JPS6055493B2 - Production method of α-branched aliphatic carboxylic acid anhydride - Google Patents

Production method of α-branched aliphatic carboxylic acid anhydride

Info

Publication number
JPS6055493B2
JPS6055493B2 JP52028322A JP2832277A JPS6055493B2 JP S6055493 B2 JPS6055493 B2 JP S6055493B2 JP 52028322 A JP52028322 A JP 52028322A JP 2832277 A JP2832277 A JP 2832277A JP S6055493 B2 JPS6055493 B2 JP S6055493B2
Authority
JP
Japan
Prior art keywords
carboxylic acid
copper
aliphatic carboxylic
branched aliphatic
acid anhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52028322A
Other languages
Japanese (ja)
Other versions
JPS53112804A (en
Inventor
隆夫 真木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP52028322A priority Critical patent/JPS6055493B2/en
Publication of JPS53112804A publication Critical patent/JPS53112804A/en
Publication of JPS6055493B2 publication Critical patent/JPS6055493B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 本発明はα−分岐脂肪族カルボン酸無水物の製造法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing α-branched aliphatic carboxylic acid anhydrides.

詳しくは、α−分岐脂肪族アルデヒドを液相において酸
化することによるα−分岐脂肪族カルボン酸無水物の製
造法に関するものである。従来、脂肪族カルボン酸無水
物を製造する方法としては、(1)はカルボン酸を無水
酢酸やケテンなどの脱水剤と反応させるかあるいは(2
)アルデヒドを分子状酸素により酸化する方法が知られ
ている。
Specifically, the present invention relates to a method for producing an α-branched aliphatic carboxylic acid anhydride by oxidizing an α-branched aliphatic aldehyde in a liquid phase. Conventionally, methods for producing aliphatic carboxylic acid anhydrides include (1) reacting carboxylic acid with a dehydrating agent such as acetic anhydride or ketene, or (2)
) A method of oxidizing aldehydes with molecular oxygen is known.

後者の方法は、アルデヒドから一段で酸無水物を製造で
きる点で優れており、アセトアルデヒドから無水酢酸を
製造するのに用いられている。しカルながら、従来の方
法では触媒としてコバルト−銅系化合物が使用されてお
り、この方法をそのままα−分岐脂肪族アルデヒドの酸
化に適用すると、酸化開裂等の副反応が盛んに生起し、
α−分岐脂肪族カルボン酸無水物はごく低収率でしか得
られなかつた。本発明者は、これらの事情に鑑みα−分
岐脂肪族カルボン酸の酸化反応につき鋭意研究したとこ
ろ、収率よくα−分岐脂肪族カルボン酸無水物が得られ
る触媒を見出し、本発明に到達した。
The latter method is superior in that it can produce acid anhydride from aldehyde in one step, and is used to produce acetic anhydride from acetaldehyde. However, the conventional method uses a cobalt-copper compound as a catalyst, and if this method is directly applied to the oxidation of α-branched aliphatic aldehydes, side reactions such as oxidative cleavage occur frequently,
α-Branched aliphatic carboxylic acid anhydrides were obtained only in very low yields. In view of these circumstances, the present inventor conducted intensive research on the oxidation reaction of α-branched aliphatic carboxylic acids, and discovered a catalyst that can obtain α-branched aliphatic carboxylic acid anhydrides in good yield, thereby achieving the present invention. .

すなわち、本発明の要旨はα−分岐脂肪族アルデヒドを
、液相において、銅または銅化合物の存在下に、分子状
酸素により酸化することを特徴とするα−分岐脂肪族カ
ルボン酸無水物の製造法に存する。以下に本発明を詳細
に説明する。
That is, the gist of the present invention is to produce an α-branched aliphatic carboxylic acid anhydride, which is characterized by oxidizing an α-branched aliphatic aldehyde with molecular oxygen in the presence of copper or a copper compound in a liquid phase. lies in the law. The present invention will be explained in detail below.

本発明方法が適用されるα−分岐脂肪族アルデヒドとし
ては、例えばイソブチルアルデヒド、2−エチルブチル
アルデヒド、2−エチルヘキシルアルデヒド、2−メチ
ルオクチルアルデヒド、シクロヘキサンカルバルデヒド
などが挙げられる。
Examples of the α-branched aliphatic aldehyde to which the method of the present invention is applied include isobutyraldehyde, 2-ethylbutyraldehyde, 2-ethylhexylaldehyde, 2-methyloctylaldehyde, and cyclohexanecarbaldehyde.

オレフィンのヒドロホルミル化により得られるいわゆる
オキソアルデヒドは、本発明方法の原料として好適であ
る。本発明の方法において、触媒として用いられる銅ま
たは銅化合物としては、反応系に可溶性である酢酸銅、
ナフテン酸銅、オクチル酸銅等のカルボン酸の銅塩、塩
化銅、アセチルアセトン銅などや、溶解度の極めて低い
金属銅、酸化第一銅、ヨウ化銅などを挙げることができ
、これらの中では反応系に可溶性の銅化合物が好ましい
So-called oxoaldehydes obtained by hydroformylation of olefins are suitable as raw materials for the process according to the invention. In the method of the present invention, the copper or copper compound used as a catalyst includes copper acetate, which is soluble in the reaction system;
Copper salts of carboxylic acids such as copper naphthenate and copper octylate, copper chloride, copper acetylacetone, etc., metal copper with extremely low solubility, cuprous oxide, copper iodide, etc. Copper compounds soluble in the system are preferred.

勿論、2種以上併用してさしつかえない。銅または銅化
合物として反応系に可溶性の銅化合物を用いる場合、そ
の量は反応系に対する銅原子の重量比として通常5pp
m〜5%、より好ましくは50ppm〜0.5%の範囲
である。
Of course, two or more types may be used in combination. When using a soluble copper compound in the reaction system as copper or a copper compound, the amount is usually 5 pp as a weight ratio of copper atoms to the reaction system.
The range is from m to 5%, more preferably from 50 ppm to 0.5%.

しかし、溶解度の低い銅または銅化合物を用いる場合に
は、前述の範囲より過剰に用いてもよい。酸化ガスとし
て用いる分子状酸素としては、空気、純酸素または不活
性ガスで希釈された酸素などが挙げられる。
However, when using copper or a copper compound with low solubility, it may be used in excess of the above range. Examples of molecular oxygen used as the oxidizing gas include air, pure oxygen, or oxygen diluted with an inert gas.

酸化に好適な反応温度は10℃〜100噌C1より好ま
しくは30℃〜80′Cの範囲である。
The reaction temperature suitable for the oxidation is in the range of 10°C to 100°C, more preferably 30°C to 80'C.

反応圧力は決定的ではないが、常圧または10k91c
1t程度の若干の加圧下で行つてもよい。反応により生
成する水を連続的に除去する工夫を施こせば、α一分岐
脂肪族カルボン酸無水物の収率の向上が認められる。
The reaction pressure is not critical, but may be normal pressure or 10k91c.
The heating may be carried out under a slight pressure of about 1 ton. If the water produced by the reaction is continuously removed, the yield of α-monobranched aliphatic carboxylic acid anhydride can be improved.

酸化反応は無溶媒で行うこともできるが、溶媒の存在下
で行つてもよい。
The oxidation reaction can be carried out without a solvent, but it can also be carried out in the presence of a solvent.

好ましい溶媒の例としては酢酸エチルなどの酢酸エステ
ル、アセトン、ベンゼンなど酸化反応に対して比較的不
活性な物質が挙げられる。溶媒の使用量には特に制限は
ない。このように酸化反応を行う際には、銅原子以外の
重金属原子の反応系内の存在量が少ないことが必要てあ
る。
Examples of preferred solvents include acetic acid esters such as ethyl acetate, acetone, benzene, and other substances that are relatively inert to oxidation reactions. There are no particular restrictions on the amount of solvent used. When carrying out the oxidation reaction in this manner, it is necessary that the amount of heavy metal atoms other than copper atoms present in the reaction system is small.

重金属原子の量が多いと酸化開裂等の副反応が盛んに起
るようになるので好ましくない。とくに、コバルトおよ
びマンガンの量が少ないことが必要で、それぞれ通常5
ppm以下、好ましくは1ppm以下であり、クロムお
よびバナジウムはそれぞれ通常20ppm以下、好まし
く5ppm以下、鉄は通常100ppm以下、好ましく
は20ppm以下てあるのがよい。(何れも重量比)ま
た、この酸化反応の際には、α一分岐脂肪族カルボン酸
無水物と共に対応するα一分岐脂肪族カルボン酸が同時
に生成するが、その生成比は目的に応じて反応条件を変
えれば変化させうる。
If the amount of heavy metal atoms is large, side reactions such as oxidative cleavage will actively occur, which is undesirable. In particular, low amounts of cobalt and manganese are required, usually 5% each.
ppm or less, preferably 1 ppm or less, chromium and vanadium each usually 20 ppm or less, preferably 5 ppm or less, and iron usually 100 ppm or less, preferably 20 ppm or less. (all ratios by weight) In addition, during this oxidation reaction, the α-monobranched aliphatic carboxylic acid anhydride and the corresponding α-monobranched aliphatic carboxylic acid are simultaneously produced, but the production ratio depends on the purpose of the reaction. It can be changed by changing the conditions.

酸化反応後は周知の分離・精製手段たとえば気液分離、
蒸留などを適宜組み合わせれば、目的と8するα一分岐
脂肪族カルホン酸無水物を得ることができる。本発明方
法によれば、原料のα一分岐脂肪族アルデヒドと同一の
炭素骨格を有するa一分岐脂肪族カルボン酸無水物が得
られる。
After the oxidation reaction, well-known separation and purification methods such as gas-liquid separation,
By appropriately combining distillation and the like, the desired α-monobranched aliphatic carbonic acid anhydride can be obtained. According to the method of the present invention, a monobranched aliphatic carboxylic acid anhydride having the same carbon skeleton as the raw material alpha monobranched aliphatic aldehyde can be obtained.

このようなα一町分岐脂肪族カルボン酸無水物としては
、例えば無水イソ酪酸、無水2−エチル酪酸、無水2−
エチルヘキサン酸、無水2−メチルオクタン酸、無水シ
クロヘキサンカルボン酸などが挙げられる。これらα一
分岐脂肪族カルボン酸無水物はセルロー・スエステルな
どの高分子材料や脱水剤として有用なほか、アシル化剤
など各種化学品の合成原料として有用である。本発明方
法によれば、これらのα一分岐脂肪族カルボン酸無水物
を収率良く製造でき、開裂副生物などは少ない。
Examples of such α-branched aliphatic carboxylic acid anhydrides include isobutyric anhydride, 2-ethylbutyric anhydride, and 2-ethylbutyric anhydride.
Examples include ethylhexanoic acid, 2-methyloctanoic anhydride, and cyclohexanecarboxylic anhydride. These α-monobranched aliphatic carboxylic acid anhydrides are useful as polymeric materials such as cellulose esters and dehydrating agents, and as raw materials for the synthesis of various chemicals such as acylating agents. According to the method of the present invention, these α-monobranched aliphatic carboxylic acid anhydrides can be produced with good yield, and there are few cleavage by-products.

なお、アセトアルデヒド等α一位に分岐のないアルデヒ
ドの場合には、銅または銅化合物を触媒としても、酸無
水物の収率は極めて低い。
In addition, in the case of an aldehyde such as acetaldehyde that has no branch at the α-1 position, the yield of acid anhydride is extremely low even if copper or a copper compound is used as a catalyst.

以下に実施例を挙げて、本発明を更に詳細に説明するが
、本発明はその要旨を超えない限り、以下の実施例によ
り何等の限定も受けるものではない。
EXAMPLES The present invention will be described in more detail with reference to Examples below, but the present invention is not limited in any way by the Examples unless the gist of the invention is exceeded.

J実施例1 ガラス製フラスコにイソブチルアルデヒド6.3V(8
7.4TrL,m01)および酢酸エチル35m1を仕
込み、触媒としてナフテン酸銅を銅原子として全糸に対
し50唾量Ppmの濃度になるように加えた。
J Example 1 Isobutyraldehyde 6.3V (8
7.4 TrL, m01) and 35 ml of ethyl acetate were charged, and copper naphthenate was added as a catalyst to give a concentration of 50 ppm as copper atoms to the entire yarn.

なお、この時の重金属不純物の濃度は、何れも1重量P
pm以下であつた。系を5(代)に温め、激しくかきま
ぜながら空気を5eIhrで吹込み、1.(至)間反応
を行わせた。
In addition, the concentration of heavy metal impurities at this time is 1 weight P
It was below pm. 1. Warm the system to a temperature of 5,000 ml, and blow in air at a rate of 5 eIhr while stirring vigorously. The reaction was allowed to take place for some time.

生成物を分析したところ、無水イソ酪酸17.5mm0
1(単通収率40.0%)、イソ酪酸25.17nm0
I(単通収率28.7%)が得られ、その他少量のアセ
トン、ギ酸イソプロピル、イソプロピルアルコール、プ
ロピレン、一酸化炭素、二酸化炭素の生成が認められた
。比較のため、ナフテン酸銅を添加しない他は全く同様
に酸化反応を行わせたところ、無水イソ酪酸の生成は殆
んど認められなかつた。
Analysis of the product revealed that it was 17.5 mm of isobutyric anhydride.
1 (single yield 40.0%), isobutyric acid 25.17nm0
I (single yield 28.7%) was obtained, and small amounts of acetone, isopropyl formate, isopropyl alcohol, propylene, carbon monoxide, and carbon dioxide were also observed to be produced. For comparison, an oxidation reaction was carried out in the same manner except that copper naphthenate was not added, and almost no production of isobutyric anhydride was observed.

実施例2 ガラス製フラスコに2−エチルヘキシルアルデヒド12
.2y(95.17TLm0りおよびベンゼン30m1
を仕込み、触媒として無水塩化第二銅50mgを加え、
60℃において実施例1と同様に酸化した。
Example 2 2-ethylhexylaldehyde 12 in a glass flask
.. 2y (95.17TLm0 and benzene 30m1
and added 50 mg of anhydrous cupric chloride as a catalyst.
Oxidation was carried out in the same manner as in Example 1 at 60°C.

なお、この時の重金属不純物の濃度は、何れも1重量P
pm以下てあつた。生成物を分析したところ、無水2−
エチルヘキサン酸40.4mm01(単通収率42.5
%)、2−エチルヘキサン酸50.5m,m01(53
.1%)が得られた。実施例3 ガラス製フラスコに2−メチルヘキシルアルデヒド25
.0y(219.2mm01)および触媒として銅粉0
.1fを加え、70℃において空気を3時間流通させて
酸化を行なつた。
In addition, the concentration of heavy metal impurities at this time is 1 weight P
It was below pm. Analysis of the product revealed that anhydrous 2-
Ethylhexanoic acid 40.4mm01 (single yield 42.5
%), 2-ethylhexanoic acid 50.5m, m01 (53
.. 1%) was obtained. Example 3 2-methylhexylaldehyde 25% in a glass flask
.. 0y (219.2mm01) and copper powder 0 as catalyst
.. 1f was added thereto, and air was circulated at 70° C. for 3 hours to carry out oxidation.

なお、この時の金属不純物の濃度は、何れも1重量Pp
m以下であつた。生成物を分析したところ、無水2「メ
チルヘキサン酸26.67nm0I(収率12.1%)
が生成していることが判明した。この場合でも、銅粉を
使用しないと酸無水物の生成は全く認められなかつた。
Note that the concentration of metal impurities at this time is 1 weight Pp.
It was less than m. Analysis of the product revealed that it was 26.67 nm of methylhexanoic anhydride (yield 12.1%).
was found to be generated. Even in this case, no acid anhydride formation was observed unless copper powder was used.

Claims (1)

【特許請求の範囲】[Claims] 1 α−分岐脂肪族アルデヒドを、液相において、銅ま
たは銅化合物の存在下に、分子状酸素により酸化するこ
とを特徴とするα−分岐脂肪族カルボン酸無水物の製造
法。
1. A method for producing an α-branched aliphatic carboxylic acid anhydride, which comprises oxidizing an α-branched aliphatic aldehyde with molecular oxygen in the presence of copper or a copper compound in a liquid phase.
JP52028322A 1977-03-15 1977-03-15 Production method of α-branched aliphatic carboxylic acid anhydride Expired JPS6055493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52028322A JPS6055493B2 (en) 1977-03-15 1977-03-15 Production method of α-branched aliphatic carboxylic acid anhydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52028322A JPS6055493B2 (en) 1977-03-15 1977-03-15 Production method of α-branched aliphatic carboxylic acid anhydride

Publications (2)

Publication Number Publication Date
JPS53112804A JPS53112804A (en) 1978-10-02
JPS6055493B2 true JPS6055493B2 (en) 1985-12-05

Family

ID=12245367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52028322A Expired JPS6055493B2 (en) 1977-03-15 1977-03-15 Production method of α-branched aliphatic carboxylic acid anhydride

Country Status (1)

Country Link
JP (1) JPS6055493B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140038A (en) * 1982-02-16 1983-08-19 Kuraray Co Ltd Preparation of azelaic acid

Also Published As

Publication number Publication date
JPS53112804A (en) 1978-10-02

Similar Documents

Publication Publication Date Title
JP5265130B2 (en) Catalytic process for the production of linear and β-alkyl branched aliphatic carboxylic acids
JP4955886B2 (en) Method for producing aliphatic carboxylic acid from aldehyde
JP5039297B2 (en) Process for the production of linear and β-alkyl branched aliphatic carboxylic acids
US2723994A (en) Oxidation of xylene and toluic acid mixtures to phthalic acids
US4256916A (en) Oxidation of polyethylene glycols to dicarboxylic acids
US4346232A (en) Process for producing aromatic polycarboxylic acid
RU2296743C2 (en) Adipic acid production process
US3929873A (en) Oxidation of polyethylene glycols to dicarboxylic acids
JPS6051150A (en) Production of biphenyltetracarboxylic acid ester
JP4788022B2 (en) Process for producing aromatic polycarboxylic acid
JPS6051151A (en) Production of biphenyltetracarboxylic acid ester
JP2008534577A (en) Method for producing p-toluic acid by liquid phase oxidation of p-xylene in water
JPS6055493B2 (en) Production method of α-branched aliphatic carboxylic acid anhydride
JPS61126037A (en) Organic soluble molybdenum_containing compound and manufacture
US4214100A (en) Process for preventing blackening of phthalic acid
JPS6112647A (en) Manufacture of carbonyl compound
US3865856A (en) Process for the preparation of carboxylic acids from vicinal diols
JPS6033098B2 (en) Production method of high purity maleic acid monoalcohol ester
US3452087A (en) Process for the autoxidation of substituted benzenes
JP3759847B2 (en) Method for activating vanadium-phosphorus catalyst
JP2812701B2 (en) A catalytic method for the synthesis of ethylene-tetracarboxylic esters.
JPH0525149A (en) Production of styrene oxide
JPH06211733A (en) Production of 2,6-naphthalene dicarboxylic acid
JPS5948817B2 (en) Simultaneous production method of ε-caprolactone and carboxylic acids
US3673244A (en) Method of producing aromatic carboxylic acids from alkylbenzenes