路等の特別な無
効電力補償装置を設けることなく、サイクロコンバータ
の無効電力の変動をなくし、電源側から見た基本波力率
を常に1に制御出来る無効電力補償形”5 サイクロコ
ンバータの制御方法を提供することを目的とする。第3
図は、本発明の無効電力補償形サイクロコンバータ装置
の実施例の構成図である。
With respect to the power supply voltage Vs, a current of Icc j5 flows through the cycloconverter c/c at a certain instant. This Ic
The magnitude of c and the phase angle α are constantly changing in synchronization with the alternating current flowing through the load. Further, a constant current Icap, which is 900 ahead of Vs, flows through the phase advance capacitor C. At this time, the reactive power compensator (thyristor valve 0 circuit 55 + DC reactor Lo) is
By flowing a delayed current of ap-Icc-slnα, the power supply current Is has only an in-phase component with the voltage Vs. Ic
Even if the magnitude of c and the phase angle α change, accordingly,
If 10'klo is controlled, the voltage Vs.5 and the current Is will always be in phase, and the fundamental wave power factor seen from the power supply side will always be 1 during operation. This conventional reactive power compensator requires a thyristor bridge circuit 55 in addition to the cycloconverter, so it has the disadvantage of being expensive. '0 The present invention has been made in view of the above points, and eliminates fluctuations in the reactive power of the cycloconverter without providing a special reactive power compensation device such as the conventional thyristor bridge circuit, and improves the The purpose of the present invention is to provide a control method for a reactive power compensation type 5 cycloconverter that can always control the fundamental wave power factor to 1.3.
The figure is a configuration diagram of an embodiment of a reactive power compensation type cycloconverter device of the present invention.

図中BUSは3相交流電源の電線路、Cは△または人接
続された進相コンデンサ、CC−U,CC−V,CC−
Wは各々U相、相、W相の循環電流式サイクロコンバー
タ、LOADu,LOAD,LOADwは三相負荷であ
る。U相のサイクロコンバータCC−Uの中は正群コン
バータSS−P1負群コンバータSS−N1中間タツプ
付直流リアクトルLO,,LO2から構成されており、
その制御回路として、負荷電流検出器CTLUl正群コ
ンバータの出力電流検出器CTPUl負群コンバータの
出力電流検出器CTNUl加算器A1〜A4、比較器C
,,C2,C3、演算増幅器K。,K,,K2、反転回
路1N、絶対値回路ABSl位相制御回路PH−P,P
H−Nが用いられる。相及びW相のサイクロコンバータ
も同様に構成されており、2点鎖線で囲まれた制御回路
PHC−及びPHC−Wは、U相の制御回路PHC−U
と同様に構成されている。また、無効電力制御回路とし
て、受電端の3相交流電圧を検出する変成器PTl3相
交流電流を検出する交流器CTSl無効電力演算回路A
Rl無効電力設定器Q1比較器C1、制御補償回路H(
s)、選択回路SLCがある。まず、循環電流式サイク
ロコンバータの負荷電流制御の動作をU相を例にとつて
説明する。
In the figure, BUS is the electrical line of the 3-phase AC power supply, C is △ or the connected phase advance capacitor, CC-U, CC-V, CC-
W is a circulating current type cycloconverter of U phase, phase, and W phase, respectively, and LOADu, LOAD, and LOADw are three-phase loads. The U-phase cycloconverter CC-U consists of a positive group converter SS-P1, a negative group converter SS-N1, and a DC reactor LO, LO2 with an intermediate tap.
Its control circuit includes a load current detector CTLUl, an output current detector for the positive group converter CTPUl, an output current detector for the negative group converter CTNUl, adders A1 to A4, and a comparator C.
,,C2,C3, operational amplifier K. ,K,,K2, inversion circuit 1N, absolute value circuit ABSl phase control circuit PH-P,P
H-N is used. The phase and W phase cycloconverters are similarly configured, and the control circuits PHC- and PHC-W surrounded by two-dot chain lines are the U-phase control circuit PHC-U.
It is configured in the same way. In addition, as a reactive power control circuit, a transformer PTSL that detects the 3-phase AC voltage at the power receiving end, an AC transformer CTSL that detects the 3-phase AC current, and a reactive power calculation circuit A
Rl reactive power setter Q1 comparator C1, control compensation circuit H (
s), there is a selection circuit SLC. First, the operation of load current control of the circulating current type cycloconverter will be explained using the U phase as an example.

負荷電流指令11uと実際に流れる負荷電流1LUの検
出値を比較し、その偏差ε3に比例した電圧をサイクロ
コンバータCC−Uから発生するように位相制御回路P
H−P,PH−Nを制御する。PH−Pの出力位相αP
uに対して、PH−Nの出力位相αNはαN=180゜
−αPの関係を保つように増幅器K2から反転回路1N
を介して、PH−Nに入力される。すなわちSS−?出
力電圧Pu=k・Vs−COSapu(5SS−Nの出
力電圧NUkvOS″COSaNU=−VPUは負荷端
子で、つり合つた状態で通常の運転が行なわれる。電流
指令RLUを正弦波状に変化させると、それに応じて偏
差ε3も変化し、負荷に正弦波電流Lが流れるように前
記αPu及びαNUが制御される。この通常の運転では
SS−Pの電圧とSS−Nの電圧は等しく、つり合つて
いるため循環電流10はほとんど流れない。相、W相の
負荷電流1L,ILWも同様に制御される。
The phase control circuit P is configured to compare the detected value of the load current command 11u and the actually flowing load current 1LU, and generate a voltage proportional to the deviation ε3 from the cycloconverter CC-U.
Controls HP and PH-N. PH-P output phase αP
With respect to
The signal is input to the PH-N via the PH-N. In other words, SS-? Output voltage Pu=k・Vs−COSapu (output voltage NUkvOS″COSaNU=−VPU of 5SS-N is the load terminal, and normal operation is performed in a balanced state. When the current command RLU is changed in a sinusoidal manner, The deviation ε3 also changes accordingly, and the above αPu and αNU are controlled so that the sinusoidal current L flows through the load.In this normal operation, the voltage of SS-P and the voltage of SS-N are equal and balanced. Therefore, the circulating current 10 hardly flows.The phase and W phase load currents 1L and ILW are similarly controlled.

次に、循環電流1。Next, circulating current 1.

の制御動作を説明する。ここでもU相のサイクロコンバ
ータを例にとつて説明する。循環電流1。
The control operation will be explained. Here again, the explanation will be given using the U-phase cycloconverter as an example. Circulating current 1.

Uは次のようにして検出する。すなわち、正群コンバー
タSS−Pの出力電流1p0の検出値と負群コンバータ
SS−Nの出力電流1N[Jの検出値の和をとりそれか
ら、負荷電流1LUの検出値の絶対値を差し引いて、%
倍したものが、循環電流1。Uである。その関係式は次
のようになる。10u=(Ip+IN−11L1)/2 このようにして求めた循環電流1。
U is detected as follows. That is, take the sum of the detected value of the output current 1p0 of the positive group converter SS-P and the detected value of the output current 1N[J of the negative group converter SS-N, then subtract the absolute value of the detected value of the load current 1LU, %
Multiplied by this is the circulating current 1. It is U. The relational expression is as follows. 10u=(Ip+IN-11L1)/2 Circulating current 1 thus obtained.

Uは、その指令値17)。と比較される。偏差ε2=1
7)U−10Uは増幅器K,を介して、加算器A3及び
A4に入力される。従つて、PH−Nへの入力ε4及び
ε,は各々、次のようになる。
U is its command value 17). compared to Deviation ε2=1
7) U-10U is input to adders A3 and A4 via amplifier K. Therefore, the inputs ε4 and ε, to the PH-N are as follows.

ε4よK2ε3+Kビε2 ε5=−K2・ε5+K,ε2 故に、αNu=180゜−αPuの関係はくずれKビε
2に比例した分だけ、SS−Pの出力電圧PuとSS−
Nの出力電圧VNUとが不平衡になる。
ε4 yo K2ε3+K biε2 ε5=-K2・ε5+K, ε2 Therefore, the relationship αNu=180°−αPu collapses and K biε
SS-P output voltage Pu and SS-
The output voltage VNU of N becomes unbalanced.

その差電圧が直流リアクトルLO,及びLO2に印加さ
れ循環電流10uが流れる。IOuが指令値1?)uよ
り流れすぎれば、ε2が減少して上記差電圧を小さくす
る。結果的には、循環電流10uはその指令値1*0u
に等しくなるように制御される。相、W相のサイクロコ
ンバータの循環電流10v及びIOwもその指令値δ及
びIOwもその指令値1δ及びδWに従つて、同様に制
御される。
The differential voltage is applied to the DC reactors LO and LO2, and a circulating current 10u flows. Is IOu the command value 1? ) If the current flows too much than u, ε2 decreases and the voltage difference becomes smaller. As a result, the circulating current 10u is its command value 1*0u
is controlled to be equal to . The circulating currents 10v and IOw of the phase and W-phase cycloconverters and their command values δ and IOw are similarly controlled in accordance with the command values 1δ and δW.

一方、無効電力制御は次のようにして行なわれる。On the other hand, reactive power control is performed as follows.

受電端には電流検出器CT8及び電圧検出器PTが設置
され、ARによつて、その無効電力Qが演算される。
A current detector CT8 and a voltage detector PT are installed at the power receiving end, and their reactive power Q is calculated by AR.

無効電力の指令値qは通常零に設定され、比較器C1に
よつて偏差ε1が発生させられる。制御補償回路H(s
)は、偏差ε,を零にするため通常、積分要素が使われ
その出力1δが循環電流の指令値となる。すなわち、進
相コンデンサの進み無効電流1capより、サイクロコ
ンバータ三相分の遅れ無効電流IREACTが小さくな
つた場合、受電端の無効電力は進みとなり、Qは負の値
となる。
The reactive power command value q is normally set to zero, and a deviation ε1 is generated by the comparator C1. Control compensation circuit H(s
), an integral element is usually used to make the deviation ε, zero, and its output 1δ becomes the command value for the circulating current. That is, when the lagging reactive current IREACT of the three phases of the cycloconverter becomes smaller than 1 cap of the leading reactive current of the phase-advancing capacitor, the reactive power at the receiving end becomes a leading one, and Q takes a negative value.

従つて、ε1−σ一Q−一Qは正となり、積分回路H(
s)を介してI♂を増加させる。すると、選択回路SL
Cを介した* * *10u
,10,I0wも増加し、サイクロコンバータの循環電
流を増加させる。
Therefore, ε1-σ1Q-1Q is positive, and the integration circuit H(
s) to increase I♂. Then, selection circuit SL
* * *10u via C
,10,I0w also increases, increasing the circulating current of the cycloconverter.

この循環電流は電源側から見た場合、遅れ無効電流成分
であるから、+記1REACTを増加させる役目をする
。逆に循環電流が流れすぎて、受電端の無効電力が遅れ
となつた場合Qは正の値となり、ε1=ば−Q−一Qネ
は負となり、IOを減少させ、循環電流を減少させる。
Since this circulating current is a delayed reactive current component when viewed from the power supply side, it serves to increase REACT. Conversely, if the circulating current flows too much and the reactive power at the receiving end lags, Q will be a positive value and ε1=B-Q-1Q will be negative, reducing IO and reducing the circulating current. .

* ここで、循環電流の指令値10をそのまま各相の循環電
流の指令値1♂U,I♂V,I♂Wとしてもよいのであ
るが、その場合次のような欠点を生じる。
*Here, the circulating current command value 10 may be used as the circulating current command values 1♂U, I♂V, I♂W for each phase, but in this case, the following drawbacks occur.

第4図は三相負荷の電流1LU,IL,ILWとサイク
ロコンバータの出力電圧Vu,V,W及びそのときの正
群コンバータの制御位相角αPu,αP,αPwの波形
を表わしたもので、図示の如く、αPu,αPv及びα
Pwは、0゜〜180゜の範囲を位相をずらしながら変
化している。なお、負群コンバータの制御位相角は、各
々αNu−.1800−αPu,αPuZl8O−αN
V,αNwZl8σ一αNWの関係を保ちながら変化し
ている。この図のa点(αPuO゜,αPv=αPw=
120゜)において、循環電流10u,I0,I0鏝流
した場合、その無効電流成分は、10U(REACT)
1k110US11αPU3OlO(REACT)0k
110VsinaPV0(?/2)゜k110v10W
(REACT)0k110WsinαPw:(勉72)
゜k110w但し、K1は比例定数となる。
Figure 4 shows the waveforms of the three-phase load currents 1LU, IL, ILW, the output voltages Vu, V, W of the cycloconverter, and the control phase angles αPu, αP, αPw of the positive group converter at that time. As in, αPu, αPv and α
Pw changes in the range of 0° to 180° while shifting the phase. Note that the control phase angles of the negative group converters are αNu−. 1800-αPu, αPuZl8O-αN
It changes while maintaining the relationship of V, αNwZl8σ - αNW. Point a in this figure (αPuO゜, αPv=αPw=
120°), when a circulating current of 10u, I0, I0 flows, the reactive current component is 10U (REACT)
1k110US11αPU3OlO(REACT)0k
110VsinaPV0(?/2)゜k110v10W
(REACT)0k110WsinαPw: (Tsutomu 72)
゜k110w However, K1 is a proportionality constant.

これは、同じ循環電流を流しても各相の制御位相角によ
つて効果が異なることを意味している。例えば、U相の
場合、a点ではαu=0てであるから、いくら循環電流
を流しても無効電流成分10U(REACT)は増加せ
ず、無駄な電流を流していることになる。この無1駄な
電流は、サイクロコンバータの構成素子たるサイリスタ
の電流容量を増大させる。従つて出来れば、このとき(
a点では)U相のサイクロコンバータの循環電流10[
J!ま流さない方が望ましい。第5図は、選択回路SL
Cの動作モードを示したもので、まず、X1=αPu−
αP,X2=αP一αPW,X3=αPw−αPuの信
号を作り、次にY,=X1・X3+X,・X3,Y2=
X1・X2+X1・X2,Y「二X2・X3+X2・X
3を作つている。
This means that even if the same circulating current is passed, the effect will differ depending on the control phase angle of each phase. For example, in the case of the U phase, αu=0 at point a, so no matter how much circulating current is passed, the reactive current component 10U (REACT) does not increase, and a wasteful current is passed. This wasted current increases the current capacity of the thyristor, which is a component of the cycloconverter. Therefore, if possible, at this time (
At point a), the circulating current of the U-phase cycloconverter is 10[
J! It is better not to let it flow. FIG. 5 shows the selection circuit SL
This shows the operation mode of C. First, X1=αPu−
Create a signal of αP, X2 = αP - αPW, X3 = αPw - αPu, then Y, =
X1・X2+X1・X2,Y "2X2・X3+X2・X
I'm making 3.

Y,=1のモードのとき選択回路SLCはI♂→17)
uに信号を接続し、α,u=60゜〜12σ区間サイク
ロコンバータCC−Uに循環電流10uを流す。同様に
、* *Y2=1のモードとき、IO−+IO,
Y3=1のモードのときI♂→I二Mこ信号が接続され
る。
In the mode of Y, = 1, the selection circuit SLC is I♂→17)
A signal is connected to u, and a circulating current of 10 u is caused to flow through the cycloconverter CC-U in the range α, u = 60° to 12σ. Similarly, in * *Y2=1 mode, IO−+IO,
In the mode of Y3=1, the I♂→I2M signal is connected.

すなわち、三相のサイクロコンバータCC−U,CC−
V,CC−Wの中で、制御位相角αが最も90゜に近い
サイクロコンバータを選択して、循環電流を流している
That is, three-phase cycloconverters CC-U, CC-
Among V and CC-W, the cycloconverter whose control phase angle α is closest to 90° is selected, and the circulating current is passed through it.

従つて、無駄な循環電流を流すことがなくなり効率の良
い無効電力補償を行なうことができる。第6図は第4図
のa点における電源側の電圧、電流のベクトル図を示す
もので、(a)は循環電流を流さない場合、(b)はV
相のサイクロコンバータにだけ循環電流を流した場合の
ベクトル図を表わす。
Therefore, unnecessary circulating current is not caused to flow, and efficient reactive power compensation can be performed. Figure 6 shows vector diagrams of voltage and current on the power supply side at point a in Figure 4, where (a) shows the case where no circulating current flows, and (b) shows the voltage
A vector diagram is shown when a circulating current is passed only through the phase cycloconverter.

第6図aにおいて、Iccu,ccv,ccwは各各U
相、相、W相のサイクロコンバータの入力電流ベクトル
を表わすもので、その大きさと位相角は次のようになつ
ている。Iccu=k・11Lu1Aapu:一0Ic
c二k・11L1乙−αNv=180゜−αPv=60
゜Iccw=k−11Lw1Z−αPw=120k:比
例定数, 相サイクロコンバータCC−は、負荷電流
ILを負群コンバータから供給している(第4図のa点
でILは負の値となつている)ので、入力電流1ccの
位相角は、αNV二180゜一αP=60゜となつてい
る。
In Figure 6a, Iccu, ccv, ccw are each U
It represents the input current vector of the phase, phase, and W-phase cycloconverter, and its magnitude and phase angle are as follows. Iccu=k・11Lu1Aapu:-0Ic
c2k・11L1 Otsu-αNv=180°-αPv=60
゜Iccw=k-11Lw1Z-αPw=120k: proportional constant, Phase cycloconverter CC- supplies load current IL from the negative group converter (IL has a negative value at point a in Figure 4) ) Therefore, the phase angle of 1 cc of input current is αNV2180°-αP=60°.

ノ サイクロコンバータ全体の入力電流Ccは上記各
相サイクロコンバータの入力電流1ccu,ccv,1
ccwのベクトル和となる。
The input current Cc of the entire cycloconverter is the input current 1ccu, ccv, 1 of the above-mentioned phase cycloconverter.
It becomes the vector sum of ccw.

故に、進相コンデンサIcapなる一定の進み無効電流
を流すことにより、電源から供給される5人力電流1s
は、電流1cc(51capのベクトル和となる。
Therefore, by flowing a constant leading reactive current called the phase advancing capacitor Icap, the 5 human power current 1s supplied from the power supply is
is a vector sum of current 1cc (51cap).

ここで、サイタロコンバータ全体の入力電流Iccを有
効分1P0WERとREACTに分けると次式のように
表わすことができる。
Here, if the input current Icc of the entire cytalo converter is divided into effective components 1P0WER and REACT, it can be expressed as in the following equation.

01P0WER11CCU′COSaPU+ICC゜6
OSaN+Iccw′COSapw=K3{11Lu卜
COSapu+(IL卜COsαN+11Lw1・CO
SαPw}IREACTOlCCU′SlflαPu+
Icc゛SlnαNV+1CCW′SlnaPW=k・
{11Lu1・Sinapu+I[LvI−SinaN
v+11Lw1−Sinapw}第6図aでは、進相コ
ンデンサの進み電流Capのほうが、サイクロコンバー
タの遅れ電流1Qより大きくなつているため、入力電流
1sは電源電圧Vsに対して位相角δだけ進んでしまう
01P0WER11CCU'COSaPU+ICC゜6
OSaN+Iccw′COSapw=K3{11Lu卜COSapu+(IL卜COsαN+11Lw1・CO
SαPw}IREACTOLCCU'SlflαPu+
Icc゛SlnαNV+1CCW′SlnaPW=k・
{11Lu1・Sinapu+I[LvI−SinaN
v + 11Lw1 - Sinapw} In Figure 6a, the leading current Cap of the phase advancing capacitor is larger than the lagging current 1Q of the cycloconverter, so the input current 1s leads the power supply voltage Vs by the phase angle δ. .

第6図bはIcap=CC−QとなるようにV相サイク
ロコンバータCC−Vだけ循環電流10vを流したとき
のベクトル図を示す。
FIG. 6b shows a vector diagram when a circulating current of 10 V is applied to the V-phase cycloconverter by CC-V so that Icap=CC-Q.

CC−Vに循環電流10を流すことにより相サイクロコ
ンバータの入力電流はI′Ccv(7)ようになるOこ
れ−を有効分1′CCV(POWER)と1′CCV(
REACT)に分けて表わすと次のようになる。
By flowing a circulating current of 10 to CC-V, the input current of the phase cycloconverter becomes I'Ccv (7).
REACT) is expressed as follows.

1′Cc(POWER)0kIILV1゜C0SaN『
CCV(R,EACT)::k(11LV1+2゜0v
)゜sinapvすなわち、有効分には変化はなく無効
分が2k10vsinapだけ増加している。
1'Cc(POWER)0kIILV1゜C0SaN'
CCV(R,EACT)::k(11LV1+2゜0v
)゜sinapv That is, the effective portion remains unchanged and the invalid portion increases by 2k10vsinap.

この結果、サイクロコンバータ全体の入力電流Iccの
無効分15REACTは次式のようになる。
As a result, the reactive component 15REACT of the input current Icc of the entire cycloconverter is expressed by the following equation.

IhEACTOk{11LU1゜sinαPu+IIL
vlsinapv+11LwI−Sinapw−F2l
O・Sinapv}この値玲EACTが進相コンデンサ
の進み電流Icapと等しくなるように循環電流10v
を制御することにより、電源からの入力電流1sは電圧
sと同相(力率=1)に保つことができる。第4図のa
点からb点まではCC−Vの循環電流10は、負荷電流
1LU,ILV,ILWの大きさ及び制御位相角αPu
,αP,αPwの変化に応じて次の値に制御される。1
1cap・ 0u0?{?−11Lu1゜S1naPU2・Slna
pvk 一11L;゜sinapv−11Lw1゜S1naPW
}同様に、b点からc点まではU相サイクロコンバータ
CC−Uの循環電流10uを制御しc点からd点までは
W相サイクロコンバータCC−Wの循環電流10wが制
御され、電源力率は常に1に保持することができる。
IhEACTOk{11LU1゜sin αPu+IIL
vlsinapv+11LwI-Sinapw-F2l
O・Sinapv}The circulating current is set to 10v so that this value EACT is equal to the leading current Icap of the phase advancing capacitor.
By controlling , the input current 1 s from the power source can be kept in phase with the voltage s (power factor = 1). Figure 4a
From point b to point b, the circulating current 10 of CC-V is determined by the magnitudes of load current 1LU, ILV, ILW and control phase angle αPu.
, αP, and αPw are controlled to the following values. 1
1cap・0u0? {? -11Lu1゜S1naPU2・Slna
pvk-11L;゜sinapv-11Lw1゜S1naPW
}Similarly, from point b to point c, the circulating current 10u of the U-phase cycloconverter CC-U is controlled, and from point c to point d, the circulating current 10w of the W-phase cycloconverter CC-W is controlled, and the power factor of the power source is can always be held at 1.

以上のように、本発明に係る無効電力補償形サイクロコ
ンバータ装置は、従来の特別の無効電力補償装置を用い
ることなく、電源側から見た基本波力率を常に1になる
ように制御できる。
As described above, the reactive power compensation type cycloconverter device according to the present invention can control the fundamental wave power factor as viewed from the power source side to always be 1 without using a conventional special reactive power compensation device.

また選択回路により多相出力のサイクロコンバータの中
で、制御位相角αが最も90Iに近いサイクロコンバー
タを選択して循環電流を流しているため無駄な循環電流
を流すことがなくなり効率の良い無効電力補償を行なう
ことができる。なお、実施例では三相出力のサイクロコ
ンバータについて説明したが、二相以上の多相出力サイ
クロコンバータに適用できることはいうまでもない。
In addition, the selection circuit selects the cycloconverter with the control phase angle α closest to 90I among the cycloconverters with multi-phase output to flow the circulating current, which eliminates the flow of wasteful circulating current and improves the efficiency of reactive power. Compensation can be made. In the embodiment, a three-phase output cycloconverter has been described, but it goes without saying that the present invention can be applied to a two-phase or more polyphase output cycloconverter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の代表的な無効電力補償装置の構成図、第
2図は第1図の動作を説明するためのベクトル図、第3
図は本発明の無効電力補償形サイクロコンバータ装置の
一実施例の構成図、第4図は第3図の動作を説明するた
めの各部波形図、第5図は第3図の選択回路の動作モー
ド図、第6図は第4図のa点における電源側の電圧、電
流のベクトル図である。 CC−U−CC−W・・・・・・循環電流式サイクロコ
ンバータ、SS−P・・・・・・正群コンバータ、SS
−N・・・・・・負群コンバータ、LO,,LO2・・
・・・・直流リアクトル、LOADu−LOAI)w・
・・・・・負荷、BUS・・・・・・3相電線路、C・
・・・・・進相コンデンサ、CTs,CTNu,CTp
u・・・・・・変流器、PT・・・・・・変成器、VA
R・・・・・・無効電力演算回路、C1〜C3・・・・
・・比較器、A1〜A4・・・・・・加算器、PH−P
,PH−N・・・・・・位相制御回路、ABS・・・・
・・絶体値回路、IN・・・・・・反転回路、KO−K
2・・・・・・増幅器、SLC・・・・・・選択回路。
Fig. 1 is a block diagram of a typical conventional reactive power compensator, Fig. 2 is a vector diagram for explaining the operation of Fig. 1, and Fig. 3 is a block diagram of a typical conventional reactive power compensator.
The figure is a block diagram of one embodiment of the reactive power compensation type cycloconverter device of the present invention, FIG. 4 is a waveform diagram of each part for explaining the operation of FIG. 3, and FIG. 5 is the operation of the selection circuit of FIG. 3. The mode diagram, FIG. 6, is a vector diagram of voltage and current on the power supply side at point a in FIG. 4. CC-U-CC-W... Circulating current type cycloconverter, SS-P... Positive group converter, SS
-N...Negative group converter, LO,,LO2...
...DC reactor, LOADu-LOAI) w.
...Load, BUS...3-phase power line, C.
... Phase advance capacitor, CTs, CTNu, CTp
u...Current transformer, PT...Transformer, VA
R...Reactive power calculation circuit, C1 to C3...
... Comparator, A1-A4 ... Adder, PH-P
, PH-N... Phase control circuit, ABS...
...Absolute value circuit, IN...Inversion circuit, KO-K
2...Amplifier, SLC...Selection circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 多相負荷に対して各相毎に可変周波数の交流電流を
供給する循環電流式のサイクロコンバータを有し、その
共通電源端子に進相コンデンサを接続し、当該各相のサ
イクロコンバータの遅れ無効電力の和と当該進相コンデ
ンサの進み無効電力とが互いに打消し合うように当該各
相のサイクロコンバータの循環電流を制御する無効電力
補償形サイクロコンバータにおいて、上記各相のサイク
ロコンバータの運転中の制御位相角αが90°に最も近
い相のサイクロコンバータを選択してその循環電流を制
御するようにしたことを特徴とする無効電力補償形サイ
クロコンバータの制御方法。
1 It has a circulating current type cycloconverter that supplies variable frequency alternating current for each phase to a multiphase load, and a phase advance capacitor is connected to its common power supply terminal to nullify the delay of the cycloconverter of each phase. In a reactive power compensation type cycloconverter that controls the circulating current of the cycloconverter of each phase so that the sum of power and the leading reactive power of the phase-advanced capacitor cancel each other, the cycloconverter of each phase is operated. A method for controlling a reactive power compensation type cycloconverter, characterized in that a cycloconverter whose phase has a control phase angle α closest to 90° is selected and its circulating current is controlled.
JP10553779A 1979-08-21 1979-08-21 Control method for reactive power compensation type cycloconverter Expired JPS5914987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10553779A JPS5914987B2 (en) 1979-08-21 1979-08-21 Control method for reactive power compensation type cycloconverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10553779A JPS5914987B2 (en) 1979-08-21 1979-08-21 Control method for reactive power compensation type cycloconverter

Publications (2)

Publication Number Publication Date
JPS5631371A JPS5631371A (en) 1981-03-30
JPS5914987B2 true JPS5914987B2 (en) 1984-04-06

Family

ID=14410326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10553779A Expired JPS5914987B2 (en) 1979-08-21 1979-08-21 Control method for reactive power compensation type cycloconverter

Country Status (1)

Country Link
JP (1) JPS5914987B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613986U (en) * 1984-06-13 1986-01-11 三木 寛子 Constant pressure feeder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4418380A (en) * 1981-09-24 1983-11-29 Tokyo Shibaura Denki Kabushiki Kaisha Method and apparatus for controlling the circulating current of a cycloconverter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613986U (en) * 1984-06-13 1986-01-11 三木 寛子 Constant pressure feeder

Also Published As

Publication number Publication date
JPS5631371A (en) 1981-03-30

Similar Documents

Publication Publication Date Title
US6594164B2 (en) PWM controlled power conversion device
JP3406512B2 (en) Control method and control device for inverter device
JP2733724B2 (en) Current control device for multi-winding AC motor
JP3478700B2 (en) Three-phase power factor improving converter
US4418380A (en) Method and apparatus for controlling the circulating current of a cycloconverter
JP3296065B2 (en) Control circuit of PWM converter
JP5115730B2 (en) PWM converter device
US4074348A (en) Circuit arrangement with a number of cycloconverters, particularly direct cycloconverters in y-connection
JPS5914987B2 (en) Control method for reactive power compensation type cycloconverter
JPH0515070A (en) Parallel operation control device
JP2005110335A (en) Power converter
JPS6399770A (en) Method for controlling circulating current type cycloconverter
JP2774246B2 (en) Control device for current source converter
JP2545510B2 (en) Cycloconverter control method
KR19980054431A (en) Converter current / voltage controller
JPS5961475A (en) Power converter
JPH0746847A (en) Three-phase rectifier
JPH06261584A (en) Control device of ac motor
JP4725694B2 (en) PWM power converter control device
JPS6053552B2 (en) Control method for reactive power compensation type cycloconverter
JPS5914988B2 (en) Control method for reactive power compensation type cycloconverter
JPH07288982A (en) Three-phase power converter
JP2782616B2 (en) Converter device control method
JP2003189628A (en) Control method and apparatus for parallel connection power converter
JP2523504B2 (en) Power converter controller