JPS6055972B2 - Leading phase leakage transformer type discharge lamp ballast - Google Patents

Leading phase leakage transformer type discharge lamp ballast

Info

Publication number
JPS6055972B2
JPS6055972B2 JP53100796A JP10079678A JPS6055972B2 JP S6055972 B2 JPS6055972 B2 JP S6055972B2 JP 53100796 A JP53100796 A JP 53100796A JP 10079678 A JP10079678 A JP 10079678A JP S6055972 B2 JPS6055972 B2 JP S6055972B2
Authority
JP
Japan
Prior art keywords
secondary winding
primary winding
winding
magnetic
lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53100796A
Other languages
Japanese (ja)
Other versions
JPS5527648A (en
Inventor
隆 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba TEC Corp
Original Assignee
Tokyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Co Ltd filed Critical Tokyo Electric Co Ltd
Priority to JP53100796A priority Critical patent/JPS6055972B2/en
Publication of JPS5527648A publication Critical patent/JPS5527648A/en
Publication of JPS6055972B2 publication Critical patent/JPS6055972B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Description

【発明の詳細な説明】 本発明は進相洩れ変圧器型放電灯用安定器に係り、磁
気回路を構成する巻線の配列に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a phase advance leakage transformer type discharge lamp ballast, and more particularly to an arrangement of windings constituting a magnetic circuit.

一般に放電灯を点灯維持させるために必要な電流制限
用インピーダンスは、通常遅相の場合磁気洩れ変圧器を
使用し、電源側の一次巻線と負荷側の二次巻線の磁気的
結合を制御することによつて生じるインダクタンスによ
つて得られる。また進相の場合このインダクタンスと負
荷側に挿入したコンデンサの容量の合計インピーダンス
として得られる。進相の場合の磁気回路は一次巻線側に
おいて励磁磁束と、負荷磁石の方向が加極性となるため
磁気飽和するので、この磁気飽和を抑制し、さらに進相
特有の矩形波に近いランプ電流波形を得るために、第3
図に示すように鉄心1に磁気分路2を介在して一次巻線
Pと二次巻線Sとを巻装し、この鉄心1の二次磁路中に
ブリッジ3を残してスリット4を形成し、一次巻線Pと
二次巻線s との磁路を部分的に分離している。 また
進相のランプ電流ilの波形、ラップ電圧■の波形、無
負荷二次電圧V2Oの波形をみると、第1図に示すよう
に、無負荷二次電圧波形は正弦波の頂部付近(期間■)
と、その正弦波がくびれた基底部(期間I)とからなり
、期間Iは前記スリット4を形成した残りの結合部分の
ブリッジ3が飽和している期間で、前記期間■はブリッ
ジ3が未飽和の期間である。
In general, the current-limiting impedance required to keep a discharge lamp lit is usually controlled by a magnetic leakage transformer in the case of a lagging phase, and the magnetic coupling between the primary winding on the power supply side and the secondary winding on the load side. It is obtained by the inductance generated by In the case of phase advance, it is obtained as the total impedance of this inductance and the capacitance of the capacitor inserted on the load side. In the case of phase advance, the magnetic circuit is magnetically saturated due to the excitation magnetic flux on the primary winding side and the direction of the load magnet being polarized, so this magnetic saturation is suppressed, and the lamp current close to the rectangular wave characteristic of phase advance is suppressed. To obtain the waveform, the third
As shown in the figure, a primary winding P and a secondary winding S are wound around an iron core 1 through a magnetic shunt 2, and a slit 4 is formed in the secondary magnetic path of the iron core 1, leaving a bridge 3. The magnetic path between the primary winding P and the secondary winding s is partially separated. In addition, looking at the waveforms of the phase-advanced lamp current il, the wrap voltage ■, and the no-load secondary voltage V2O, as shown in Figure 1, the no-load secondary voltage waveform is near the top of the sine wave (period ■)
and a base part (period I) in which the sine wave is constricted, and period I is a period in which the bridge 3 of the remaining bonded part that formed the slit 4 is saturated, and the period (■) is a period in which the bridge 3 is not yet present. This is a period of saturation.

そしてエネルギーの移行過゜程をみると、期間■は電源
のエネルギーが磁束としてブリッジ3を通り、二次巻線
Sのインダクタンスとコンデンサの容量の和のインピー
ダンスとラップ負荷の直列回路に電流が流れる。このと
きコンデンサは電荷を充電する。従つて二次巻線Sのブ
リッジ3が大きい程、また二次巻線Sの巻数が大きい程
インダクタンスは増大し、キャパシタンスとの和の合成
インピーダンスは減少し、期間■の進相のランプ電流i
l波形の頂部は高くなる。また次の期間Iではブリッジ
3が飽和しており、電源からの磁束エネルギーの流入は
遮断され前の期間■でコンデンサに充電された電荷が放
電され、このとき進相のランプ電流il波形の向きは前
の期間■に対して反転している。このとき励磁磁束と負
荷磁束の方向は同方向となるが、励磁磁束の進入が遮断
されているため、二次磁路の磁気飽和は抑制され、透磁
率の減少や鉄損の増大が抑えられる。このようにして得
られるランプ電流il波形は矩形波に近似し、ランプ電
圧V1波形は放電灯特有の矩形波であるためランプ電流
il波形とランプ電圧■の時間程のランプ電力はランプ
電流11波形の実効値の割に大きな値が得られる。そこ
でランプ電流11波形を得るにはブリッジ3を形成する
スリット4の形状、二次巻線Sの巻数が重要な要素とな
る。
Looking at the energy transfer process, during period ■, the energy of the power supply passes through bridge 3 as magnetic flux, and current flows through the series circuit of the wrap load and the impedance of the sum of the inductance of the secondary winding S and the capacitance of the capacitor. . At this time, the capacitor is charged with electric charge. Therefore, the larger the bridge 3 of the secondary winding S and the larger the number of turns of the secondary winding S, the more the inductance increases, the composite impedance of the sum with the capacitance decreases, and the leading phase lamp current i in the period
The top of the l waveform becomes higher. In addition, in the next period I, the bridge 3 is saturated, the inflow of magnetic flux energy from the power supply is cut off, and the charge charged in the capacitor in the previous period ■ is discharged, and at this time, the direction of the phase-advanced lamp current il waveform is is reversed with respect to the previous period ■. At this time, the excitation magnetic flux and the load magnetic flux are in the same direction, but since the excitation magnetic flux is blocked from entering, magnetic saturation of the secondary magnetic path is suppressed, and a decrease in magnetic permeability and an increase in iron loss are suppressed. . The lamp current il waveform obtained in this way approximates a rectangular wave, and the lamp voltage V1 waveform is a rectangular wave unique to discharge lamps, so the lamp power during the time period between the lamp current il waveform and the lamp voltage ■ is the lamp current 11 waveform. A large value can be obtained compared to the effective value of . Therefore, in order to obtain the lamp current 11 waveform, the shape of the slit 4 forming the bridge 3 and the number of turns of the secondary winding S are important factors.

前記期間■のランプ電流11の頂部を高くするには二次
巻線Sのアンペア・ターンを増大させればよいが、過度
に高くなると、期間■のランプ電流11の頂部が高過ぎ
ることになり、寧ろランプ電力効率が低下し、また漏洩
変圧器の電力容量の増大ともなり不経済である。そこで
前記第3図に示す通常の進相洩れ変圧器型放電灯用安定
器の回路構成は、第2図A,bに示す構成が採られる。
すなわち第2図aの構成は電源5に接続した一次巻線P
に二次巻線Sを直列に接続し、この直列の一次巻線Pと
二次巻線Sの両端にコンデンサ6を介して放電ランプ7
を接続した構成で、この構成は電源電圧Vsに対してラ
ンプ電圧V1が比較的高い場合であり(例えば螢光灯1
10W2個、電源電圧200V1ランプ電圧160■2
個計320Vの場合)また第2図bの構成は一次巻線P
の中間タップ8と一次巻線Pの一端とに二次巻線S1コ
ンデンサ6、放電ランプ7を直列に接続した構成で、こ
の構成は、電源電圧■Sに対してランプ電圧Vlが低く
、そのため二次アンペア・ターンの増大をはかつた場合
である(例えば螢光灯100W1個、電源電圧100V
1ランプ電圧160■1個の場合)。ところが第2図a
で示す構成では二次巻線Sの巻数と、二次巻線Sの体積
が大き過ぎる場合例えば螢光灯110W2個、電源電圧
100V1ランプ電圧160V2個計320■の場合が
あ.り、このとき、第2図aの構成をそのまま適用する
と、二次アンペア・ターンが大き過ぎるため、過大な電
力容量となり、消費電力の増大、安定器の大型化を招き
、不経済となり、また二次巻線Sが大きいため一次巻線
Pと二次巻線Sの両外端側.はかなり大きな距離が生じ
、一次巻線Pと二次巻線Sとの結合率が低下し、放電ラ
ンプ7の始動が困難となり、灯点時のちらつきの原因と
なり、また、高周波磁束が鉄心1中に流れ易くなり鉄損
が増大する欠点がある。そこで、第2図A,bに示す回
路構成の二次巻線の一部を一次巻線と完全に結合させて
二次アンペア・ターンと二次巻線が大きくならないよう
にすることが考えられる。
The peak of the lamp current 11 during the period ■ can be increased by increasing the ampere turns of the secondary winding S, but if it becomes too high, the peak of the lamp current 11 during the period ■ will be too high. On the contrary, the lamp power efficiency decreases and the power capacity of the leaky transformer increases, which is uneconomical. Therefore, the circuit configuration of the normal phase advance leakage transformer type discharge lamp ballast shown in FIG. 3 is as shown in FIGS. 2A and 2B.
That is, the configuration shown in FIG. 2a has a primary winding P connected to the power source 5.
A secondary winding S is connected in series to the secondary winding S, and a discharge lamp 7 is connected via a capacitor 6 to both ends of the primary winding P and the secondary winding S in series.
This configuration is used when the lamp voltage V1 is relatively high with respect to the power supply voltage Vs (for example, when the fluorescent lamp 1
10W 2 pieces, power supply voltage 200V 1 lamp voltage 160■2
(in the case of a total of 320 V), the configuration shown in Figure 2b is that the primary winding P
The secondary winding S1 capacitor 6 and the discharge lamp 7 are connected in series to the middle tap 8 of This is the case when increasing the secondary ampere-turns (for example, one 100W fluorescent lamp, 100V power supply voltage).
1 lamp voltage 160cm (in the case of 1 lamp). However, Figure 2a
In the configuration shown in , if the number of turns of the secondary winding S and the volume of the secondary winding S are too large, for example, there may be a case where there are two fluorescent lamps of 110 W, power supply voltage of 100 V, lamp voltage of 2, and a total of 320 cm. In this case, if the configuration shown in Figure 2a is applied as is, the secondary ampere turns will be too large, resulting in excessive power capacity, resulting in increased power consumption and a larger ballast, which will be uneconomical. Since the secondary winding S is large, both outer ends of the primary winding P and the secondary winding S. A considerably large distance occurs, and the coupling ratio between the primary winding P and the secondary winding S decreases, making it difficult to start the discharge lamp 7 and causing flickering when the lamp is turned on. It has the disadvantage that it tends to flow inside, increasing iron loss. Therefore, it may be possible to completely combine part of the secondary winding with the primary winding in the circuit configuration shown in Figure 2 A and b to prevent the secondary ampere turns and the secondary winding from becoming large. .

この構成は第4図,第5図に示すように電源5に接続さ
れた電源電圧印加部分の一次巻線P1と、一部分Sと残
りの他部分P2とにて形成された二次巻線S″とよりな
り、この一次巻線P1に磁気的に結合され一次巻線の一
部とみられる二次巻線S″の他部分P2の端部を直列に
接続する。そして一次巻線P1およびこの一次巻線P1
と磁気的に結合された二次巻線S″の他部分P2にて形
成される一次巻線P″と二次巻線S″の一部分Sとの間
に磁気分路2を形成し、鉄心1には二次巻線・S″の一
部分Sに対応して磁束制御用スリット4を形成する。そ
してこの一次巻線P1とこの一次巻線P1に磁気的に結
合された他部分P2とを同一のスプールにいずれか一方
を内側に他方を外側に分けて巻回した構造が採られる。
この構成では一次巻線P1とこの一次巻線P1と磁気的
に結合された二次巻線S″の一部P2との和で形成され
る一次巻線P″の体積は大きくなり、一次巻線P1と二
次巻線S″の一部分Sとの両端間の距離はかなり大きく
なり、一次巻線P1と二次巻線S″の一部分Sとの結合
率は低下される。この結果放電ランプ7の始動が困難に
なり、放電ランプ7の点灯にちらつきが生じる原因とも
なり、また高周波磁束が鉄心1中に流れ易くなり、鉄損
が増大する。本発明は上記欠点に鑑みなされたもので、
一次巻線と二次巻線の一部分を磁気分路を介して磁気的
に結合し、この二次巻線の残りの他部分を一次巻線に対
して前記二次巻線の一部分と反対側に配置し、電源電圧
に対してランプ電圧が比較的高い場合電力容量が少く、
しかも消費電力が少く、小型軽量にでき、経済的で、点
灯特性の良好な進相洩れ変圧器型放電灯用安定器を提供
するものてある。
As shown in FIGS. 4 and 5, this configuration includes a primary winding P1 connected to a power source 5 to which a power supply voltage is applied, and a secondary winding S formed by a portion S and a remaining portion P2. '', and the ends of the other portion P2 of the secondary winding S'', which is magnetically coupled to the primary winding P1 and considered to be a part of the primary winding, are connected in series. and the primary winding P1 and this primary winding P1
A magnetic shunt 2 is formed between the primary winding P'' and a portion S of the secondary winding S'' formed by the other portion P2 of the secondary winding S'' magnetically coupled to the iron core. 1, a magnetic flux control slit 4 is formed corresponding to a portion S of the secondary winding S''. A structure is adopted in which the primary winding P1 and the other part P2 magnetically coupled to the primary winding P1 are wound around the same spool with one of them being wound on the inside and the other on the outside.
In this configuration, the volume of the primary winding P'' formed by the sum of the primary winding P1 and a portion P2 of the secondary winding S'' magnetically coupled to the primary winding P1 becomes large, and the volume of the primary winding P'' becomes large. The distance between the ends of the wire P1 and the portion S of the secondary winding S'' becomes considerably large, and the coupling ratio between the primary winding P1 and the portion S of the secondary winding S'' is reduced. As a result, it becomes difficult to start the discharge lamp 7, causing flickering during lighting of the discharge lamp 7, and high frequency magnetic flux tends to flow into the iron core 1, increasing iron loss. The present invention has been made in view of the above drawbacks.
The primary winding and a portion of the secondary winding are magnetically coupled via a magnetic shunt, with the remaining portion of the secondary winding being opposite the portion of the secondary winding with respect to the primary winding. If the lamp voltage is relatively high compared to the power supply voltage, the power capacity will be small.
Moreover, the present invention provides a ballast for a discharge lamp of the phase lead/leakage transformer type, which consumes less power, can be made small and lightweight, is economical, and has good lighting characteristics.

次に本発明の一実施例の構成を第4図,第6図について
説明する。
Next, the configuration of an embodiment of the present invention will be explained with reference to FIGS. 4 and 6.

鉄心1に電源電圧が印加される一次巻線P1と、二次巻
線を分割してそれぞれ別個に巻回した部分S,P2とを
巻装する。
The iron core 1 is wound with a primary winding P1 to which a power supply voltage is applied, and parts S and P2 obtained by dividing the secondary winding and winding each separately.

そして一次巻線P1と二次巻線の一部分Sとの間に磁気
分路2を介して配置し、鉄心1にはこの二次巻線の一部
分Sの磁路となる部分に磁束制御用スリット4を形成す
る。
A magnetic shunt 2 is disposed between the primary winding P1 and a portion S of the secondary winding, and a slit for magnetic flux control is provided in the iron core 1 in a portion that becomes the magnetic path of the portion S of the secondary winding. form 4.

また二次巻線の残りの他部分P2は一次巻線P1を介し
て二次巻線の一部分Sと反対側に配置する。すなわち鉄
心1に巻装されるコイルの順序は二次巻線の一部分S、
一次巻線P1および二次巻線の残りの他部分P2となる
。この構成ては一次巻線P1と二次巻線の残りの他部分
P2の間には磁気分路がなく、磁束制御用スリットも形
成せす、進相磁気洩れ変圧器の作用は一次巻線P1と二
次巻線の一部分Sとの間にて行われ、一次巻線P1と二
次巻線の残りの他部分P2との間では磁気的作用は殆ん
ど行われず、完全磁気結合の理想的変圧作用となる。そ
して各コイルの電圧を次のようにして設定する。一次巻
線P1は電源印加電圧またはそれに近い値に設定し、一
次巻線P1と二次巻線S+P2との電圧の和は点灯維持
電圧の最小値に設定する。
Further, the remaining part P2 of the secondary winding is arranged on the opposite side of the part S of the secondary winding via the primary winding P1. In other words, the order of the coils wound around the iron core 1 is a part S of the secondary winding,
This constitutes the primary winding P1 and the remaining other portion P2 of the secondary winding. In this configuration, there is no magnetic shunt between the primary winding P1 and the remaining part P2 of the secondary winding, and a slit for magnetic flux control is also formed. There is almost no magnetic action between the primary winding P1 and the remaining part P2 of the secondary winding, resulting in perfect magnetic coupling. This results in an ideal voltage transformation effect. Then, set the voltage of each coil as follows. The primary winding P1 is set to the power supply voltage or a value close to it, and the sum of the voltages of the primary winding P1 and the secondary winding S+P2 is set to the minimum value of the lighting sustaining voltage.

このように設定することにより、放電ランプを始動維持
させるための最小の二次電圧およびランプ電流を制限す
るための最小のインピーダンスを有する安定器が得られ
る。
This configuration results in a ballast with the lowest secondary voltage for starting and maintaining the discharge lamp and the lowest impedance for limiting the lamp current.

また電源電圧を印加されるコイルである一次巻線P1を
二次巻線の一部分Sおよび残りの他部分P2にそれぞれ
隣接させることにより、一次巻線P1と二次巻線の残り
の他部分P2とは殆んど完全に結合されており、また一
次巻線P1と二次巻線の一部分Sとは最小限の磁気分路
2および磁束制御用スリット4による結合率の低下を抑
えることができるので電源電圧に対して結合率が良く電
圧降下の少ない二次電圧が得られ、ランプが放電を開始
し安定した持続放電に移行するためランプの始動が良好
となる。
Furthermore, by placing the primary winding P1, which is a coil to which a power supply voltage is applied, adjacent to a part S and the remaining part P2 of the secondary winding, the primary winding P1 and the remaining part P2 of the secondary winding are arranged adjacent to each other. The primary winding P1 and the part S of the secondary winding are almost completely coupled together, and the decrease in coupling rate due to the minimum magnetic shunt 2 and magnetic flux control slit 4 can be suppressed. Therefore, a secondary voltage with a good coupling ratio with respect to the power supply voltage and a small voltage drop is obtained, and the lamp starts discharging and transitions to a stable sustained discharge, resulting in good starting of the lamp.

またランプ電流11は第1図に示すように、殆んど第3
高調波に近似され、たかだか第5高調波まで考慮すれば
十分であることが明らかであり、これらの高調波は前述
のように磁束制御用スリット4に隣接するブリッジ3の
磁気飽和と、磁気未飽和によつて得られる。
Further, as shown in FIG. 1, the lamp current 11 is almost the third
It is clear that it is sufficient to consider up to the 5th harmonic, which is approximated to harmonics, and these harmonics are caused by the magnetic saturation of the bridge 3 adjacent to the magnetic flux control slit 4 and the magnetic imbalance, as described above. Obtained by saturation.

そしてこれよりも高い高調波はランプ電流として殆んど
存在しないので、この周波数に対応する高調波はランプ
電流としては殆んど存在しないので、この周波数に対応
する高周波磁束が安定器内に発生してもランプ電流制御
用インピーダンスとしては寄与せず、安定器内の鉄損と
して消費される。例えば長大な二次巻線を使用したり、
一次巻線と二次巻線との間の間隔を離すと、磁気分布が
偏在したり、高周波洩れ磁束が発生したソー次巻線と二
次巻線との結合率が低下したりインダクタンスが低下し
てランプ始動の悪化、ランプ電力の効率低下、安定器損
失の増大となる。そこで一茨巻線P,とランプ電流制限
に必要最小限の二次巻線の一部分Sとを隣接させること
が有効で、電力容量が少く、消費電力が少く、安定器が
小型軽量で、経済的で、しかも点灯特性の良好な進相洩
れ変圧器放電灯用安定器が得られる。
And since there are almost no harmonics higher than this in the lamp current, there are almost no harmonics corresponding to this frequency in the lamp current, so high-frequency magnetic flux corresponding to this frequency is generated in the ballast. However, it does not contribute as impedance for lamp current control, but is consumed as iron loss in the ballast. For example, using a long secondary winding,
If the distance between the primary winding and the secondary winding is increased, the magnetic distribution will be unevenly distributed, high frequency leakage magnetic flux will occur, the coupling ratio between the saw primary winding and the secondary winding will decrease, and the inductance will decrease. This results in poor lamp starting, reduced lamp power efficiency, and increased ballast losses. Therefore, it is effective to place the single thorn winding P, and a portion S of the secondary winding, which is the minimum required for limiting the lamp current, adjacent to each other. A ballast for a discharge lamp using a phase-advancing leakage transformer that is practical and has good lighting characteristics can be obtained.

次に螢光ランプ110W2個、電源電圧100V1ラン
プ電圧160V×2=320として各ランプ電力はコン
デンサによつて調整して同一となるようにして一次巻線
と二次巻線の配列を変えて対比すると下表のとおりとな
る。例1,2は本発明の二次巻線の一部S1一次巻線P
1二次巻線の残りの他部分P2の順序に配列した場合で
あり、例3は二次巻線の一部分S二次巻線の他部分P1
一次巻線P1の順序に配列した場合であり、それぞれ一
次巻線P1と二次巻線の一部分Sとの間には磁気分路2
を形成するとともに二次巻線の一部分Sの磁路内にはス
リット4が形成されている。
Next, we set two fluorescent lamps of 110 W, power supply voltage of 100 V, lamp voltage of 160 V x 2 = 320, the power of each lamp was adjusted by a capacitor so that they were the same, and we changed the arrangement of the primary and secondary windings for comparison. Then, the result will be as shown in the table below. Examples 1 and 2 are part of the secondary winding of the present invention S1 primary winding P
Example 3 is a case in which the remaining parts P2 of the secondary winding 1 are arranged in the order of the remaining parts P2 of the secondary winding S.
This is a case where the primary windings P1 are arranged in the order, and a magnetic shunt 2 is provided between the primary winding P1 and a portion S of the secondary winding.
A slit 4 is formed in the magnetic path of a portion S of the secondary winding.

上記表にて明らかなように例1、例3は一次巻線、二次
巻線の巻数を同一にした場合であり、無負荷二次電圧を
みると例3より例1の方が高いので例1の場合が結合率
が良いことがわかる。
As is clear from the table above, Examples 1 and 3 are cases where the number of turns of the primary winding and secondary winding are the same, and the no-load secondary voltage is higher in Example 1 than in Example 3. It can be seen that the case of Example 1 has a good binding rate.

例2は二次巻線の残りの他部部P2の巻数を調整して無
負荷二次電圧が例3と同等となるようにしたもので、例
2、例3は同等の無負荷二次電圧でありながら始動開始
電圧が低く、始動が良好なことが解かる。またランプ電
圧は例1,例2,例3ともほぼ同一であるが、ランプ電
流が例3より例1,例2の場合が少いので例1,例2が
ランプ電力効率が高いことがわかる。
In example 2, the number of turns of the remaining part P2 of the secondary winding is adjusted so that the no-load secondary voltage is the same as in example 3. It can be seen that the starting voltage is low despite the low voltage, and the starting is good. In addition, the lamp voltage is almost the same in Examples 1, 2, and 3, but the lamp current is lower in Examples 1 and 2 than in Example 3, which indicates that Examples 1 and 2 have higher lamp power efficiency. .

二次短絡電流が例3よりA,Bが少いので例1,例2の
場合が電力効率が高いことがわかる。
Since the secondary short circuit current is smaller in A and B than in Example 3, it can be seen that Examples 1 and 2 have higher power efficiency.

さらに二次短絡電流は例3より例1,例2が少いので例
1,例2の場合が磁路の磁束偏在による高周波磁束の発
生による極部飽和によつて透磁率が低下することが少な
いことがわかる。また二次短絡電流が例3より例1,例
2の場合が少いので、例1,例2が磁路の磁束の偏在に
よる高周波磁束の発生による極部飽和によつて透磁率が
低下することが少ないことがわかる。さらに電力損失が
例3に比べ例1,例2が少ないので、例1,例2の場合
が電力容量が少くしかも消費電力が少く、従つて小型化
が可能であり、経済的である。
Furthermore, since the secondary short circuit current is smaller in Examples 1 and 2 than in Example 3, it is possible that the permeability in Examples 1 and 2 decreases due to pole saturation due to generation of high-frequency magnetic flux due to uneven distribution of magnetic flux in the magnetic path. It turns out that there are few. In addition, since the secondary short circuit current is less in Examples 1 and 2 than in Example 3, in Examples 1 and 2 the magnetic permeability decreases due to pole saturation due to generation of high frequency magnetic flux due to uneven distribution of magnetic flux in the magnetic path. You can see that there are few things happening. Furthermore, since power loss is smaller in Examples 1 and 2 than in Example 3, Examples 1 and 2 have less power capacity and less power consumption, and therefore can be made smaller and more economical.

次に他の実施の構造を第7図について説明する。Next, the structure of another implementation will be described with reference to FIG.

前記実施例では一次巻線P1と二次巻線の他部分P2と
の間には磁気分路を介在させない構成について説明した
が、この構成では一次巻線P1と二次巻線の他部分P2
との間に磁気分路8を介在させ、他の構成は第6図に示
す構成と同一である。
In the above embodiment, a configuration in which a magnetic shunt is not interposed between the primary winding P1 and the other part P2 of the secondary winding has been described, but in this configuration, the primary winding P1 and the other part P2 of the secondary winding
A magnetic shunt 8 is interposed between the two, and the other configuration is the same as that shown in FIG.

この構成では二次巻線の他部分P2の磁路内に磁束制御
用スリットがないためランプ波形の全期間一次巻線P1
と磁気結合されており、この結合度合を磁気分路8で調
整することによつてランプ電流の主として基本波成分を
制限することができる。
In this configuration, since there is no magnetic flux control slit in the magnetic path of the other part P2 of the secondary winding, the primary winding P1 is
By adjusting the degree of coupling using the magnetic shunt 8, it is possible to limit mainly the fundamental wave component of the lamp current.

本発明によれば一次巻線と二次巻線の一部分を磁気分路
を介して磁気的に結合し、この二次巻線の一部分の磁路
中に磁束制御用スリットを形成し、さらに二次巻線の残
りの他部分を一次巻線に対して二次巻線と反対側になる
磁路上に配置したため、進相磁気洩れ変圧器の作用に一
次巻線と二次巻線の一部分の間で行われ、一次巻線と二
次巻線の他部分との磁気的作用は殆んど完全磁気結合さ
れた理想的変圧作用が行われるものである。すなわち電
源電圧印加コイルとなる一次巻線に二次巻線の一部分と
残りの他部分とを隣接させることができ、一次巻線と二
次巻線の他部分とはほとんど完全に結合しており、また
一次巻線と二次巻線の一部分は最小限の磁気分路および
制御用スリットによる結合率の低下を抑えることができ
る。また二次巻線の一部分の磁路中に形成したスリット
に隣接するブリッジの磁気飽和と磁気未飽和によつてラ
ンプ電流制限用インピーダンスとして寄与し、最適なラ
ンプ電流が得られる。さらに一次巻線とランプ電流制限
に必要最少限なる二次巻線を隣接させることができるの
で始動電圧が低く始動が良好に行われ、ランプ電力効率
が高く電力容量が少く、また消費電力が少く、安定器が
小型軽量で、経済的で、しかも点灯特性の良好な進相洩
れ変圧器型放電灯用安定器が得られる。また一次巻線と
二次巻線の他部分の間に磁気分路を介在させ、二次巻線
の他部分の磁路内には制御用スリットがないので、ラン
プ波形の全期間中一次巻線と結合し、この一次巻線と二
次巻線の他部分の結合度合を磁気分路で調整でき、ラン
プ電流の主として基本波成分を制限することができるの
で、一次巻線と二次巻線の一部分との間の磁束制御と相
まつて効率のよい安定器が得られる。
According to the present invention, a portion of the primary winding and the secondary winding are magnetically coupled via a magnetic shunt, a magnetic flux control slit is formed in the magnetic path of the portion of the secondary winding, and a slit for controlling the magnetic flux is formed in the magnetic path of the portion of the secondary winding. Because the other parts of the secondary winding are placed on the magnetic path on the opposite side of the primary winding from the secondary winding, the action of the phase advancing magnetic leakage transformer is The magnetic action between the primary winding and the other parts of the secondary winding is almost completely magnetically coupled, resulting in an ideal transformation action. In other words, a part of the secondary winding and the other part of the secondary winding can be placed adjacent to the primary winding that serves as the power supply voltage applying coil, and the primary winding and the other part of the secondary winding are almost completely coupled. In addition, a portion of the primary winding and the secondary winding can suppress a reduction in the coupling ratio due to the minimum magnetic shunt and control slit. Furthermore, the magnetic saturation and magnetic unsaturation of the bridge adjacent to the slit formed in the magnetic path of a portion of the secondary winding contributes to impedance for limiting the lamp current, and an optimum lamp current can be obtained. Furthermore, since the primary winding and the minimum secondary winding necessary for limiting lamp current can be placed adjacent to each other, the starting voltage is low and starting is performed well, the lamp power efficiency is high, the power capacity is low, and the power consumption is low. Accordingly, a ballast for a discharge lamp of the type leakage transformer, which is small and lightweight, economical, and has good lighting characteristics, can be obtained. In addition, a magnetic shunt is interposed between the primary winding and other parts of the secondary winding, and since there is no control slit in the magnetic path of the other part of the secondary winding, the primary winding is The degree of coupling between the primary winding and other parts of the secondary winding can be adjusted using a magnetic shunt, and the fundamental wave component of the lamp current can be limited, so the primary winding and the secondary winding can be Coupled with flux control between sections of wire, an efficient ballast is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は波形図、第2図A,bは従来の放電灯用安定器
の回路図、第3図は同上安定器の横断平面図、第4図は
本発明の放電灯用安定器の回路図、第5図は本発明の前
提となる放電灯用安定器の横断平面図、第6図は本発明
の一実施例を示す放電灯用安定器の横断平面図、第7図
は本発明の他の実施例を示す放電灯用安定器の横断平面
図てある。 P1・・・・・・一次巻線、S・・・・・・二次巻線の
一部分、P2・・・・・・二次巻線の他部分、2,8・
・・・・・磁気分路、4・・・・・・磁束制御用スリッ
ト。
Figure 1 is a waveform diagram, Figures 2A and b are circuit diagrams of a conventional discharge lamp ballast, Figure 3 is a cross-sectional plan view of the same ballast, and Figure 4 is a diagram of the discharge lamp ballast of the present invention. 5 is a cross-sectional plan view of a discharge lamp ballast which is a premise of the present invention, FIG. 6 is a cross-sectional plan view of a discharge lamp ballast showing an embodiment of the present invention, and FIG. 7 is a cross-sectional plan view of a discharge lamp ballast that is a premise of the present invention. FIG. 7 is a cross-sectional plan view of a ballast for a discharge lamp showing another embodiment of the invention. P1...Primary winding, S...Part of the secondary winding, P2...Other part of the secondary winding, 2,8.
...Magnetic shunt, 4...Slit for magnetic flux control.

Claims (1)

【特許請求の範囲】 1 一次巻線と二次巻線の一部を磁気分路を介して磁気
的に結合し、前記二次巻線一部の磁路中には磁束制御用
スリットを形成し、前記二次巻線の残りの他部分を一次
巻線に対して前記二次巻線の一部分と反対側となる磁路
上に配置したことを特徴とする進相洩れ変圧器型放電灯
用安定器。 2 一次巻線と磁気的に結合した二次巻線の残りの他部
分と一次巻線との間に磁気分路を形成したことを特徴と
する特許請求の範囲第1項記載の進相洩れ変圧器型放電
灯用安定器。
[Claims] 1. A part of the primary winding and the secondary winding are magnetically coupled via a magnetic shunt, and a slit for magnetic flux control is formed in the magnetic path of the part of the secondary winding. and the remaining part of the secondary winding is arranged on a magnetic path opposite to the part of the secondary winding with respect to the primary winding. stabilizer. 2. The phase lead leakage according to claim 1, characterized in that a magnetic shunt is formed between the primary winding and the remaining part of the secondary winding that is magnetically coupled with the primary winding. Ballast for transformer type discharge lamps.
JP53100796A 1978-08-18 1978-08-18 Leading phase leakage transformer type discharge lamp ballast Expired JPS6055972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53100796A JPS6055972B2 (en) 1978-08-18 1978-08-18 Leading phase leakage transformer type discharge lamp ballast

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53100796A JPS6055972B2 (en) 1978-08-18 1978-08-18 Leading phase leakage transformer type discharge lamp ballast

Publications (2)

Publication Number Publication Date
JPS5527648A JPS5527648A (en) 1980-02-27
JPS6055972B2 true JPS6055972B2 (en) 1985-12-07

Family

ID=14283371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53100796A Expired JPS6055972B2 (en) 1978-08-18 1978-08-18 Leading phase leakage transformer type discharge lamp ballast

Country Status (1)

Country Link
JP (1) JPS6055972B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940513A (en) * 1982-08-28 1984-03-06 Tdk Corp Leakage transformer
US5786722A (en) * 1996-11-12 1998-07-28 Xerox Corporation Integrated RF switching cell built in CMOS technology and utilizing a high voltage integrated circuit diode with a charge injecting node

Also Published As

Publication number Publication date
JPS5527648A (en) 1980-02-27

Similar Documents

Publication Publication Date Title
US4560908A (en) High-frequency oscillator-inverter ballast circuit for discharge lamps
US4453109A (en) Magnetic transformer switch and combination thereof with a discharge lamp
JPH0232509A (en) Leakage control type transformer of lamp stabilizer having unified stabilizing inductor
JP3769232B2 (en) How to turn on the discharge lamp
US4701671A (en) High-frequency oscillator-inverter ballast circuit for discharge lamps
JPS6120118B2 (en)
JPS6055972B2 (en) Leading phase leakage transformer type discharge lamp ballast
JPS587037B2 (en) Hoden's ladybug
JP2896824B2 (en) Lighting method and apparatus for fluorescent lamp
JPH037916Y2 (en)
US2863098A (en) Device for starting and operating glow discharge lamp
JP2710613B2 (en) Discharge lamp lighting device
JPH10243656A (en) Power supply
JP2706531B2 (en) Discharge lamp lighting device
JPS59108297A (en) Device for firing discharge lamp
JP2001230135A (en) Transformer, discharge lamp lighting device and lighting fixture
JPH0393193A (en) Lighting circuit for discharge tube
JPS5915039Y2 (en) discharge lamp lighting device
JPH01194297A (en) High frequency discharge lamp dimming device
JPH08149816A (en) Switching power supply circuit
JPH07142179A (en) Discharge lamp lighting device
JPH0334296A (en) Lighting device of compound winding advance phase type discharge lamp
CN103428977A (en) Low voltage energy saving lamp
JPH08182327A (en) Switching power source circuit
JPS593899A (en) Device for firing discharge lamp