JPS6055226B2 - How to weld austenitic stainless steel - Google Patents

How to weld austenitic stainless steel

Info

Publication number
JPS6055226B2
JPS6055226B2 JP7326577A JP7326577A JPS6055226B2 JP S6055226 B2 JPS6055226 B2 JP S6055226B2 JP 7326577 A JP7326577 A JP 7326577A JP 7326577 A JP7326577 A JP 7326577A JP S6055226 B2 JPS6055226 B2 JP S6055226B2
Authority
JP
Japan
Prior art keywords
welding
heat
stainless steel
bead
austenitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7326577A
Other languages
Japanese (ja)
Other versions
JPS548133A (en
Inventor
重次 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7326577A priority Critical patent/JPS6055226B2/en
Publication of JPS548133A publication Critical patent/JPS548133A/en
Publication of JPS6055226B2 publication Critical patent/JPS6055226B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Description

【発明の詳細な説明】 本発明は、原子炉用ステンレス鋼配管その他腐食環境
で使用されるオーステナイト系ステンレス鋼の溶接方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for welding stainless steel piping for nuclear reactors and other austenitic stainless steels used in corrosive environments.

オーステナイトステンレス鋼は、溶接すると熱影響部
において550〜850℃に加熱された範囲におけるオ
ーステナイト粒界に炭火物が析出し腐食され易くなる。
When austenitic stainless steel is welded, charcoal precipitates at the austenite grain boundaries in the range heated to 550 to 850° C. in the heat affected zone, making it susceptible to corrosion.

この部分が腐食環境で使用されると粒界腐食を生じ、引
張残留応力が存在すると結晶粒界に応力腐食割れが発生
する。応力腐食割れはBWR型原子炉では、1次系ステ
ンレス鋼配管の熱影響部に最も多く発生しており、その
対策が行われている。これらの応力腐食割れ防止対策と
しては溶接入熱を20000JIC771以下に制限し
たり、管内面肉盛溶接により熱影響部の部分を予め耐食
性のすぐれた溶着金属て肉盛り溶接したり、または内面
より水冷しながら溶接する方法が適用されている。しか
し、いずれも通常の溶接に比べて著しく手数が掛かり作
業能率を低下させている。 そして、ステンレス鋼熱影
響部の鋭敏化を軽減するためにステンレス鋼管を突合せ
溶接する際、初層部を溶接して開先ルート部をシールし
た後、以後の溶接を上記したように被接管内面より水を
流して冷却しながら溶接することにより応力腐食割れ防
止の方法においては、次の如き欠点がある。即ち、冷却
水を送給するための貯水タンクや送水ポンプ、噴水ノズ
ル等を必要とし、その準備、後片付けに手数を要し、ま
た、現地溶接のように管端から溶接個所まで距離が長い
場合溶接部の内面水冷はかなり困難てある。更に、初層
は溶接金属と冷却水と直接々触することを防止するため
水冷が出来ないので、熱影響部の組織の鋭敏化防止が不
充分となる。 本発明の目的は、施工手段に多大の工数
を要する冷冷を行わないで、熱影響部の鋭敏化域を減少
出来るオーステナイトステンレス鋼の溶接方法をを提供
することにある。
If this part is used in a corrosive environment, intergranular corrosion will occur, and if tensile residual stress is present, stress corrosion cracking will occur at the grain boundaries. In BWR nuclear reactors, stress corrosion cracking occurs most often in the heat affected zone of the primary stainless steel piping, and countermeasures are being taken. Measures to prevent stress corrosion cracking include limiting the welding heat input to 20000JIC771 or less, welding the heat-affected zone with a weld metal with excellent corrosion resistance in advance by overlaying the inner surface of the tube, or applying water cooling from the inner surface. The welding method is applied. However, both methods require significantly more work than normal welding, reducing work efficiency. When butt welding stainless steel pipes to reduce the sensitization of the stainless steel heat-affected zone, the first layer is welded to seal the groove root, and subsequent welding is performed on the inner surface of the welded pipe as described above. The method of preventing stress corrosion cracking by welding while cooling by flowing water has the following drawbacks. In other words, it requires a water storage tank, a water pump, a fountain nozzle, etc. to supply cooling water, and it takes time to prepare and clean up afterwards, and when the distance from the pipe end to the welding point is long, such as in on-site welding. Water cooling the inner surface of the welded part is quite difficult. Furthermore, since the first layer cannot be cooled with water to prevent direct contact between the weld metal and the cooling water, it is insufficient to prevent the structure of the heat affected zone from becoming sensitized. An object of the present invention is to provide a welding method for austenitic stainless steel that can reduce the sensitized region of the heat-affected zone without performing cooling, which requires a large number of man-hours.

本発明は、母材またはその開先部と直接接する部分の
ヒートの溶接入熱量を8000JICrfl以下とし、
他のヒート部分を通常の溶接入熱量で溶接するようにし
たものである。
The present invention sets the welding heat input of the heat of the part directly in contact with the base metal or its groove to be 8000 JICrfl or less,
The other heated parts are welded with the normal welding heat input.

以下本発明のオーステナイトステンレス鋼の溶接方法
の一実施例を従来方法と比較し説明する本発明は、オー
ステナイトステンレス鋼においてヒート溶接した場合、
熱影響部の炭化物析出域(鋭敏化域)の程度は、同一寸
法ならびに形状の母材・では近似的に溶接入熱量に比例
することを応用し、開先に隣接するヒートの入熱量を溶
接可能な最小限の値に押さえて、母材の鋭敏化域を水冷
溶接と同程度に軽減する方法である。
An embodiment of the welding method for austenitic stainless steel according to the present invention will be explained below in comparison with a conventional method.
Applying the fact that the degree of carbide precipitation region (sensitized region) in the heat-affected zone is approximately proportional to the welding heat input for base metals of the same size and shape, welding heat input adjacent to the groove is This is a method of reducing the sensitized region of the base metal to the same level as water-cooled welding by keeping it to the minimum possible value.

入熱制限の効果の具体例として、厚さが6顛のSUS3
O4の母材1を開いたビード2(D3O8)置き試験の
結果を第1図イ(本発明の方法の場合)と口(従来の方
法の場合)に示す。イは5000J1dの小径溶接棒に
よる小人熱ビード2であり口は14000JIcr!l
の通常人熱ビード4の場合である。即ち、SUS3O4
の被覆アーク溶接においては、作業能率、作業性、アー
クの安定性、習慣などの点からステンレス鋼の通常の溶
接作業の場合には10000〜20000JIcrft
程度の入熱量が使用されている。しかし、5000JI
cTn程度の極小人熱で溶接すると、口の14000J
Icrf1の場合に比較し、同じビード量の場合にビー
ド断面における母材鋭敏化域3が第1図に示す如く著し
く少い。尚、5は母材溶体化域である。第2図に本発明
溶接方法による開先部の突合せ溶接時のヒート積層要領
を従来法と比較して示す。
As a specific example of the effect of limiting heat input, a 6-thickness SUS3
The results of the bead 2 (D3O8) placement test with the O4 base material 1 open are shown in Figure 1A (for the method of the present invention) and Figure 1 (for the conventional method). A is a dwarf heat bead 2 with a small diameter welding rod of 5000J1d, and the mouth is 14000JIcr! l
This is the case of the normal human heat bead 4. That is, SUS3O4
In covered arc welding, from the viewpoint of work efficiency, workability, arc stability, customs, etc., 10,000 to 20,000 JIcrft is required for normal stainless steel welding work.
A certain amount of heat input is used. However, 5000JI
When welding with minimal human heat of about cTn, 14000J of mouth
Compared to the case of Icrf1, when the bead amount is the same, the base material sensitized region 3 in the bead cross section is significantly smaller as shown in FIG. Note that 5 is the base material solution region. FIG. 2 shows the procedure for heat lamination during butt welding of grooves by the welding method of the present invention in comparison with the conventional method.

本発明による突合せ溶接において、直接開先面に接しな
い小人熱ビード2と隣接する通常人熱ビード4溶接によ
つて生ずる鋭敏化域は小人熱ビード2内に生成するが、
この場合、ステンレス鋼溶着金属は5〜15%程度のδ
フェライトを含むため鋭敏化熱サイクルを受けても溶着
金属のオーステナイト粒界が鋭敏化するおそれはない。
また、小人熱ビード2を置くことにより口に示す従来方
法に比べて開先幅は狭くなり、通常人熱によるビーード
幅よりも狭くすることができ低入熱溶接が可能となる。
第2図においても本発明方法によるイの母材鋭敏化域3
は従来方法による口の母材鋭敏化域3より著しく小さい
。尚母材1の材質はオーステナイトステンレス鋼である
。第3図は、SUS3O4、6B(6インチ外径)管、
スケジュール80(肉厚11?)ステンレス鋼管を突合
せ溶接の場合の本発明のオーステナイト鋼の溶接方法の
一実施例と従来方法とを第5図に示す溶接条件で実施の
場合を示す。
In the butt welding according to the present invention, the sensitized region caused by welding the normal human heat bead 4 adjacent to the small heat bead 2 which is not in direct contact with the groove surface is generated within the small heat bead 2;
In this case, the stainless steel weld metal has a δ of about 5 to 15%.
Since it contains ferrite, there is no fear that the austenite grain boundaries of the weld metal will become sensitized even if subjected to a sensitization thermal cycle.
In addition, by placing the dwarf heat bead 2, the groove width becomes narrower than in the conventional method as shown in the figure, and can be made narrower than the bead width normally produced by human heat, making it possible to perform low heat input welding.
In Fig. 2, the base material sensitized area 3 of A by the method of the present invention is also shown.
is significantly smaller than the oral matrix sensitization zone 3 according to the conventional method. The material of the base material 1 is austenitic stainless steel. Figure 3 shows SUS3O4, 6B (6 inch outer diameter) pipe,
An embodiment of the austenitic steel welding method of the present invention and a conventional method in the case of butt welding a schedule 80 (thickness 11?) stainless steel pipe are shown under the welding conditions shown in FIG.

溶接後ビード断面の熱影響部の粒界炭化物の析出域、即
ち鋭敏化域を、10%硝酸+3%弗酸の70℃水溶液に
2時間浸漬して腐食し、通常の溶接条件による場合と実
験的に比較した結果、イに示す本発明方法の実施例の場
合、鋭敏化域3の層の最高厚さが2.5及び2.7?で
あるのに対し、口に示す従来方法ては9.3及び9.1
Tfnであり、約113以下に減少させることができた
。尚、この場合の溶接条件は表に示す如く、初めのバス
1,2,3をイ,口ともタングステンアークアルゴンガ
ス被覆溶接で突合せ部を固着の後表1に( )内の数字
が示す順序で第5図に示す条件で行つた。表1の溶接条
件に示した小人熱ビードは5300JIcmであるが、
実験の結果、8000J1d以下てあれば熱影響部の鋭
敏化域を従来法に比べ十分小さく、板厚127n!nに
おいて最大鋭敏化幅を3顛以下に押えることができる。
尚、6は溶着金属である。上記のように、オーステナイ
トステンレス鋼を溶接する場合に熱影響部の鋭敏化を水
冷等の強制冷却を行うことなく大幅に軽減するために母
材に接するビードは小径溶接棒を用いて極小人熱で溶接
し、開先中央部は通常の溶接入熱を用いて溶接する方法
である。
After welding, the precipitated region of intergranular carbides in the heat-affected zone of the bead cross section, that is, the sensitized region, was immersed in a 70°C aqueous solution of 10% nitric acid + 3% hydrofluoric acid for 2 hours to corrode it. As a result of comparison, in the case of the embodiment of the method of the present invention shown in A, the maximum thickness of the layer in the sensitized region 3 was 2.5 and 2.7? In contrast, the conventional method shown in the mouth is 9.3 and 9.1.
Tfn, which could be reduced to about 113 or less. In addition, the welding conditions in this case are as shown in the table, after first bus 1, 2, and 3 are welded with tungsten arc argon gas coating, the butt parts are fixed, and then the welding conditions are in the order indicated by the numbers in parentheses in Table 1. The test was carried out under the conditions shown in FIG. The dwarf heat bead shown in the welding conditions in Table 1 is 5300JIcm,
As a result of the experiment, if it is less than 8000J1d, the sensitized region of the heat affected zone is sufficiently smaller than that of the conventional method, and the plate thickness is 127n! In n, the maximum sensitization width can be kept to 3 frames or less.
In addition, 6 is a weld metal. As mentioned above, when welding austenitic stainless steel, in order to significantly reduce the sensitization of the heat-affected zone without using forced cooling such as water cooling, the bead in contact with the base metal is welded using a small diameter welding rod. This method uses normal welding heat input to weld the center part of the groove.

そして、開先に隣接する部分のビードを5000〜60
00JIdの小人熱で溶接することにより母材熱影響部
の鋭敏化幅を著しく縮少することができ巾バイブ(スケ
ジュール80)で鋭敏化幅を113以下に減少すること
が出来た。特に、肉厚が薄い場合入熱減少の効果は更に
大きくなるので、小径、薄肉管では鋭敏化軽減の効果は
更に増加する。また、従来の管内水冷却の場合、過冷却
による開先部の露点付着による溶接欠陥の発生も解消さ
れ、溶接方法の工夫、改善のみで水冷法と同等の効果を
挙げることができ、水冷却設備を不要とし作業工数も大
幅に低減出来る。以上記述した如く本発明のオーステナ
イトステンレス鋼の溶接方法によれば、施工手段に多く
の作業工数を要する水冷却を行わないで、熱影響部の鋭
敏化域を減少出来、しかも、作業工数を著しく低減する
ことができる効果を有するものである。
Then, the bead of the part adjacent to the groove is 5000~60.
By welding with dwarf heat of 00 JId, the sensitization width of the heat affected zone of the base metal could be significantly reduced, and the sensitization width could be reduced to 113 or less with a width vibe (schedule 80). In particular, when the wall thickness is thin, the effect of reducing heat input becomes even greater, so the effect of reducing sensitization further increases with small diameter and thin-walled pipes. In addition, in the case of conventional water cooling in pipes, the occurrence of welding defects due to dew point adhesion at the groove due to supercooling is eliminated, and it is possible to achieve the same effect as the water cooling method simply by devising and improving the welding method. No equipment is required, and the number of man-hours can be significantly reduced. As described above, according to the austenitic stainless steel welding method of the present invention, the sensitized region of the heat affected zone can be reduced without water cooling, which requires a large number of man-hours, and the number of man-hours is significantly reduced. This has the effect of reducing the

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のオーステナイトステンレス鋼の溶接方
法による母材接触部の小人熱ビードと従来方法による母
材接触部の通常人熱ビードとによる鋭敏化域の比較を示
し、イは本発明方法による溶接部断面図、町ま従来方法
による溶接部断面図、第2図は本発明方法による開先部
の突合せ溶接時のビード積層要領を従来方法と比較して
示し、イは本発明方法による溶接部断面図、口は従来方
法による溶接部断面図、第3図は本発明のオーステナイ
トステンレス鋼の溶接方法による溶接・部と従来方法に
よる溶接部の鋭敏化域の比較を示し、イは本発明溶接方
法による溶接部断面図、口は従来方法による溶接部断面
図、第4図は第3図の溶接方法実施時のビードを置く順
序を示し、イは本発明溶接方法の場合の説明図、口は従
来方法7の場合の説明図である。 1・・・・・・母材、2・・・・・・小人熱ビード、3
・・・・・・母材鋭敏化域、4・・・・・・通常人熱ビ
ード。
FIG. 1 shows a comparison of the sensitized area caused by the small heat bead at the base metal contact area by the austenitic stainless steel welding method of the present invention and the normal human heat bead at the base metal contact area by the conventional method. A sectional view of a welded area by the conventional method, a sectional view of a welded area by the conventional method, and FIG. Fig. 3 shows a comparison of the sensitized area of the welded part by the welding method of austenitic stainless steel of the present invention and the welded part by the conventional method. A sectional view of a welded part by the welding method of the present invention, the opening is a sectional view of a welded part by the conventional method, FIG. 4 shows the order in which beads are placed when implementing the welding method of FIG. 3, and A is an explanation of the case of the welding method of the present invention. Figure 1 is an explanatory diagram of conventional method 7. 1...Base material, 2...Dwarf heat bead, 3
...Base metal sensitization area, 4...Normal human heat bead.

Claims (1)

【特許請求の範囲】[Claims] 1 母材またはその開先部と直接接する部分のビードの
溶接入熱量を、8000J/cm以下とし、他のビード
部分を通常の溶接入熱量で溶接することを特徴とするオ
ーステナイトステンレス鋼の溶接方法。
1. A method for welding austenitic stainless steel, characterized in that the welding heat input of the bead in the part that is in direct contact with the base metal or its groove is 8000 J/cm or less, and other bead parts are welded with the normal welding heat input. .
JP7326577A 1977-06-22 1977-06-22 How to weld austenitic stainless steel Expired JPS6055226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7326577A JPS6055226B2 (en) 1977-06-22 1977-06-22 How to weld austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7326577A JPS6055226B2 (en) 1977-06-22 1977-06-22 How to weld austenitic stainless steel

Publications (2)

Publication Number Publication Date
JPS548133A JPS548133A (en) 1979-01-22
JPS6055226B2 true JPS6055226B2 (en) 1985-12-04

Family

ID=13513158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7326577A Expired JPS6055226B2 (en) 1977-06-22 1977-06-22 How to weld austenitic stainless steel

Country Status (1)

Country Link
JP (1) JPS6055226B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4528683B2 (en) * 2005-07-14 2010-08-18 日立Geニュークリア・エナジー株式会社 Narrow groove welding method, welded structure, and welding apparatus therefor
JP4775869B1 (en) * 2010-05-27 2011-09-21 シャープ株式会社 Photoelectric conversion device

Also Published As

Publication number Publication date
JPS548133A (en) 1979-01-22

Similar Documents

Publication Publication Date Title
CN109317789A (en) The welding method of heat exchanger built-up welding tube sheet and T91 heat exchanger tube
JPS622903B2 (en)
CN108406054A (en) The connection processing technology of the exchanger tubes and tubesheets of heat exchanger
JPS6055226B2 (en) How to weld austenitic stainless steel
JPH0524985B2 (en)
CN109504908A (en) A kind of cupric titanium high intensity high corrosion resistance stainless steel and preparation method thereof
CN109504835A (en) A kind of copper tungsten enhancing austenitic stainless steel against corrosion and preparation method thereof
JPH0929429A (en) Welding procedure
CN109504826B (en) Copper-vanadium-containing high-strength high-corrosion-resistance stainless steel and preparation method thereof
JP2865749B2 (en) Piping reforming method
CN109504830A (en) A kind of copper niobium austenitic stainless steel against corrosion and preparation method thereof
CN109504918A (en) A kind of cupric hafnium high intensity high corrosion resistance stainless steel and preparation method thereof
CN109504922A (en) A kind of copper tantalum austenitic stainless steel against corrosion and preparation method thereof
JPS5928576A (en) Prevention of stress corrosion cracking
CN109504907A (en) A kind of cupric zirconium high intensity high corrosion resistance stainless steel and preparation method thereof
Moen et al. A consideration on limits of cold working in nuclear construction
Banker Commercial applications of zirconium explosion clad
JP2003149366A (en) Wrapper tube with welded joint, and its manufacturing method
JPH08269641A (en) Austenitic stainless steel pipe for hot water supply pipe, excellent in stress corrosion cracking resistance
Karvats' kii et al. The scope for replacing stainless-steel valve bodies by low-carbon steel
JPS5447839A (en) Prepartion of welded joint
JPH07214373A (en) Welding structure of steel tube plate and steel tube and welding structure of steel tube drawback and steel tube
JPS6380972A (en) Piping joining method for pressure container
Curinga et al. PHASE II
CN109504834A (en) A kind of cupric tantalum high intensity high corrosion resistance stainless steel and preparation method thereof