JPS605556B2 - Method for preventing oxidation of graphite or silicon carbide refractories - Google Patents

Method for preventing oxidation of graphite or silicon carbide refractories

Info

Publication number
JPS605556B2
JPS605556B2 JP52114933A JP11493377A JPS605556B2 JP S605556 B2 JPS605556 B2 JP S605556B2 JP 52114933 A JP52114933 A JP 52114933A JP 11493377 A JP11493377 A JP 11493377A JP S605556 B2 JPS605556 B2 JP S605556B2
Authority
JP
Japan
Prior art keywords
graphite
coating
layer
sample
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52114933A
Other languages
Japanese (ja)
Other versions
JPS5447712A (en
Inventor
弘来 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Refractories Co Ltd
Original Assignee
Harima Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Refractories Co Ltd filed Critical Harima Refractories Co Ltd
Priority to JP52114933A priority Critical patent/JPS605556B2/en
Publication of JPS5447712A publication Critical patent/JPS5447712A/en
Publication of JPS605556B2 publication Critical patent/JPS605556B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明は、高温使用時において耐火物表面に均等かつ繊
密な溶融被覆層を形成せしめるようにした黒鉛質または
炭化桂素質耐火物の酸化防止方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preventing oxidation of graphite or cinnamon carbide refractories by forming a uniform and dense molten coating layer on the surface of the refractories during high-temperature use.

最近、製鉄所の高炉、転炉、電気炉または連続鋳造用等
の耐火物としてアルミナー黒鉛系、シャモット−黒鉛系
、ジルコン−黒鉛系、マグネシア−黒鉛系、または炭化
珪素−黒鉛系等黒鉛質または炭化珪素質耐火物が広く使
用されており、その黒鉛または炭化珪素成分がスラッグ
および溶鋼に濡れ難く、そして優れた耐蝕性、熱伝導性
ならびに耐スポール性を有することは周知の如くである
が、これが通常空気中即ち酸化性雰囲気においては50
0qC以上の温度で酸化され損耗され易い欠点があるの
であって、かかる欠点を補なう方策として、従来Na2
0、K20、Ca○、Sj02、Fe203、P2Q、
SICまたはSi、Pb、Zn、AI、Si等低温でガ
ラス相を形成する混合物、または還元性メタルを予め杯
土中に渡練して成形するか、または杯±成形体を該混合
物のスリップに浸潰し焼成した耐火物に耐酸化性を賦与
せしめるようなされているが、これでは黒鉛質または炭
化徒素質耐火物の椿性たる耐蝕性および耐スポール性が
損なわれる欠点があり、そして他の酸化防止方法として
上記混合物(Si02−AI203系)またはMg○質
のスリップを耐火物表面に被覆するようなされているが
、いずれも比較的低温でガラス相を生成する組成であり
、比較的高温に加熱される場合には被覆に斑を生じ易く
その不充分な箇所が酸化損耗される事故がみられるなど
未だ満足しうる酸化防止方法がないのである。
Recently, graphite or graphite materials such as alumina-graphite, chamotte-graphite, zircon-graphite, magnesia-graphite, or silicon carbide-graphite have been used as refractories for blast furnaces, converters, electric furnaces, or continuous casting in steel plants. Silicon carbide refractories are widely used, and it is well known that their graphite or silicon carbide components are difficult to wet with slag and molten steel, and have excellent corrosion resistance, thermal conductivity, and spalling resistance. In normal air, that is, in an oxidizing atmosphere, this is 50
Na
0, K20, Ca○, Sj02, Fe203, P2Q,
SIC or a mixture that forms a glass phase at low temperatures, such as Si, Pb, Zn, AI, Si, or a reducing metal, is kneaded in advance into a clay pot and molded, or a cup ± molded body is mixed into a slip of the mixture. It has been attempted to impart oxidation resistance to refractories that have been soaked and fired, but this has the disadvantage that the corrosion and spalling properties of graphite or carbide refractories are impaired, and other oxidation As a prevention method, the refractory surface is coated with the above mixture (Si02-AI203 system) or Mg○ quality slip, but both have compositions that generate a glass phase at relatively low temperatures and cannot be heated to relatively high temperatures. If this is done, the coating tends to become uneven and there are accidents where insufficient coverage is damaged by oxidation, and there is still no satisfactory method for preventing oxidation.

そこで本発明では、かかる従来の酸化防止方法の欠点を
解消し、耐火物本来の特性を損なうことなく、しかも高
温使用に際し表面に均等かつ繊密な溶融被覆層を確実に
形成しうるようした黒鉛質または炭化珪素質耐火物の酸
化防止方法を提供せんとするものであって、その要旨と
する所は黒鉛質または炭化珪素質耐火物の表面にSi0
2含有量が95%以上の被覆簿層と、更にその表面にS
i〇250〜80%、AI2〇35〜30%、K2〇と
Na2〇3〜15%、B2033〜15%、およびFe
203、ZN0、P2Qまたは、POOの混合物1〜1
5%を含有する被覆薄層を積層し、そして適宜高温城に
おいて該積層に高粘度、高密度の溶融ガラス相を生成せ
しめるのである。
Therefore, the present invention solves the drawbacks of such conventional oxidation prevention methods, and develops graphite that can reliably form an even and dense molten coating layer on the surface during high-temperature use without impairing the original properties of refractories. The purpose of the present invention is to provide a method for preventing oxidation of graphite or silicon carbide refractories, and its gist is to provide a method for preventing oxidation of graphite or silicon carbide refractories.
2 content is 95% or more, and the surface is further coated with S.
i〇250-80%, AI2〇35-30%, K2〇 and Na2〇3-15%, B2033-15%, and Fe
203, ZN0, P2Q or POO mixture 1-1
Thin coating layers containing 5% are laminated and the laminations are suitably heated to form a highly viscous, dense molten glass phase.

本発明者は上述の如き従来の酸化防止方法の欠点につき
種々検討を加えた結果、耐酸化性の被覆層を形成せしめ
るに際し、耐火物表面に与め、高温加熱時の耐火度が大
でかつ耐火物に浸透することも表面を流れ落ちることも
ない高Sj02組成の被覆薄層(以下、下層と呼ぶ)と
、その表面に、耐火物の黒鉛または炭化珪素成分の被酸
化反応が活発となる70000以上の温度範囲で溶融し
、これが下層成分との反応で繊密な溶融ガラス相を生成
する低Si02組成の被覆薄層(以下、上層と呼ぶ)と
を積層し、かかる組成の異なる2層を被覆することによ
り顕著な酸化防止効果を発揮せしめうろことを知ったの
である。
As a result of various studies on the shortcomings of the conventional oxidation prevention methods as described above, the present inventor has determined that when forming an oxidation-resistant coating layer, it is necessary to apply a coating layer on the surface of a refractory material that has a high degree of fire resistance during high-temperature heating. A thin coating layer (hereinafter referred to as the lower layer) with a high Sj02 composition that neither penetrates into the refractory nor flows down the surface, and a 70,000 mol of carbon dioxide on the surface that activates the oxidation reaction of the graphite or silicon carbide component of the refractory. A thin coating layer with a low Si02 composition (hereinafter referred to as the upper layer) that melts in the above temperature range and reacts with the lower layer components to form a delicate molten glass phase is laminated, and two layers with different compositions are laminated. They learned that scales can exhibit a remarkable antioxidant effect by coating them.

そして該被覆材の上、下各層の最適組成範囲につき検討
した経過は以下に詳述する如くである。先づ、下層成分
Si02の組成は、これが95%以上の高純度範囲にお
いてはその耐火度は勿論大であり、かつ高融点で高密度
を示すので高温加熱時には極めて安定した被覆作用を発
揮し、そして更にこれが後述する上層成分との反応で高
粘度、高密度の溶融ガラス相が生成されるのであるが、
これが95%以下ではかかる被覆層の基層としての作用
が減退するのである。
The process of studying the optimum composition ranges for the upper and lower layers of the coating material will be detailed below. First of all, the composition of the lower layer component Si02 is that it has a high degree of fire resistance in a high purity range of 95% or more, and has a high melting point and high density, so it exhibits an extremely stable coating effect when heated at high temperatures. Furthermore, a high viscosity, high density molten glass phase is generated by the reaction with the upper layer component, which will be described later.
If this is less than 95%, the effect of the coating layer as a base layer is reduced.

ついで上層被覆材の組成については、黒鉛質または炭化
桂素質耐火物の成分と使用条件によりその最適組成は異
なるが、これら耐火物につき種々検討した結果によれば
、先づSj02の組成についてはこれが80%以上の範
囲では上層材の融点が比較的高くなるので1000qo
以下ではそれが溶融状態ではなく従って下層成分との反
応でガラスが生成され難く、そしてこれが50%以下で
は逆に融点が低くなるが、生成されるガラスは低粘度と
なり安定な被覆層が得られないのであり、更にAI20
3についてはこれが5%以下では上層材の溶融物の粘度
が大となり、30%以上では逆に粘度が小となってこれ
が耐火物表面から流れ落ち易いのである。
Next, regarding the composition of the upper layer coating material, the optimum composition differs depending on the composition of the graphite or cinnamon carbide refractory and the usage conditions, but according to the results of various studies on these refractories, the composition of Sj02 is as follows. In the range of 80% or more, the melting point of the upper layer material becomes relatively high, so 1000qo
Below this, it is not in a molten state and therefore glass is difficult to be produced by reaction with the lower layer components, and below 50%, the melting point will be low, but the glass produced will have a low viscosity and a stable coating layer will be obtained. There is no AI20
Regarding No. 3, if it is less than 5%, the viscosity of the melt of the upper layer material becomes high, and if it is more than 30%, the viscosity becomes small, and it tends to flow down from the surface of the refractory.

ついでK20とNa20との混合物量については、これ
が3%以下では溶融物量が不足して均等は溶融ガラス相
が形成され難くなり、そして15%以上においては溶融
物が過剰となり、上層材が表面から流れ落ちるばかりで
なく、下層成分との反応が激しくなってこれが耐火物中
に浸透しその性状を劣化させる現象がみられるのであり
、従って該混合物の組成は3〜15%範囲としなければ
ならないのである。更に区03についてはその組成が3
%以下では上層材の溶融物の粘度が大となって下層成分
との反応で均等かつ繊密な溶融ガラス相が形成されず、
そしてこれが15%以上では逆に溶融物の粘度が小とな
り表面を流れ落ち易くなるのである。更にまたFe2一
Q、Zn○、P205またはPOOの混合物を1〜15
%混合すれば、下層成分との付着性、密度等の性状を向
上せしめる効果があり、そしてこの範囲以外ではその効
果が逆に小となるのである。このようにして被覆材の上
層にはSi02を95%以上、下層にはSi0250〜
80%、AI2Q5〜30%、K20とNa20を3〜
15%、B2033〜15%、およびFe203、Zn
○、P2QまたはPb○の混合物を1〜15%とする組
成範囲内で適宜混合し調製したスリップを被覆すること
により高温加熱に際し溶融物が流れ落ちることもまた耐
火物に浸透することもなくしかも高粘度、高密度の均等
かつ繊密な溶融ガラス相が形成され、これにより優れた
酸化防止効果を発揮せしめうるのである。ついで、上、
下各層の被覆材に使用する原材料ならびにその調製方法
につき詳述すれば、下層には溶融シリカ、桂石等Si0
2組成が95%以上のシリカスリップの単味または混合
物を使用するが、必要により少量の粘土、シャモツト、
アルミナ等を結合剤と共に添加した混合物100重量部
に水20〜35重量部を加えてボールミル等が湿式粉砕
し、そしてその粘度を100メッシュ以下、好ましくは
3.25メッシュ以下を85%以上含むスリップとすれ
ば被覆施工が容易である。
Next, regarding the amount of the mixture of K20 and Na20, if it is less than 3%, the amount of molten material is insufficient and it becomes difficult to form a uniform molten glass phase, and if it is more than 15%, the molten material becomes excessive, and the upper layer material is separated from the surface. Not only does it flow down, but it also reacts violently with the lower layer components, penetrating into the refractory and deteriorating its properties.Therefore, the composition of the mixture must be in the range of 3 to 15%. . Furthermore, for Ward 03, its composition is 3
% or less, the viscosity of the molten material of the upper layer material increases and a uniform and dense molten glass phase is not formed due to the reaction with the lower layer component.
If it exceeds 15%, the viscosity of the melt decreases and it tends to flow down the surface. Furthermore, a mixture of Fe2-Q, Zn○, P205 or POO is added from 1 to 15
%, it has the effect of improving properties such as adhesion with the lower layer component and density, but outside this range, the effect becomes small. In this way, the upper layer of the coating material contains 95% or more of Si02, and the lower layer contains 95% or more of Si02.
80%, AI2Q5~30%, K20 and Na20 3~
15%, B2033~15%, and Fe203, Zn
By coating a slip prepared by suitably mixing a mixture of ○, P2Q, or Pb○ within a composition range of 1 to 15%, the melt will not flow down during high-temperature heating, and will not penetrate into the refractory. A uniform and delicate molten glass phase with high viscosity and high density is formed, which can exhibit excellent antioxidant effects. Then, above,
To explain in detail the raw materials used for the coating material of each lower layer and their preparation method, the lower layer contains Si0
2. Use a single or a mixture of silica slip with a composition of 95% or more, but if necessary, use a small amount of clay, chamot,
Add 20 to 35 parts by weight of water to 100 parts by weight of a mixture containing alumina etc. together with a binder and wet-pulverize the mixture using a ball mill or the like, and reduce the viscosity to 100 mesh or less, preferably 3.25 mesh or less to a slip containing 85% or more. If so, coating construction will be easy.

更に上層の原材料としては桂右、蝋石、シャモット、粘
土またはガラス粉SIC、Si、Pb、Zn○の粉末混
合物を炭酸ナトリウム、棚砂、テキストリン、P.V.
A、またはゴム類等を結合剤として上記組成範囲内で、
かつ耐火物の成分即ち使用条件によりその融点が700
〜1400つ0であるように適宜混合するのであるが、
該上層材はその成分によっては加熱に際し容積収縮また
は熱分解ガスを発生して下層表面から剥離するか、また
は多数の気孔が生じることがあるので上層材を予め板焼
し得られるフリットを使用すべきであり、そしてその粒
度は、被覆施工ならびに酸化防止効果からして48メッ
シュ以下で200メッシュ以下を50%以上とすること
が望ましく、そしてこれら混合物10の重量部に水40
〜8の重量部添加し混練してスリップとするのである。
かくの如く調製したスリップを耐火物に被覆する作業は
、刷毛塗り、咳霧被覆、または浸債通電被覆法により先
ず下層用スリップを被覆するが、この際のスリップの水
分量は刷毛塗りでは25〜40%、蹟霧および浸債被覆
では30〜50%、そして浸濃通電被覆では50〜90
%範囲に調製すれば耐火物表面への付着性ならびに施工
性が良く、そして更に刷毛塗りでは塩酸を使用してスリ
ップのpH値を1〜3とすることにより刷毛延びと付着
性とがより良好となって被覆施工が容易であり、また浸
燈通電被覆ではその斑値を5〜8に調製すれば、これに
耐火物を浸潰し通電(直流)するに際し耐火物(陽極と
なる)表面への均等かつ繊密な下層が形成しうるのであ
る。
Further, as raw materials for the upper layer, a powder mixture of Keisuke, Rouseki, Chamotte, clay or glass powder SIC, Si, Pb, and Zn○ is mixed with sodium carbonate, Tanasa, Textlin, P.I. V.
A, or within the above composition range using rubber or the like as a binder,
And the melting point is 700 depending on the components of the refractory, that is, the conditions of use.
It is mixed appropriately so that the ratio is 1400 to 0.
Depending on its components, the upper layer material may shrink in volume or generate pyrolysis gas when heated, causing it to peel off from the surface of the lower layer, or create a large number of pores. Therefore, frit obtained by baking the upper layer material in advance is recommended. The particle size should be 48 mesh or less and 200 mesh or less should be 50% or more from the viewpoint of coating construction and antioxidant effect.
-8 parts by weight are added and kneaded to form a slip.
To coat refractories with the slip prepared in this way, first coat the lower layer slip by brush coating, cough spray coating, or bonding current coating method, but the moisture content of the slip at this time is 25% by brush coating. ~40%, 30-50% for fogged and immersed coatings, and 50-90% for dense energized coatings.
% range, the adhesion to the refractory surface and workability are good, and when applying with a brush, by adjusting the pH value of the slip to 1 to 3 using hydrochloric acid, the brush spread and adhesion are even better. Therefore, it is easy to apply the coating, and if the spot value is adjusted to 5 to 8 in the case of immersion current coating, when the refractory is immersed in this and energized (direct current), the surface of the refractory (which becomes the anode) is A uniform and dense underlayer can be formed.

ついで該下層表面への上層用スリップの被覆は、刷毛塗
り、噴霧または浸糟被覆法により均等な薄層を形成せし
め、しかる後談上、下2層からなる被覆層を充分乾燥し
て後これを使用するのである。かかる本発明の酸化防止
方法の実施例とその効果につき列記する。実施例 1 Si02含有量が98.5%で粒度が325メッシュ以
下を80%以上含む溶融シリカ10の重量部に水2の重
量部を加えてスリップとし、更にこのスリップ100重
量部に20%の塩酸水溶液20重量部を加えて斑2.0
に調製した被覆材(1)、および200メッシュ以下を
70%含む蟻石粉末4の重量部、48メッシュ以下の板
ガラス粉4の重量部、無水側砂1増重量部、ならぴに粘
士1の重量部をボールミルで3時間混合してSi026
0.2%、N20313.7%、K20とNa208.
7%、&038.1%およびその他9.1%からなる混
合物100重量部に水65重量部を加えて混練した被覆
材(0)とを準備し、そしてAI20355%、C30
%、Sj0215%、その他5%の組成で、気孔率21
%、圧縮強さ200k9/cポの連続鋳造用ノズルから
供試体(3仇肌の立方体)を多数個切り取り、そのうち
複数個の供試体に上記被覆材(1)を均等に刷毛塗りし
て後室温で1時間乾燥して下層を被覆し、更にその表面
に上記被覆材(ロ)を刷毛塗りしこれを10ぴ0で1日
間乾燥して組成の異なる2層を積層した複数個の試料(
A)群と、複数個の供試体2組にそれぞれ被覆材(1)
を上、下2層に、被覆材(ロ)を同じく上、下2層に同
じ要領で同一厚みに被覆した試料(B)群および(C)
群、およびSi0270%、AI20324%、その他
6%である蝋石を200メッシュ以下に粉砕し調製した
被覆材(町)を複数個の供試体に刷毛塗りして後乾燥し
、これに上記被覆材(0)を刷毛塗りして試料(A)、
(B)および(C)群と同機にしてそれぞれ同一厚みの
下、上2層を被覆した試料(D)群を炭化珪素発熱体電
気炉で500℃乃至1200qo範囲内の温度で加熱し
、各加熱温度における各個試料(A)、(B)、(C)
および(D)の加熱時間による酸化減量を測定したので
ある。
Next, the upper layer slip is coated on the surface of the lower layer by forming an even thin layer by brushing, spraying, or immersion coating. is used. Examples of the antioxidant method of the present invention and their effects will be listed below. Example 1 A slip was prepared by adding 2 parts by weight of water to 10 parts by weight of fused silica containing 80% or more of fused silica with a Si02 content of 98.5% and a particle size of 325 mesh or less, and further added 20% to 100 parts by weight of this slip. Add 20 parts by weight of hydrochloric acid aqueous solution to make a spot of 2.0
Coating material (1) prepared in were mixed in a ball mill for 3 hours to form Si026.
0.2%, N20313.7%, K20 and Na208.
A coating material (0) was prepared by adding 65 parts by weight of water to 100 parts by weight of a mixture consisting of 7%, &038.1% and 9.1% of others, and kneading the mixture.
%, Sj0215%, other 5% composition, porosity 21
%, a compressive strength of 200k9/c is used for continuous casting nozzles, and a number of specimens (cubes of 3 square meters) are cut out, and the above coating material (1) is evenly applied with a brush to several of the specimens. The lower layer was coated by drying at room temperature for 1 hour, and then the above coating material (B) was applied with a brush to the surface, and this was dried for 1 day at 10°C to form multiple samples in which two layers with different compositions were laminated (
Covering material (1) was applied to group A) and two sets of multiple specimens.
Samples (B) group and (C) in which the coating material (B) was coated on the top and bottom two layers in the same manner and in the same thickness.
A coating material (Machi) prepared by crushing Rouseki containing 270% Si, 20324% AI, and 6% other to a size of 200 mesh or less was applied to multiple specimens with a brush, then dried, and the above coating material ( Sample (A) by brushing 0),
Group (D) samples, which were made in the same machine as Groups (B) and (C) and coated with the upper two layers under the same thickness, were heated in a silicon carbide heating element electric furnace at a temperature within the range of 500°C to 1200qo. Individual samples (A), (B), (C) at heating temperature
And (D), the oxidation loss depending on the heating time was measured.

その結果は図表に示す通り各試料(A)、(B)、(C
)および(D)群の酸化減量には明らかに差があり、そ
して殊に酸化反応が活発となる70ぴ0以上の温度域に
おいてその差が顕著であって本発明に係る組成の上、下
2層を被覆した試料(A)群ではその下層または上層用
スリップのみ被覆した試料(B)群または(C)群より
も優れた酸化防止効果がみられたのである。更に下層の
Si02成分が本発明の組成範囲外である70%の場合
の試料(D)群では、核試料(A)群よりも殊に700
℃以上の温度で酸化減量が明らかに増加しており、下層
成分のSi02組成が酸化防止効果に与える影響が明確
にみられるのである。更にこれら試料群の切断面を観察
した結果では、試料(A)群では被覆層に均等なガラス
相が形成され、しかもこれが供試体を完全に被覆してい
たのであるが、他方試料(B)群では被覆材(1)が供
試体内に浸透しかつ部分的に表面が露出しこれが酸化損
耗されていたのであり、そして試料(C)群では被覆層
に目的のガラス相が全く形成されておらず、供試体表面
の酸化損耗度が最も著しかったのである。更に試料(D
)群においては予想に反して均等な被覆層が形成されず
かつ溶融物が所々供謎体に浸透していたのである。実施
例 2 C95%からなる黒鉛電極製品から供試体(40側の立
方体)を多数個切り取り、その供試体2個宛4組につい
て、それぞれ実施例1の被覆材(1)、(ロ)を下層0
.5肌、上層0.5側の厚さに刷毛塗りした試料(B)
2個、被覆材(0)を下、上層に各0.5肌の厚み刷毛
塗りした試料(F)2個、および被覆材(1)を同じく
下、上層に各0.5側宛刷毛塗りした試料(G)2個と
、更に200メッシュ以下の蝋石粉末10の重量部に水
ガラス5重量部を混合してSi0271.7%、AI2
0324.1%、K201.7%、Na200.7%か
らなる混合物に水4の重量部を加え混練した蝋石スリッ
プの被覆材(m)を供談体表面に0.5肌の厚さ刷毛塗
りし、これに上記被覆材(0)を0.5側だけ刷毛塗り
した試料(H)2個の合計8個の試料を10000で1
日間乾燥して後、各個試料(B)、(F)、(G)およ
び(H)をそれぞれ100000および120000で
加熱して酸化減量を測定した。
The results are as shown in the diagram for each sample (A), (B), (C
There is a clear difference in the oxidation loss between groups ) and (D), and this difference is particularly noticeable in the temperature range of 70 mm or higher, where the oxidation reaction becomes active. The sample (A) group coated with two layers showed a superior antioxidant effect than the sample (B) group or (C) group coated with only the lower layer or the upper layer slip. Furthermore, in the sample (D) group in which the Si02 component in the lower layer is 70% outside the composition range of the present invention, it is particularly 700% lower than the core sample (A) group.
The oxidation loss clearly increases at temperatures above .degree. C., and the influence of the Si02 composition of the lower layer component on the antioxidant effect is clearly seen. Furthermore, the results of observing the cut surfaces of these sample groups showed that in the sample (A) group, a uniform glass phase was formed in the coating layer, and this completely covered the specimen, but on the other hand, in the sample (B) group. In the sample (C) group, the coating material (1) had penetrated into the specimen and the surface was partially exposed, which had been oxidized and worn away, and in the sample (C) group, the desired glass phase had not been formed in the coating layer at all. However, the degree of oxidation damage on the surface of the specimen was the most significant. Furthermore, the sample (D
) group, contrary to expectations, a uniform coating layer was not formed and the molten material penetrated into the donor body in some places. Example 2 A large number of specimens (cubes on the 40 side) were cut out from a graphite electrode product made of 95% C, and coating materials (1) and (b) of Example 1 were applied as a lower layer to each of 4 sets of 2 specimens. 0
.. 5 skin, sample coated with a brush to a thickness of 0.5 on the upper layer side (B)
2 pieces, 2 samples (F) with coating material (0) brushed on the bottom and top layers to a thickness of 0.5 skin each, and coating material (1) coated with a brush on the bottom and top layers each at a thickness of 0.5 skin. 2 samples (G) and 5 parts by weight of water glass were mixed with 10 parts by weight of Rouseki powder of 200 mesh or less to obtain 1.7% Si02 and 1.7% AI2.
0324.1%, K201.7%, Na200.7% was mixed with 4 parts by weight of water, and a coating material (m) of Rouseki slip was applied to the surface of the body with a brush to a thickness of 0.5 skin. Then, a total of 8 samples, 2 samples (H) on which the above coating material (0) was applied with a brush only on the 0.5 side, were coated with 10000
After drying for several days, each sample (B), (F), (G), and (H) was heated at 100,000 and 120,000, respectively, and the oxidation loss was measured.

その結果は第1表に示す如く、本発明に係わる試料(E
)では加熱温度1000℃および1200ooで殆んど
差がないが、その他の試料(F)、(G)および(H)
ではその差がみられ、そして該試料(E)では試料(F
)、(G)および(H)に比しその酸化減量が100ぴ
Cでは略々1′5〜1′7、1200QOでも略々同量
であって、本発明に係わる組成の上、下2層を被覆する
ことによりその酸化防止効果は顕著であったのである。
第1表実施例 3 SIC83%、C(黒鉛)12%、その他5%からなる
炭化桂素−黒鉛系の並型煉瓦(65脚×12仇帆×23
比肋)を供試体として、Si02含有量が95%で粒度
が325メッシュ以下を94%含む桂石粉末10の重量
部に水7の重量部を加えて得られる桂石スリップの被覆
材(W)に6分間該供試体を浸潰し表面に0.5柳厚さ
の下層を被覆し自然乾燥後、更にこれを蝋石40%、ガ
ラス粉45%、粘土5%および棚砂10%を混合してS
i0261.2%、AI20311.3%、K20とN
a209.8%、B2037.3%およびその他10.
4%の混合物10の重量部に水60重量部およびバルブ
廃液3重量部を加えてボールミルで3時間湿式粉砕し、
粒度325メッシュ以下96%の被覆材(V)に浸潰し
て0.5肋厚みの上層を被覆した試料(J)2個、およ
び供試体に試料U)と同様にして被覆材(W)および(
V)を下層および上層に各0.5肋被覆したものを更に
被覆材(N)に浸潰して3層よりなる被覆層を形成した
試料(K)2個、そして更に供試体を被覆材(V)に浸
潰して下上層にそれぞれ0.5側厚みの被覆層を形成し
た試料(L)2個を準備し、そして各個試料(J)(K
)および(L)を100000および1200q0でそ
れぞれ5時間加熱して各試料の酸化減量を測定した。
The results are shown in Table 1, as shown in Table 1.
), there is almost no difference between heating temperatures of 1000°C and 1200°C, but for other samples (F), (G) and (H)
The difference is seen in sample (E) and sample (F).
), (G) and (H), the oxidation loss is approximately 1'5 to 1'7 at 100 picoC, and approximately the same amount at 1200QO, and the upper and lower 2 The anti-oxidation effect of the coating layer was significant.
Table 1 Example 3 A silicate carbide-graphite type brick consisting of 83% SIC, 12% C (graphite), and 5% other materials (65 legs x 12 bricks x 23
A coating material of kamelite slip (W ) for 6 minutes, the surface was coated with a 0.5 willow-thick bottom layer, and after air drying, this was further mixed with 40% Rouseki, 45% glass powder, 5% clay, and 10% terra sand. TeS
i0261.2%, AI20311.3%, K20 and N
a209.8%, B2037.3% and others 10.
60 parts by weight of water and 3 parts by weight of valve waste liquid were added to 10 parts by weight of a 4% mixture, and wet milled for 3 hours in a ball mill.
Two samples (J) were immersed in the coating material (V) with a grain size of 325 mesh or less and covered with an upper layer of 0.5 rib thickness, and the coating material (W) and (
Two samples (K) were obtained by coating V) on the lower layer and upper layer by 0.5 ribs each, which were further immersed in the coating material (N) to form a three-layer coating layer. Two samples (L) were prepared by immersing them in immersion solution V) to form a coating layer of 0.5 side thickness on the lower and upper layers, and each sample (J) (K
) and (L) were heated at 100,000 and 1,200 q0 for 5 hours, respectively, and the oxidation loss of each sample was measured.

その結果は第2表に示す如くで組成の異なる上、下2層
とした本発明に係わる試料(J)と、更にこれに下層材
を積層して3層よりなる被覆層を形成した試料(K)と
ではその差は殆んどなく、かつ該試料(J)、(K)共
に試料(L)に比しその酸化減量は各温度で共に略々1
/3であった。第2表 実施例 4 アルミナ−黒鉛質の連続鋳造用浸漬ノズルの供試体(中
空円筒)の全面に、実施例1で使用した被覆材(1)を
0.5側厚さだけ刷毛塗りし、乾燥して後、更に実施例
1の被覆材(0)を0.5側厚さ刷毛塗りした試料(M
)と供試体に上言己被覆材(ロ)を下、上層に試料(M
)と同様にして各0.5側宛刷毛塗りした試料(N)と
を実際に浸債ノズルとして使用後その内径寸法を測定し
た結果は、第3表に示す如く両試料(M)および(N)
の損耗程度に顕著な差がみられたのである。
The results are shown in Table 2, including a sample (J) according to the present invention with different compositions and two lower layers, and a sample (J) in which a lower layer material was further laminated to form a three-layer coating layer. There is almost no difference between sample (J) and sample (K), and the oxidation loss of sample (J) and sample (K) is approximately 1 at each temperature compared to sample (L).
/3. Table 2 Example 4 The coating material (1) used in Example 1 was applied with a brush to a thickness of 0.5 on the entire surface of a specimen (hollow cylinder) of an alumina-graphite continuous casting immersion nozzle, After drying, a sample (M
) and the specimen with the above-mentioned coating material (b) on the bottom, and the sample (M
) and the sample (N), which was applied with a brush to each 0.5 side, were actually used as bonding nozzles, and the inner diameter dimensions were measured. As shown in Table 3, both samples (M) and ( N)
There was a noticeable difference in the degree of wear and tear.

第3表 更に、上述の如く本発明では耐火物表面の被覆層には異
なる組成の上、下2層を形成せしめるようにしたが、こ
れを該上、下2層を複数回積層せしめて、より肉厚の耐
酸化性溶融ガラス相を被覆すれ‘よ、より完全な酸化防
止効果を発揮せしめうることは勿論である。
Table 3 Furthermore, as mentioned above, in the present invention, the coating layer on the surface of the refractory has two lower layers of different compositions, but the upper and lower two layers are laminated multiple times, Of course, a more complete oxidation-preventing effect can be exerted by coating with a thicker oxidation-resistant molten glass phase.

叙上の如くして本発明の黒鉛質または炭化珪素質耐火物
の酸化防止方法によれば、その表面に予じめ組成の異な
る上、下2層を被覆せしめることにより、高温使用に際
し高粘度、高密度の溶融被覆層が確実に形成されて従来
の酸化防止方法とは異なり優れた酸化防止効果を発揮せ
しめうるようになったので、製鉄工業に亘る産業的利用
効果は画期的と謂えるのである。
As described above, according to the method for preventing oxidation of a graphite or silicon carbide refractory of the present invention, by coating the surface of the refractory with an upper layer and a lower layer having different compositions in advance, high viscosity can be prevented when used at high temperatures. , a high-density molten coating layer is reliably formed, and unlike conventional oxidation prevention methods, it has become possible to exhibit an excellent oxidation prevention effect, so the industrial application effect in the steel industry is said to be revolutionary. It's possible.

【図面の簡単な説明】[Brief explanation of drawings]

実施例1における試料(A)、(B)、(C)および(
D)の加熱温度に対する酸化減量の変化を示すグラフで
ある。
Samples (A), (B), (C) and (
It is a graph which shows the change of oxidation weight loss with respect to heating temperature of D).

Claims (1)

【特許請求の範囲】[Claims] 1 黒鉛質または炭化硅素質耐火物の表面にSiO_2
含有量95%以上の被覆薄層と、更にその表面にSiO
_250〜80%、Al_2O_35〜30%、K_2
OとNa_2O3〜15%、B_2O_33〜15%、
およびFe_2O_3、ZnO、P_2O_5または、
PbOの混合物1〜15%を含有する被覆薄層を積層し
て後乾燥し、そして適宜高温域において該積層に耐火物
を被覆する高密度、高粘度の溶融ガラス相を形成せしめ
るようにしたことを特徴とする黒鉛質または炭化硅素質
耐火物の酸化防止方法。
1 SiO_2 on the surface of graphite or silicon carbide refractories
A thin coating layer with a content of 95% or more and a SiO layer on the surface.
_250-80%, Al_2O_35-30%, K_2
O and Na_2O3~15%, B_2O_33~15%,
and Fe_2O_3, ZnO, P_2O_5 or
Thin coating layers containing 1 to 15% of a mixture of PbO are laminated and then dried, and a high-density, high-viscosity molten glass phase covering the refractory is formed in the lamination at an appropriate high temperature. A method for preventing oxidation of graphite or silicon carbide refractories, characterized by:
JP52114933A 1977-09-24 1977-09-24 Method for preventing oxidation of graphite or silicon carbide refractories Expired JPS605556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52114933A JPS605556B2 (en) 1977-09-24 1977-09-24 Method for preventing oxidation of graphite or silicon carbide refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52114933A JPS605556B2 (en) 1977-09-24 1977-09-24 Method for preventing oxidation of graphite or silicon carbide refractories

Publications (2)

Publication Number Publication Date
JPS5447712A JPS5447712A (en) 1979-04-14
JPS605556B2 true JPS605556B2 (en) 1985-02-12

Family

ID=14650246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52114933A Expired JPS605556B2 (en) 1977-09-24 1977-09-24 Method for preventing oxidation of graphite or silicon carbide refractories

Country Status (1)

Country Link
JP (1) JPS605556B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4567103A (en) * 1983-07-28 1986-01-28 Union Carbide Corporation Carbonaceous articles having oxidation prohibitive coatings thereon
JPS6060993A (en) * 1983-09-14 1985-04-08 宮脇グレイズ工業株式会社 Manufacture of carbonaceous refractories
JPS63117955A (en) * 1986-05-22 1988-05-21 九州耐火煉瓦株式会社 Vessel for molten iron
CN1317343C (en) * 2005-03-25 2007-05-23 武汉钢铁(集团)公司 Anti-oxidation paint of fireproof carbon-containing materials

Also Published As

Publication number Publication date
JPS5447712A (en) 1979-04-14

Similar Documents

Publication Publication Date Title
US4559270A (en) Oxidation prohibitive coatings for carbonaceous articles
US4567103A (en) Carbonaceous articles having oxidation prohibitive coatings thereon
US5677250A (en) Low-temperature lead-free glaze for alumina ceramics
CN100567412C (en) Prevent coated material of carbon deposition of coke oven and preparation method thereof
JPH0397633A (en) Glass composition and usage thereof
US4951852A (en) Insulative coating for refractory bodies
EP1235762B1 (en) Insulating refractory material
CA1301780C (en) Insulative coating for refractory bodies
KR101053089B1 (en) Glaze for providing high glossy water color and a method for preparing tile having water color using the same
JP2021514018A (en) Chemical methods to reduce oxide scale formation in hot rolling
JPS605556B2 (en) Method for preventing oxidation of graphite or silicon carbide refractories
US2053244A (en) Composite article carrying a cellular backing of porcelain enamel and method of making same
US3035937A (en) Method for producing glazes
JP2963487B2 (en) Glaze and glazed articles
EP1230183B1 (en) Water-resistant porcelain enamel coatings and method of manufacturing same
JPH05262581A (en) Production of decorative ceramic
JPS5841782A (en) Oxidation prevention for graphite-containing refractories
US4386962A (en) Composition and method for producing ceramic articles
JPS609991B2 (en) Firing method for graphite or silicon carbide refractories
JPS6295353A (en) Coating material composition for coating refractory
SU944728A1 (en) Coating for ingot moulds and stools
SU1673549A1 (en) Brown glaze
JP2001158954A (en) Method of forming sprayed deposit free from penetrating pore, and member with the sprayed deposit
KR20050123331A (en) Composition of transparent glaze for plate
JPS6261553B2 (en)