JPS6055768B2 - Infrared temperature measuring device - Google Patents

Infrared temperature measuring device

Info

Publication number
JPS6055768B2
JPS6055768B2 JP50137323A JP13732375A JPS6055768B2 JP S6055768 B2 JPS6055768 B2 JP S6055768B2 JP 50137323 A JP50137323 A JP 50137323A JP 13732375 A JP13732375 A JP 13732375A JP S6055768 B2 JPS6055768 B2 JP S6055768B2
Authority
JP
Japan
Prior art keywords
temperature
heat source
infrared
reference heat
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50137323A
Other languages
Japanese (ja)
Other versions
JPS5262076A (en
Inventor
厚 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP50137323A priority Critical patent/JPS6055768B2/en
Publication of JPS5262076A publication Critical patent/JPS5262076A/en
Publication of JPS6055768B2 publication Critical patent/JPS6055768B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 本発明は赤外線による測温装置に関し、特に赤外線に
よる測温装置における温度校正方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an infrared temperature measuring device, and more particularly to an improvement in a temperature calibration method for an infrared temperature measuring device.

赤外線映像装置は、物体が自然に放射している赤外線
輻射を眼に見える映像に変換表示するものであるが、一
般に物体の温度と、物から輻射される赤外線エネルギー
との間に一定の法則が成立することを利用することによ
り赤外線映像装置を非接触温度測定装置として機能させ
ることができる。
Infrared imaging devices convert and display the infrared radiation naturally emitted by objects into visible images, but there is generally a certain law between the temperature of an object and the infrared energy radiated from the object. By utilizing this fact, the infrared imaging device can function as a non-contact temperature measuring device.

本発明は、このようにして温度測定を行なう装置に関す
るものである。この種の測温装置ては、測定者とのイン
ターフェースとなる温度表示部を具えており、該温度表
示部には温度既知の基準熱源の輝度あるいは温度スケー
ルと、被測定温度対象物の温度を表わす輝度あるいは温
度スケールとをともに表示して比較することにより対象
物の温度測定を行う。たた七この場合被測温物体の温度
のごく大体の桁は既知とする。後述することく、この温
度測定用赤外線映像装置は、被測定対象物を光学的に走
査する光学走査系と、該光学結像ならびに走査系からの
スキャンされた赤外線を電気信号に変換する光電変換系
と、該光電変換系からの電気信号を増幅する増幅系と、
電気信号に・直流分を付与する直流分再生系と、これら
を通して得られた電気信号により温度を表示する温度表
示手段等から構成されるものである。ここで前記直流分
は、赤外線映像装置に内蔵された基準熱源よりの放射を
光電変換して得られた基準電圧とし門て前記直流分再生
系に印加され、この基準熱源が温度の基準となる。従つ
て温度の基準そのものは正確に得られたとしても、広い
温度範囲に亘つて誤差なく対象物の温度が正確に得られ
る保証は得られない。これは、温度の範囲が前述した諸
系の総合利得によつて決定されるからであり、この総合
利得に完全なリニアリティーが存在しない限り、広い温
度範囲に亘つて誤差なく対象物の温度を正確に表示する
ことは不可能である。然しながら、総合利得に完全なリ
ニアリティーをもつた系を実現することは技術的に困難
であり、広い温度範囲に亘つて充分誤差の少い温度測定
が行なえない欠点があつた。従つて本発明の目的は上記
欠点を除去した、正確な温度測定の行なえる赤外線によ
る測温装置を提供することである。
The present invention relates to a device for measuring temperature in this manner. This type of temperature measurement device is equipped with a temperature display section that serves as an interface with the measuring person, and the temperature display section shows the brightness or temperature scale of a reference heat source whose temperature is known, and the temperature of the object to be measured. The temperature of the object is measured by displaying and comparing the brightness or temperature scale. In this case, it is assumed that the temperature of the object to be measured is already known. As will be described later, this infrared imaging device for temperature measurement includes an optical scanning system that optically scans the object to be measured, and a photoelectric conversion that converts the optical imaging and the scanned infrared rays from the scanning system into electrical signals. system, an amplification system that amplifies the electrical signal from the photoelectric conversion system,
It consists of a DC component regeneration system that adds a DC component to an electrical signal, and a temperature display means that displays the temperature based on the electrical signal obtained through these systems. Here, the DC component is applied to the DC component regeneration system as a reference voltage obtained by photoelectrically converting radiation from a reference heat source built into the infrared imaging device, and this reference heat source serves as a temperature reference. . Therefore, even if the temperature reference itself can be accurately obtained, there is no guarantee that the temperature of the object can be accurately obtained without error over a wide temperature range. This is because the temperature range is determined by the total gain of the various systems mentioned above, and unless there is perfect linearity in this total gain, it will not be possible to accurately measure the temperature of the target without error over a wide temperature range. It is impossible to display it in However, it is technically difficult to realize a system with perfect linearity in the overall gain, and there is a drawback that temperature measurement with sufficiently small errors cannot be performed over a wide temperature range. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide an infrared temperature measuring device which eliminates the above-mentioned drawbacks and is capable of accurately measuring temperature.

上記目的に従い本発明は、温度T1およびT2なる2つ
の基準熱源を装置内に設け、これら2つの基準熱源から
の2つの基準電圧V1およびV2の差Δ■を得て、ΔT
=1T1−T2lとΔ■との比が常に一定となるように
前記総合利得を調整することを特徴とするものである。
In accordance with the above object, the present invention provides two reference heat sources with temperatures T1 and T2 in the device, obtains a difference Δ■ between two reference voltages V1 and V2 from these two reference heat sources, and
The present invention is characterized in that the total gain is adjusted so that the ratio of =1T1-T2l and Δ■ is always constant.

以下図面に従い本発明を説明する。第1図は従来の温度
測定用赤外線映像装置のブロック図てある。
The present invention will be explained below with reference to the drawings. FIG. 1 is a block diagram of a conventional infrared imaging device for temperature measurement.

本図において、11は光学走査機構であり、測温対象物
0から照射された赤外線Pを受光しスキャンミラー(図
示せず)によつてスキャンすると共に次段の例えば凸レ
ンズからなる集光系12によつて収束せしめ、光電変換
器13に照射する。この光電変換器13は例えば水銀ー
カドミウムーテルルからなり、収束された赤外線Pを受
光してそのパワーに比例した電気信号EOuTを出力す
る。この電気信号EOuTは交流増幅器14において交
流増幅される。この交流増幅.された電気信号は直流成
分を失つており、測温の基準が無くなつているので、直
流分再生器15により直流分を付与する。これにより、
温度表示器16は輝度あるいは温度スケールを表示する
。ここで、前記直流分再生器15に付与する直流分が;
測温の基準となるものであり重要な部分である。これは
第1図中次のブロックで設定される。本図において17
が基準温度を設定するための、温度T1なる基準熱源で
あり、赤外線映像装置内の前記スキャンミラー(ブロッ
ク11内)近傍に配置1される。このスキャンミラーは
回転型または振動型の反射鏡であつて、温度対象物0と
基準熱源17を交互にスキャンする。一方基準熱源17
より温度センサー18および基準温度電圧発生器19を
介して基準温度電圧上rを得、これを直流分として直流
分再生器15に付与するのて、前述したスキャンにより
得られる基準熱源17からの電気信号EOuTに対し直
流分再生が行なわれる。すなわちこの第1図の装置では
基準熱源が測温の基準となる。然しこの装置では、光学
走査機構11、集光系12、光電変換器13、交流増幅
器14等で決まる総合利得が変化する可能性があり、前
記基準電圧Erを外れた電圧範囲において対象物0)か
らの実際の赤外線パワーと温度表示器16に出力される
電気信号との関係にずれが生じてくる可能性がある。従
つて広い温度範囲に亘つて温度測定の精度を保証するこ
とは困難となる。そこで本発明は次に述べる原理によつ
て上記問・題を解決する。
In this figure, reference numeral 11 denotes an optical scanning mechanism, which receives the infrared rays P irradiated from the temperature measurement object 0 and scans it with a scan mirror (not shown). The light is focused and irradiated onto the photoelectric converter 13. This photoelectric converter 13 is made of, for example, mercury-cadmium tellurium, receives the focused infrared rays P, and outputs an electric signal EOut proportional to its power. This electric signal EOut is AC amplified in an AC amplifier 14. This AC amplification. Since the electric signal thus generated has lost its DC component and there is no standard for temperature measurement, the DC component is added by the DC component regenerator 15. This results in
Temperature display 16 displays a brightness or temperature scale. Here, the DC component to be applied to the DC component regenerator 15 is;
This is an important part as it serves as the standard for temperature measurement. This is set in the next block in FIG. In this figure, 17
is a reference heat source having a temperature T1 for setting a reference temperature, and is placed 1 near the scan mirror (inside block 11) in the infrared imaging device. This scanning mirror is a rotating or vibrating reflecting mirror, and alternately scans the temperature object 0 and the reference heat source 17. On the other hand, reference heat source 17
By obtaining a reference temperature voltage r via the temperature sensor 18 and the reference temperature voltage generator 19 and applying it to the DC component regenerator 15 as a DC component, the electricity from the reference heat source 17 obtained by the above-mentioned scan is DC component regeneration is performed on the signal EOut. That is, in the apparatus shown in FIG. 1, the reference heat source serves as the reference for temperature measurement. However, in this device, there is a possibility that the total gain determined by the optical scanning mechanism 11, the condensing system 12, the photoelectric converter 13, the AC amplifier 14, etc. will change, and the target object 0) may change in the voltage range outside the reference voltage Er. There is a possibility that a deviation will occur in the relationship between the actual infrared power from the temperature indicator 16 and the electrical signal output to the temperature display 16. Therefore, it is difficult to guarantee the accuracy of temperature measurement over a wide temperature range. Therefore, the present invention solves the above-mentioned problems based on the principle described below.

すなわち、従来は第2A図に示すごとく、基準熱源17
(温度T1=30℃とする)の温度センサー18、基準
温度電圧発生器19を通して得られた温度表示器16へ
の出力電圧が温度スケールT−S上のT1であるとした
とき、この第1図におけるブロック11,12,13,
14を通して得られた温度表示器16への出力電圧が該
スケールT−S上のT1″であつたとすると、このT/
をT1に一致させることにより測温の基準設定が行なわ
れる。然しこれでは、前述した如く、30℃以外の広い
温度範囲に亘つて任意の温度に対する正確な出力電圧が
得られない。そこで本発明は、もう1つの基準熱源(温
度T2=60℃とする)を付加し、第2B図に示すごと
く、温度センサー系の出力電圧T2および光学・増幅器
系の出力電圧T2″を得て、それぞれT1とT2の差電
圧ΔVとT1″とT2″の差電圧ΔV″とを一致させる
ようにする。さらに引続いてT1とT1″(またはT2
とT2″)とが一致するように調整すれば基準温度を含
む広い温度範囲に亘つて正確な測温が行なえる。これを
実現したのが第3図のブロック図であり、第1図のブロ
ックに対してさらに、もう1つの基準熱源21が付加さ
れ、温度センサー22、基準温度電圧発生器23を介し
て第2の基準電圧T2として温度表示器16に出力され
、既設の基準熱源17による基準温度電圧T1も温度表
示器16に出力される。そして前述の電圧差ΔV″をΔ
Vに一致させる操作は調整機構24により光学走査機構
11内の光学系しぼりを調整するか、光電変換器13の
バイアス電流を調整するか、交流増幅器14の利得を調
整するか若しくはこれらの組合せによつて簡単に行なわ
れる。また第2B図においてT1″をT1に一致させる
操作は可変電圧源25を調整することで簡単に行なえる
。なお対象物の温度がほぼT。内外であることが分かつ
ている場合には、T2〉T1としてT2〉TO>T1と
なるように選ぶことが望ましい。以上説明したように、
本発明によれば広い温度範囲に亘つて正確な測温を行な
うことが出来る測温用赤外線映像装置が実現される。
That is, conventionally, as shown in FIG. 2A, the reference heat source 17
Assuming that the output voltage to the temperature display 16 obtained through the temperature sensor 18 (temperature T1 = 30°C) and the reference temperature voltage generator 19 is T1 on the temperature scale T-S, this first Blocks 11, 12, 13 in the figure,
If the output voltage to the temperature indicator 16 obtained through 14 is T1'' on the scale T-S, then this T/
By matching T1 with T1, the temperature measurement standard is set. However, as described above, in this case, it is not possible to obtain an accurate output voltage for any temperature over a wide temperature range other than 30°C. Therefore, the present invention adds another reference heat source (temperature T2 = 60°C) to obtain the output voltage T2 of the temperature sensor system and the output voltage T2'' of the optical/amplifier system as shown in Fig. 2B. , the differential voltage ΔV between T1 and T2 and the differential voltage ΔV'' between T1'' and T2'' are made to match, respectively. Furthermore, T1 and T1'' (or T2
If the temperature is adjusted so that T2'' and Another reference heat source 21 is further added to the block, which is output to the temperature display 16 as a second reference voltage T2 via a temperature sensor 22 and a reference temperature voltage generator 23. The reference temperature voltage T1 is also output to the temperature display 16. Then, the voltage difference ΔV″ mentioned above is expressed as Δ
The operation to match V can be performed by adjusting the optical system aperture in the optical scanning mechanism 11 using the adjustment mechanism 24, adjusting the bias current of the photoelectric converter 13, adjusting the gain of the AC amplifier 14, or a combination thereof. It's easy to do. In addition, in FIG. 2B, the operation to match T1'' with T1 can be easily performed by adjusting the variable voltage source 25. Note that the temperature of the object is approximately T. If it is known that the temperature of the object is inside or outside, T2 It is desirable to select T2 so that TO>T1 as 〉T1.As explained above,
According to the present invention, an infrared imaging device for temperature measurement that can accurately measure temperature over a wide temperature range is realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の測温用赤外線装置のブロック図、第2A
およびB図は本発明の原理を説明するための図、第3図
は本発明に基づく一実施例を示すブロック図である。 図において、11は光学走査機構、12は集光器、13
は光電変換器、14は交流増幅器、15は直流分再生器
、16は温度表示器、17および21は基準熱源、19
および23は基準温度温度発生器、24は調整機構、2
5は可変電源である。
Figure 1 is a block diagram of a conventional infrared temperature measuring device, Figure 2A
FIG. 3 is a diagram for explaining the principle of the present invention, and FIG. 3 is a block diagram showing an embodiment based on the present invention. In the figure, 11 is an optical scanning mechanism, 12 is a condenser, and 13
14 is a photoelectric converter, 14 is an AC amplifier, 15 is a DC regenerator, 16 is a temperature display, 17 and 21 are reference heat sources, 19
and 23 is a reference temperature temperature generator, 24 is an adjustment mechanism, 2
5 is a variable power supply.

Claims (1)

【特許請求の範囲】[Claims] 1 被測温対象物と基準熱源とを光学的に走査する光学
走査系と、該光学走査系からの赤外線を受光して赤外線
パワーに対応した電気信号を得る光電変換器ならびに該
電気信号を増幅する増幅器を具えた電気系と、該電気系
からの電気信号に前記基準熱源の既知温度に対応した所
定の直流分を付与する直流分再生器と、該直流分再生器
を経た電気信号により表示を行なう温度表示部とを有し
てなる赤外線による測温装置において、前記光学走査系
の受光範囲内に前記基準熱源の温度と異なる既知の温度
のもう1つの基準熱源を設けるとともに、これら2つの
基準熱源の各温度にそれぞれ対応した基準電圧を発生す
る第1温度センサー系および第2温度センサー系を設け
、さらに前記温度表示部に、前記光学走査系および前記
電気系を通して得られた前記2つの基準熱源の各温度の
温度差と、前記第1および第2温度センサー系を通して
得られた前記2つの基準熱源の各温度の温度差とを比較
表示する温度スケールを付設し、かつ前記両温度差が等
しくなるように前記光学走査系または調整可能な調整機
構を付加したことを特徴とする赤外線による測温装置。
1. An optical scanning system that optically scans the object to be temperature measured and a reference heat source, a photoelectric converter that receives infrared rays from the optical scanning system and obtains an electrical signal corresponding to the infrared power, and amplifies the electrical signal. an electrical system equipped with an amplifier that performs the control, a DC regenerator that adds a predetermined DC component corresponding to the known temperature of the reference heat source to the electrical signal from the electrical system, and an electrical signal that has passed through the DC regenerator. In the infrared temperature measuring device, the infrared temperature measuring device has a temperature display section that performs A first temperature sensor system and a second temperature sensor system are provided that generate reference voltages respectively corresponding to the respective temperatures of the reference heat source, and the temperature display section is provided with the two temperature sensor systems that generate the reference voltages respectively corresponding to the respective temperatures of the reference heat source. A temperature scale is provided for comparing and displaying a temperature difference between the respective temperatures of the reference heat source and a temperature difference between the respective temperatures of the two reference heat sources obtained through the first and second temperature sensor systems; An infrared temperature measuring device characterized in that the optical scanning system or an adjustable adjustment mechanism is added so that the values are equalized.
JP50137323A 1975-11-17 1975-11-17 Infrared temperature measuring device Expired JPS6055768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50137323A JPS6055768B2 (en) 1975-11-17 1975-11-17 Infrared temperature measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50137323A JPS6055768B2 (en) 1975-11-17 1975-11-17 Infrared temperature measuring device

Publications (2)

Publication Number Publication Date
JPS5262076A JPS5262076A (en) 1977-05-23
JPS6055768B2 true JPS6055768B2 (en) 1985-12-06

Family

ID=15195982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50137323A Expired JPS6055768B2 (en) 1975-11-17 1975-11-17 Infrared temperature measuring device

Country Status (1)

Country Link
JP (1) JPS6055768B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3517811B2 (en) * 1996-10-09 2004-04-12 富士通株式会社 Infrared imaging device

Also Published As

Publication number Publication date
JPS5262076A (en) 1977-05-23

Similar Documents

Publication Publication Date Title
GB1412449A (en) Radiometry
KR100402194B1 (en) Heat Sensing System with High-Speed Response Calibrator and Application Method of Uniformity Correction
US3293915A (en) Radiometer control means
US5436443A (en) Polaradiometric pyrometer in which the parallel and perpendicular components of radiation reflected from an unpolarized light source are equalized with the thermal radiation emitted from a measured object to determine its true temperature
RU2324152C1 (en) Thermal imaging technique and device
US4687333A (en) Measuring apparatus for optically measuring the thickness of a water film
JPS6055768B2 (en) Infrared temperature measuring device
US3430045A (en) Optical scanning by means of infrared radiation
JPS6039788Y2 (en) radiation thermometer
JP2566952Y2 (en) Surface temperature distribution measuring device for steel strip
JPH0213815A (en) Sensitivity correction system for photoconducting type infrared detector
RU2636256C2 (en) Method for measuring power and frequency of laser radiation pulses and device for its implementation
JPH08278203A (en) Infrared ray radiation thermometer
SU211025A1 (en) A. A. Vishnevsky, F. V. Bassin and E.F. Drigo
JPH10281877A (en) Infrared thermometer measuring apparatus
JPH0524032Y2 (en)
JPH06109549A (en) Infrared imaging system
SU1105763A1 (en) Pyrometer
JP2569485B2 (en) Laser diffraction light intensity distribution measuring device
JPH1096667A (en) Infrared heat image apparatus and circuit for forming temperature conversion table for every optical system of the same
JPH09257589A (en) Temperature drift correcting device for infrared ray heat image forming device
JPS6347921Y2 (en)
RU2343431C2 (en) Noncontact biological thermometer
JPH0525293B2 (en)
SU424021A1 (en) METHOD OF RADIATION / TEMPERATURE