JP4528683B2 - Narrow groove welding method, welded structure, and welding apparatus therefor - Google Patents

Narrow groove welding method, welded structure, and welding apparatus therefor Download PDF

Info

Publication number
JP4528683B2
JP4528683B2 JP2005205037A JP2005205037A JP4528683B2 JP 4528683 B2 JP4528683 B2 JP 4528683B2 JP 2005205037 A JP2005205037 A JP 2005205037A JP 2005205037 A JP2005205037 A JP 2005205037A JP 4528683 B2 JP4528683 B2 JP 4528683B2
Authority
JP
Japan
Prior art keywords
welding
groove
heat input
layer
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005205037A
Other languages
Japanese (ja)
Other versions
JP2007021516A (en
Inventor
昭慈 今永
健 尾花
栄次 芦田
宏夫 小出
湘軍 羅
章二 林
智 菅野
景 根布
信義 柳田
英世 斉藤
健二 勝山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2005205037A priority Critical patent/JP4528683B2/en
Publication of JP2007021516A publication Critical patent/JP2007021516A/en
Application granted granted Critical
Publication of JP4528683B2 publication Critical patent/JP4528683B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Description

本発明は、開先継手の管部材又は板部材の片面溶接で生じる裏面側の裏ビード部分及びその近傍の残留応力を圧縮応力に改善する狭開先溶接方法及び溶接構造物並びにその溶接装置に関する。   TECHNICAL FIELD The present invention relates to a narrow bead welding method, a welded structure, and a welding apparatus thereof for improving a backside bead portion on the back side generated by one-side welding of a pipe member or a plate member of a groove joint and a residual stress in the vicinity thereof to compressive stress. .

原子力発電プラントや火力発電プラントの容器,配管,構成部品などの溶接構造物に用いられるオーステナイト系ステンレス鋼材は、溶接などによって結晶粒界にCr炭化物が析出し易く、結晶粒界近傍にCr欠乏層の形成により腐食に対する割れ感受性(材料の鋭敏化)が高くなる。また、溶接部分(溶接金属部及び隣接する熱影響部)には、高い引張残留応力が存在しており、高温水などの厳しい腐食環境下で使用されるので応力腐食割れが発生し易い。この応力腐食割れを防止するためには、前記材料の鋭敏化,引張応力,腐食環境の3因子の中から1つの因子を取り除く必要がある。このため、特に、高温水などの腐食環境下にさらされる溶接部分の表面及び近傍に残留する引張応力を圧縮応力に改善する又は大幅低減が強く求められ、溶接方法や溶接装置が幾つか提案されている。   Austenitic stainless steel materials used in welded structures such as containers, pipes, and components of nuclear power plants and thermal power plants tend to precipitate Cr carbide at the grain boundaries due to welding, and a Cr-deficient layer near the grain boundaries. The cracking susceptibility (material sensitization) to corrosion increases due to the formation of. Further, a high tensile residual stress exists in the welded portion (welded metal portion and adjacent heat-affected zone), and stress corrosion cracking is likely to occur because it is used in a severe corrosive environment such as high-temperature water. In order to prevent this stress corrosion cracking, it is necessary to remove one factor from the three factors of sensitization of the material, tensile stress, and corrosive environment. For this reason, in particular, there is a strong demand to improve or greatly reduce the tensile stress remaining in and near the surface of the welded part exposed to corrosive environments such as high-temperature water, and several welding methods and equipment have been proposed. ing.

特許文献1(特公昭53−38246号公報)に記載の配管系の熱処理方法では、溶接組み立て後の配管の内部に冷却水を存在させ、前記配管の外部を加熱して管内面と管外面との間に温度差を発生させ、管内面を引張降伏させ、管外面を圧縮降伏させることが提案されている。   In the piping system heat treatment method described in Patent Document 1 (Japanese Patent Publication No. 53-38246), cooling water is present inside the pipe after the welding assembly, and the outside of the pipe is heated so that the pipe inner surface and the pipe outer surface It has been proposed that a temperature difference be generated during this period, the inner surface of the tube be tensile yielded, and the outer surface of the tube be compressed and yielded.

特許文献2(特開2001−141629号公報)に記載のオーステナイト系ステンレス鋼溶接部位の予防保全方法及び装置では、線状の溶接部位を追従しながら高周波加熱コイルを移動させ、この高周波加熱コイルによって溶接部位を応力降伏点の温度より高い温度まで加熱する手順と、過熱領域に冷却水を噴出して急速冷却する手順を有することが提案されている。   In the preventive maintenance method and apparatus for an austenitic stainless steel welded part described in Patent Document 2 (Japanese Patent Laid-Open No. 2001-141629), a high-frequency heating coil is moved while following a linear welded part, It has been proposed to have a procedure for heating the welded part to a temperature higher than the temperature of the stress yield point, and a procedure for rapidly cooling the jet region by jetting cooling water into the overheated region.

特許文献3(特表平9−512485号公報)に記載の金属部品を接合する方法及び装置では、選定速度(毎分127cm以上)で走行する電極先端のチップ近傍に溶接材を連続的に供給する段階と、前記チップからの放電電流によって溶接材料を開先内で連続的に溶融する段階と、溶接ビードを形成する段階とを有し、前記電極はチップに接合及び電気的に接続された非円形断面のブレードを有し、所定数の溶接パス全体で圧縮性のある最終残留応力状態を外部にヒートシンク媒体なしで生成して達成することが提案されている。   In the method and apparatus for joining metal parts described in Patent Document 3 (Japanese Patent Publication No. 9-512485), welding material is continuously supplied near the tip of the electrode tip that runs at a selected speed (127 cm / min or more). A step of continuously melting the welding material in the groove by a discharge current from the tip, and forming a weld bead, wherein the electrodes are joined and electrically connected to the tip. It has been proposed to achieve a final residual stress state that has a non-circular cross-section blade and that is compressible over a predetermined number of weld passes, without an external heat sink medium.

また、特許文献4(特表平9−512486号公報)は高いトーチ走行速度を用いて溶接金属部品における残留応力を緩和する方法が記載されている。キャップパス(最終仕上溶接)の際に、毎分254mm(10インチ)より速いトーチ走行速度で溶接継手の遠表面(開先表面側)を加熱(溶融)して、近表面(開先底面側)と遠表面との間に温度分布を生成させる段階と、遠表面を冷却させて、圧縮応力又は小さな引張応力を前記近表面に生成させる段階とを内面側にヒートシンク(水冷)なしで実施することが提案されている。   Patent Document 4 (Japanese Patent Publication No. 9-512486) describes a method of relaxing residual stress in a weld metal part using a high torch travel speed. During the cap pass (final finish welding), the far surface (groove surface side) of the welded joint is heated (melted) at a torch travel speed faster than 254 mm (10 inches) per minute, and the near surface (groove bottom side) ) And a far surface, and a step of cooling the far surface and generating a compressive stress or a small tensile stress on the near surface without heat sink (water cooling) on the inner surface side. It has been proposed.

また、特許文献5(特開平2−258190号公報)に記載の配管の改善方法では、圧力容器の炉水を保持した状態で、1〜30kJ/cmの範囲の入熱量で溶接熱影響部を加熱する領域と、1〜5kJ/cmの範囲の入熱量で溶接熱影響部を加熱する領域とに分けることが提案されている。   Moreover, in the piping improvement method described in Patent Document 5 (Japanese Patent Laid-Open No. 2-258190), the welding heat affected zone is formed with a heat input in the range of 1 to 30 kJ / cm while holding the reactor water in the pressure vessel. It has been proposed to divide into a heating area and a heating area of the welding heat affected zone with a heat input in the range of 1 to 5 kJ / cm.

また、特許文献6(特公昭59−21711号公報)に記載のステンレス鋼材の溶接方法では、溶接継手部近傍の腐食性流体に接する面に耐食材料を事前に肉盛し、この肉盛部に隣接及び前記腐食性流体に接する部分に5kJ/cm以下の入熱条件で溶融処理し、その後に、前記継手部に開先を形成して溶接することが提案されている。   In addition, in the method for welding stainless steel materials described in Patent Document 6 (Japanese Patent Publication No. 59-21711), a corrosion-resistant material is previously deposited on the surface in contact with the corrosive fluid near the weld joint, It has been proposed to melt the adjacent portion and the portion in contact with the corrosive fluid under a heat input condition of 5 kJ / cm or less, and then form a groove in the joint and weld it.

さらに、特許文献7(特公昭62−19953号公報)に記載のオーステナイト系ステンレス鋼の狭開先継手の多層盛溶接方法では、開先最深部に近い側の層をオーステナイト系溶加材を用いて溶着(溶接)し、前記層に隣接する外側の少なくとも1つの層をマルテンサイト系溶加材を用いて溶接することが提案されている。   Furthermore, in the multi-layer welding method for narrow groove joints of austenitic stainless steel described in Patent Document 7 (Japanese Patent Publication No. 62-19953), an austenitic filler material is used for the layer closer to the deepest groove. It has been proposed to weld (weld) and weld at least one outer layer adjacent to the layer using a martensitic filler material.

また、特許文献8(特開平11−138290号公報)に記載の溶接方法及び溶接材料では、溶接によって生成する溶接金属に溶接後の冷却過程でマルテンサイト変態を生じさせ、前記溶接金属が室温時においてマルテンサイト変態の開始温度(例えば250℃未満170度以下)時より膨張している状態にすることが提案されている。   Moreover, in the welding method and welding material described in Patent Document 8 (Japanese Patent Laid-Open No. 11-138290), a martensitic transformation is caused in the weld metal generated by welding in the cooling process after welding, and the weld metal is at room temperature. It has been proposed to make a state of expansion from the start temperature of martensitic transformation (for example, less than 250 ° C. and 170 degrees or less).

また、特許文献9(特開平9−253860号公報)に記載の高張力鋼のTIG溶接方法及びTIG溶接用ソリッドワイヤでは、全溶着金属のマルテンサイト変態開始温度が
400℃以下であり、ワイヤ全重量に対してNiが7.5〜12%を含有し、Cが0.1%以下、Hは2ppm 以下に規制されたソリッドワイヤを使用し、ワイヤ送り速度を5〜40g/分にして溶接することが提案されている。
Further, in the TIG welding method and solid wire for TIG welding of high-strength steel described in Patent Document 9 (Japanese Patent Application Laid-Open No. 9-253860), the martensitic transformation start temperature of all weld metals is 400 ° C. or less, Welding using solid wire with 7.5 to 12% Ni, C 0.1% or less and H 2ppm or less, with wire feed rate 5-40g / min. It has been proposed to do.

特公昭53−38246号公報(特許第957324号)Japanese Patent Publication No. 53-38246 (Patent No. 957324) 特開2001−141629号公報JP 2001-141629 A 特表平9−512485号公報(特許第3215427号)Japanese National Patent Publication No. 9-512485 (Patent No. 3215427) 特表平9−512486号公報(特許第3137985号)Japanese National Patent Publication No. 9-512486 (Patent No. 3137985) 特開平2−258190号公報(特許第2865749号)JP-A-2-258190 (Japanese Patent No. 2865749) 特公昭59−21711号公報(特許第1248914号)Japanese Patent Publication No.59-21711 (patent 1248914) 特公昭62−19953号公報(特許第1415054号)Japanese Examined Patent Publication No. 62-19953 (Patent No. 1415054) 特開平11−138290号公報(特許第3350726号)JP 11-138290 A (Patent No. 3350726) 特開平9−253860号公報JP-A-9-253860

上記特許文献1の場合には、溶接組み立て時に生じていた配管内面の引張残留応力を圧縮残留応力に変化させるのに有効な方法であるが、溶接設備と異なる大型の高周波加熱設備が必要であり、溶接完了後に、配管の内周部に冷却水を供給しながら外周部を高温加熱するための作業工数及び費用が必要になる。   In the case of the above-mentioned Patent Document 1, it is an effective method for changing the tensile residual stress on the inner surface of the pipe generated during welding assembly into a compressive residual stress, but a large-scale high-frequency heating equipment different from the welding equipment is required. After the completion of welding, work man-hours and costs for heating the outer peripheral portion at a high temperature while supplying cooling water to the inner peripheral portion of the pipe are required.

上記特許文献2の場合には、引張残留応力を低減するための工夫がされているが、溶接完了後に、線状の溶接部位表面上を移動させる高周波コイルにより高温加熱し、過熱領域を冷却水の噴射により急速冷却しているため、移動式の加熱及び水冷設備が必要になると共に、この高温加熱及び急速冷却を実施するための作業工数及び費用が必要になる。   In the case of the above-mentioned Patent Document 2, a device for reducing the tensile residual stress has been devised. However, after welding is completed, high-temperature heating is performed by a high-frequency coil that moves on the surface of the linear weld site, and the overheated region is cooled with water. Therefore, mobile heating and water cooling facilities are required, and work man-hours and costs for implementing this high-temperature heating and rapid cooling are required.

一方、上記特許文献3の場合には、外部にヒートシンク媒体を使用せずに、熱効率の高い溶接施工及び狭い開先継手の伝導性自己冷却効果により、引張残留応力及び溶接ひずみを低減する工夫がされている。しかしながら、重要な溶接時の入熱量を規定していないため、引張残留応力を圧縮残留応力に変化させるまでに至らない可能性が高い。また、安価な円形断面のタングステン電極棒と異なる非円筒形(非円形断面)に成形した薄い電極を使用しているため、この薄い電極の製作費が高価になり、さらに、開先内に挿入してアーク溶接する時に生じる電極先端の消耗に伴う電極交換費用もコスト高になる。   On the other hand, in the case of the above-mentioned Patent Document 3, there is a device for reducing the tensile residual stress and the welding strain by using the heat self-cooling effect of the high heat efficiency welding construction and the narrow groove joint without using the heat sink medium outside. Has been. However, since the amount of heat input at the time of important welding is not specified, there is a high possibility that the tensile residual stress will not be changed to the compressive residual stress. In addition, since a thin electrode formed in a non-cylindrical shape (non-circular cross section) different from an inexpensive tungsten electrode rod with a circular cross section is used, the manufacturing cost of this thin electrode becomes high, and it is inserted into the groove. Thus, the electrode replacement cost accompanying the consumption of the electrode tip that occurs when arc welding is also increased.

また、上記特許文献4の場合には、板厚や管径が比較的小さな開先溶接の残留応力低減に有効な一つの方法と考えられる。しかしながら、母材板厚が厚い開先溶接においては、管内外面(母材表裏面)の温度勾配が小さいため、表面側を加熱溶融するキャップパス
(最終仕上溶接)のみでは、裏面側の残留応力を激減させられない可能性が高い。また、走行速度を重視しているが、重要な溶接時の入熱量を規定していない。さらに、前記特許文献3と同様に、安価な円形断面のタングステン電極棒と異なる非円筒形(非円形断面)に成形した薄い電極を使用しているため、この薄い電極の製作費が高価になり、さらに、開先内に挿入してアーク溶接する時に生じる電極先端の消耗に伴う電極交換費用もコスト高になる。
Moreover, in the case of the said patent document 4, it is thought that it is one method effective in the residual stress reduction of groove welding whose plate | board thickness and pipe diameter are comparatively small. However, in groove welding where the base metal plate is thick, the temperature gradient of the inner and outer surfaces of the pipe (front and back surfaces of the base material) is small, so that the residual stress on the back side can be obtained only with a cap pass (final finish welding) that heats and melts the front side. There is a high possibility that it will not be drastically reduced. Moreover, although the traveling speed is emphasized, the amount of heat input at the time of important welding is not prescribed. Further, as in the case of Patent Document 3, a thin electrode formed in a non-cylindrical shape (non-circular cross section) different from an inexpensive tungsten electrode rod having a circular cross section is used, so that the manufacturing cost of the thin electrode becomes high. In addition, the cost of electrode replacement accompanying wear of the electrode tip that occurs when arc welding is performed by inserting the groove into the groove increases.

また、上記特許文献5の場合には、金属組織の改質や耐食性向上に有効な一つの方法であるが、既に溶接済みの溶接熱影響部を所定の入熱条件で加熱処理(溶融処理)している。この加熱処理は、本溶接部分と異なる反対側の裏面側の溶接熱影響部が対象であり、本溶接の施工と全く異なるものであるばかりでなく、外側を炉水で強制水冷している。   Further, in the case of the above-mentioned Patent Document 5, although it is one method effective for reforming the metal structure and improving the corrosion resistance, the heat-affected zone that has already been welded is subjected to a heat treatment (melting treatment) under predetermined heat input conditions. is doing. This heat treatment is directed to the welding heat-affected zone on the reverse side opposite to the main welding portion, and is not only completely different from the main welding construction, but the outside is forcibly water-cooled with furnace water.

また、上記特許文献6の場合には、金属組織の改質や耐食性向上に有効な一つの方法であるが、本溶接前に施工する裏面側の肉盛溶接やこの肉盛溶接による熱影響部の溶融処理、及びその後の開先加工に多大な工数及び費用が必要になる。また、前記熱影響部を溶融処理する入熱条件は5kJ/cm以下で施工しているが、その後に、開先を形成して本溶接する入熱条件や溶接方法については全く記載されていない。さらに、この当時の開先形状は広いため、本溶接では、上記肉盛溶接の入熱条件より数倍高い入熱量を用いて施工する可能性が高い。   Moreover, in the case of the above-mentioned patent document 6, although it is one method effective for reforming the metal structure and improving the corrosion resistance, overlay welding on the back side to be applied before the main welding or heat affected zone by this overlay welding is performed. Therefore, a great number of man-hours and costs are required for the melting process and the subsequent groove processing. Moreover, although the heat input conditions for melting the heat affected zone are set at 5 kJ / cm or less, there is no description at all about the heat input conditions and welding method for forming a groove and performing main welding thereafter. . Furthermore, since the groove shape at this time is wide, the main welding is likely to be performed using a heat input amount several times higher than the heat input condition of the overlay welding.

さらに、上記特許文献7の場合には、管内面の引張残留応力を低減するために、開先継手の材質と同質系のオーステナイト系ワイヤとマルテンサイト系ワイヤとを使い分けて溶接している。引張残留応力の低減に有効であるが、まだ引張応力が残留しており、圧縮応力に変化させるまでには至っていない。マルテンサイト系ワイヤは、開先内の中間層の溶接部分のみに使用されており、開先表面の最終層の溶接部分には使用されていない。また、開先継手の角度が広いため、板厚の厚い開先継手を溶接する場合には、溶接すべき開先断面積及び開先肩幅が増加し、1層1パスずつ積層する溶接が困難であり、1層多パスの多層盛溶接が必要になり、引張残留応力及び収縮変形が増す可能性が高い。溶接方法については、不明であるが、実施例から想定すると、非消耗性のタングステンを電極にするアーク溶接法ではなく、溶接ワイヤ(溶加材)を電極にするアーク溶接法の可能性が高い。   Furthermore, in the case of the above-mentioned patent document 7, in order to reduce the tensile residual stress on the inner surface of the pipe, welding is performed using austenite wire and martensite wire that are the same quality as the material of the groove joint. Although effective in reducing the tensile residual stress, the tensile stress still remains and has not yet been changed to a compressive stress. The martensitic wire is used only for the weld portion of the intermediate layer in the groove, and is not used for the weld portion of the final layer on the groove surface. In addition, since the groove joint has a wide angle, when welding a thick groove joint, the groove cross-sectional area to be welded and the groove shoulder width increase, making it difficult to weld one layer at a time for each pass. 1 and multipass multi-layer welding is required, and there is a high possibility that tensile residual stress and shrinkage deformation increase. The welding method is unknown, but assuming from the examples, there is a high possibility of an arc welding method using a welding wire (a filler metal) as an electrode rather than an arc welding method using non-consumable tungsten as an electrode. .

さらに、上記特許文献8の場合には、溶接継手の疲労強度を向上するために、マルテンサイト変態を生じさせる溶接材料(溶接ワイヤに該当)を用いて溶接している。溶接対象は主に低合金鉄鋼材料(高張力鋼材など)の溶接構造物であり、材質が異なるオーステナイト系ステンレス鋼材の溶接に適用できない。また、溶接で生じる引張残留応力の低減箇所は、すみ肉継手やT継手や十字継手の溶接表面部分、又はX開先継手の両面溶接の表面部分であり、継手形状及び溶け込み形状が異なる狭開先継手のような片面溶接で求められている溶接裏面部分が対象ではない。さらに、溶接方法については、溶接ワイヤを電極にするアーク溶接法であり、非消耗性のタングステンを電極にするアーク溶接法ではない。   Furthermore, in the case of the said patent document 8, in order to improve the fatigue strength of a welded joint, it welds using the welding material (it corresponds to a welding wire) which produces a martensitic transformation. Welding objects are mainly welded structures of low-alloy steel materials (such as high-strength steel materials) and cannot be applied to welding austenitic stainless steel materials of different materials. In addition, the place where the tensile residual stress generated by welding is reduced is the welded surface part of fillet joints, T joints and cross joints, or the surface part of double-sided welding of X groove joints. It does not apply to the weld back surface portion that is required for single-sided welding such as a point joint. Furthermore, the welding method is an arc welding method using a welding wire as an electrode, and not an arc welding method using non-consumable tungsten as an electrode.

また、上記特許文献9の場合には、高張力鋼の溶接割れの防止に有効であると考えられるが、材質の異なるステンレス鋼材の溶接に適用できない。この他にも、マルテンサイト変態を生じさせる溶接ワイヤを用いて溶接する溶接方法が幾つか提案されているが、主に高張力鋼材の溶接が対象であり、オーステナイト系ステンレス鋼材の溶接ではないようである。また、前記特許文献6と同様に、溶接で生じる引張残留応力の低減箇所は、溶接表面部分であり、継手形状及び溶け込み形状が異なる狭開先継手のような片面溶接で求められている溶接裏面部分が対象になっていない。   Further, in the case of Patent Document 9, it is considered effective for preventing weld cracking of high-tensile steel, but it cannot be applied to welding of stainless steel materials of different materials. In addition to this, several welding methods have been proposed in which welding is performed using a welding wire that causes martensitic transformation, but it is mainly intended for welding high-tensile steel materials, and not for austenitic stainless steel materials. It is. Similarly to Patent Document 6, the portion of the tensile residual stress that is reduced by welding is the weld surface portion, and the weld back surface that is required for single-sided welding such as a narrow groove joint having a different joint shape and penetration shape. The part is not targeted.

本発明の目的は、開先継手の管部材又は板部材の片面溶接で生じる裏面側の裏ビード部分及びその近傍の残留応力を圧縮応力に改善して応力腐食割れなどを防止するのに有効な狭開先溶接方法及び溶接構造物並びにその溶接装置を提供することにある。   The object of the present invention is effective in preventing the stress corrosion cracking by improving the backside bead portion on the back side generated by one-side welding of the pipe member or plate member of the groove joint and the residual stress in the vicinity thereof to compressive stress. It is an object of the present invention to provide a narrow groove welding method, a welded structure, and a welding apparatus therefor.

上記課題を解決する本発明の狭開先溶接方法は、オーステナイト系ステンレス鋼からなる管部材又は板部材を突き合せて形成した開先継手の底部から上部まで、非消耗電極方式のアーク溶接によってオーステナイト系ステンレスワイヤを開先内に溶着させながら片面溶接すると共に、該片面溶接によって開先底部の裏面側の残留応力を改善する狭開先溶接方法において、開先底部の裏面側に裏ビードを形成する初層裏波溶接工程と、この初層裏波溶接工程後に、特定の積層ビード高さまで第1の入熱量範囲で積層溶接する第1の積層溶接工程と、この第1の積層溶接工程後に、前記第1の積層溶接工程で使用した複数の入熱条件より小さい1つ以上の入熱条件を使用して残りの開先部分から開先上部の最終層まで第2の入熱量範囲で積層溶接する第2の積層溶接工程とを有し、前記裏面側の裏ビード及びその近傍の熱影響部分に圧縮残留応力を形成させることを特徴とする。 The narrow groove welding method of the present invention that solves the above-mentioned problems is austenitic by non-consumable electrode type arc welding from the bottom to the top of a groove joint formed by abutting a pipe member or plate member made of austenitic stainless steel. In the narrow groove welding method that improves the residual stress on the back side of the groove bottom by this single-sided welding, a back bead is formed on the back side of the groove bottom. First layer back welding process, and after this first layer back welding process, after the first layer welding process, the first layer welding process for performing the layer welding in the first heat input range up to a specific layer bead height, and after the first layer welding process And laminating in the second heat input range from the remaining groove portion to the final layer at the upper portion of the groove using one or more heat input conditions smaller than the plurality of heat input conditions used in the first lamination welding process. welding And a second lamination welding process that is characterized in that to form a compressive residual stress on the back bead and heat affected portion in the vicinity thereof of the back side.

本発明の狭開先溶接方法及び溶接構造物並びにその溶接装置によれば、裏内側の裏ビード部分及びその近傍の残留応力を圧縮応力に改善することにより、実機適用稼働における応力腐食割れを防止でき、長寿命化に寄与する。   According to the narrow groove welding method, welded structure, and welding apparatus of the present invention, stress corrosion cracking is prevented in actual machine operation by improving the residual stress on the back inner bead portion and the vicinity thereof to compressive stress. Can contribute to longer life.

上述のとおり、本発明の溶接方法の特徴は、積層溶接において、第一の入熱量範囲で積層溶接する第一の積層溶接工程と、第二の入熱量範囲で積層溶接する第二の積層溶接工程とを有する点にある。その結果、溶接表面側に生じる俵絞め変形が小さく抑制され、反対側の裏面側の裏ビード部分及びその近傍に圧縮応力が残留し、応力腐食割れを防止できる。   As described above, the characteristics of the welding method of the present invention are characterized in that, in the lamination welding, the first lamination welding process for lamination welding in the first heat input range and the second lamination welding for lamination welding in the second heat input range. And a process. As a result, squeezing deformation that occurs on the weld surface side is suppressed to a small extent, compressive stress remains in the back bead portion on the reverse side and the vicinity thereof, and stress corrosion cracking can be prevented.

また、前記第1の積層溶接工程で使用した複数の入熱条件より小さい1つ以上の入熱条件を使用して残りの開先部分から開先上部の最終層まで積層溶接する第2の積層溶接工程を行う点を特徴とする。上述したように、裏面側の裏ビード部分及びその近傍に圧縮応力が残留し、腐食環境下で適用されても、使用応力腐食割れを防止できる。また、溶接中に内面側を水冷したり、溶接完了後に高価な加熱処理装置を設けたり、加熱処理を行う必要がなく、溶接施工のみであり、製作コストを低減でき、良好な溶接品質を確保し、ワイヤ使用量及び溶接所要時間を削減できる。   In addition, a second laminate that is laminated and welded from the remaining groove portion to the final layer above the groove using one or more heat input conditions smaller than the plurality of heat input conditions used in the first laminate welding process. It is characterized in that a welding process is performed. As described above, even if compressive stress remains in the back bead portion on the back surface side and the vicinity thereof, even if applied in a corrosive environment, use stress corrosion cracking can be prevented. In addition, there is no need to water-cool the inner surface during welding, or to install an expensive heat treatment device after the completion of welding, or to perform heat treatment, only welding work can be done, manufacturing costs can be reduced, and good welding quality is ensured In addition, the amount of wire used and the time required for welding can be reduced.

特に、前記第1の積層溶接工程で用いる第1の入熱量範囲は4kJ/cm以上12kJ/cm以下であり、前記第2の積層溶接工程で用いる第2の入熱量範囲は1kJ/cm以上6
kJ/cm以下であるとよい。この第一の入熱量が4kJ/cmより小さ過ぎると、溶融領域の過小及び開先幅方向の収縮変形不足によって、裏面側の裏ビード部分及びその近傍に付加される圧縮応力が大きくならない。反対に、この入熱量が12kJ/cmより大き過ぎると、溶融領域の過大及び開先幅方向の収縮変形増大によって、裏面側の裏ビード部分及びその近傍に付加される圧縮応力が抑制されて小さくなる可能性があるので好ましくない。第2の入熱量範囲は1kJ/cm以上6kJ/cm以下であり、開先上部の最終層まで積層溶接するとよい。入熱量が1kJ/cmより小さいと溶接ができない結果に至る。反対に、この入熱量が6kJ/cmより大き過ぎると、前記俵絞め変形が増加進展し、裏ビード部分及びその近傍に加わる引張応力が上昇して残留するので好ましくない。
In particular, the first heat input range used in the first lamination welding process is 4 kJ / cm or more and 12 kJ / cm or less, and the second heat input range used in the second lamination welding process is 1 kJ / cm or more 6
It is good that it is below kJ / cm. If the first heat input is less than 4 kJ / cm, the compressive stress applied to the back bead portion on the back side and the vicinity thereof does not increase due to the melting region being too small and the shrinkage deformation in the groove width direction being insufficient. On the other hand, if this heat input is larger than 12 kJ / cm, the compressive stress applied to the back bead portion on the back side and the vicinity thereof is suppressed and reduced due to the excessive melting region and the increase in shrinkage deformation in the groove width direction. This is not preferable. The second heat input range is 1 kJ / cm or more and 6 kJ / cm or less, and it is preferable that the final layer above the groove is laminated and welded. If the heat input is less than 1 kJ / cm, welding cannot be performed. On the other hand, if the heat input amount is too large, it is not preferable because the wrinkling deformation is increased and the tensile stress applied to the back bead portion and the vicinity thereof is increased and remains.

第2の積層溶接工程では、溶接パス毎の入熱量を極力小さくすることによって、溶接表面側に生じる俵絞め変形の進展を小さく抑制できる。この俵絞め変形の抑制によって反対側の裏面側の裏ビード部分及びその近傍に加わる引張応力が抑制され、溶接完了後の裏ビード部分及びその近傍に圧縮応力を残留させることができる。   In the second lamination welding process, by making the heat input amount for each welding pass as small as possible, the progress of the wrinkling deformation occurring on the welding surface side can be suppressed to be small. By suppressing the wrinkle-squeezing deformation, the tensile stress applied to the back bead portion on the reverse side and the vicinity thereof is suppressed, and the compressive stress can be left in the back bead portion and the vicinity thereof after the completion of welding.

第1の入熱量範囲,第2の入熱量範囲はそれぞれ1つ以上の複数の入熱条件又はこれに該当する溶接条件を用いて、特定範囲の積層ビード高さまで積層溶接するとよい。   The first heat input range and the second heat input range may each be laminated and welded to a specific range of stacked bead heights using one or more heat input conditions or welding conditions corresponding thereto.

また、前記特定の積層ビード高さは、板厚の3/10以上7/10以下の範囲であるとよい。裏ビード部分及びその近傍に付加される圧縮応力は、開先内を積層溶接する積層ビード高さや入熱量や開先形状や板厚によって大きく変化し、開先幅方向の収縮変形が収束に至る積層ビード高さ辺りで極大になる。この収縮変形が収束に至る積層ビード高さは、溶接すべき開先継手の板厚のおよそ半分又はこの近傍である。したがって、開先形状や板厚に対応した適正な入熱量範囲で上記の特定範囲の積層ビード高さまで積層溶接することによって、最も効果的に極大の圧縮応力を得ることができる。   The specific laminated bead height may be in the range of 3/10 to 7/10 of the plate thickness. The compressive stress applied to the back bead portion and the vicinity thereof greatly varies depending on the height of the laminated bead that is laminated and welded in the groove, the amount of heat input, the groove shape, and the plate thickness, and the shrinkage deformation in the groove width direction converges. It becomes maximum around the height of the laminated bead. The laminated bead height at which the shrinkage deformation converges is approximately half or near the plate thickness of the groove joint to be welded. Therefore, the maximum compressive stress can be most effectively obtained by laminating and welding up to the above-mentioned specific range of laminated bead heights in an appropriate heat input range corresponding to the groove shape and plate thickness.

また、前記開先継手は、開先底幅を3mm以上7mm以下の範囲、開先角度を2度以上8度以下の範囲に形成するとよい。その結果、上記低入熱量の積層溶接が施工でき、同時に、溶接すべき開先断面積を減少し、溶接による収縮変形や俵絞め変形を抑制し、溶接ワイヤの使用量を削減できる。好ましくは前記開先底幅を4mm以上6mm以下の範囲、開先角度を4度以上6度以下の範囲に形成するとよい。   The groove joint may be formed so that the groove bottom width is in the range of 3 mm to 7 mm and the groove angle is in the range of 2 degrees to 8 degrees. As a result, lamination welding with the above low heat input can be performed, and at the same time, the groove cross-sectional area to be welded can be reduced, shrinkage deformation and squeezing deformation due to welding can be suppressed, and the amount of welding wire used can be reduced. Preferably, the groove bottom width is formed in the range of 4 mm to 6 mm, and the groove angle is set in the range of 4 degrees to 6 degrees.

前記溶接工程では、1層1パスずつ積層溶接又は1層1パスずつ積層溶接する途中で複数パスに振分けて積層溶接するとよい。その結果、低入熱条件であっても、開先壁面を確実に溶融でき、開先上部の最終層まで欠陥のない良好な各溶接ビードを得ることができる。同時に、溶接表面側に生じる俵絞め変形が小さく抑制され、反対側の裏面側の裏ビード部分及びその近傍に圧縮応力が残留し、腐食環境下で適用されても、応力腐食割れを防止できる。   In the welding process, it is preferable to perform lamination welding by distributing to a plurality of passes in the course of laminating welding one layer at a time or laminating welding one layer at a time. As a result, even under low heat input conditions, the groove wall surface can be reliably melted, and good weld beads having no defects up to the final layer above the groove can be obtained. At the same time, squeezing deformation that occurs on the weld surface side is suppressed to a small extent, and compressive stress remains in the back bead portion on the reverse side and the vicinity thereof, and even when applied in a corrosive environment, stress corrosion cracking can be prevented.

また、前記溶接工程では、非消耗電極方式のパルスアーク溶接又は直流アーク溶接を施工し、開先内のアーク溶接部分に溶接ワイヤを供給して溶着させるとよい。その結果、開先底部から開先上部まで溶接スパッタの発生がない美麗な溶接ビードを形成ができる。   In the welding process, non-consumable electrode type pulse arc welding or direct current arc welding may be performed, and a welding wire may be supplied and welded to the arc welding portion in the groove. As a result, it is possible to form a beautiful weld bead having no weld spatter from the groove bottom to the groove top.

前記溶接ワイヤは、前記管部材又は板部材と同種の溶接ワイヤを使用するとよい。例えば、前記管部材又は板部材がオーステナイト系ステンレス材の場合、この管部材又は板部材と同種のオーステナイト系ワイヤを使用すればよい。その結果、ステンレス鋼材や低炭素鋼材であっても、溶接すべき開先内を管部材又は板部材と同種の溶接ワイヤで充填して確実に埋めることができる。   The welding wire may be the same type of welding wire as the pipe member or plate member. For example, when the tube member or plate member is an austenitic stainless material, an austenite wire of the same type as the tube member or plate member may be used. As a result, even in the case of a stainless steel material or a low carbon steel material, the inside of the groove to be welded can be filled with the same kind of welding wire as the pipe member or the plate member and reliably filled.

さらに、前記管部材又は板部材がオーステナイト系ステンレス材の場合、ニッケル合金のインコネル系ワイヤ又はマルテンサイト系ワイヤを前記第2の積層溶接工程で使用できる。インコネル系ワイヤの場合、管部材又は板部材との線膨張係数の偏差で生じる溶接変形の抑制効果によって、裏面側の裏ビード部分及びその近傍に残留する圧縮応力を高めることができ、応力腐食割れを防止できる。また、マルテンサイト系ワイヤを使用でき、平均線膨張係数の偏差及びマルテンサイト変態を生じる溶接金属部に変形抑制作用及び膨張作用が働き、裏ビード部分及びその近傍に残留する圧縮応力をさらに高めることができる。   Furthermore, when the tube member or plate member is an austenitic stainless material, an inconel wire or martensite wire of a nickel alloy can be used in the second lamination welding step. In the case of Inconel wires, the compressive stress remaining in the back bead portion on the back side and in the vicinity thereof can be increased by the effect of suppressing welding deformation caused by deviation of the linear expansion coefficient from the pipe member or plate member, and stress corrosion cracking can be achieved. Can be prevented. In addition, a martensitic wire can be used, and the deformation suppression action and the expansion action work on the weld metal part that causes the deviation of the average linear expansion coefficient and the martensite transformation, further increasing the compressive stress remaining in the back bead part and its vicinity. Can do.

また、前記非消耗電極は、開先幅より狭い細径で円形断面を有する非消耗性のタングステン電極棒を開先内へ挿入して使用するとよい。その結果、高価な偏平形状(非円形断面)の特殊な電極でなくても、開先内のアーク溶接を適正に施工できる。また、円形断面の細径電極は、安価で使い勝手も良く、さらに、電極交換時でも、消耗部の電極先端を簡単に再研磨加工するのみで再使用できる。   The non-consumable electrode may be used by inserting a non-consumable tungsten electrode rod having a narrow diameter and a circular cross section narrower than the groove width into the groove. As a result, arc welding in the groove can be properly performed without using an expensive flat-shaped (non-circular cross-section) special electrode. In addition, the small-diameter electrode having a circular cross section is inexpensive and easy to use, and can be reused by simply repolishing the electrode tip of the consumable part even when replacing the electrode.

本発明の狭開先溶接方法では、開先底部の裏面側に裏ビードを形成する初層裏波溶接工程により、管部材継手又は板部材継手の片面溶接で重要な裏面側に所望の裏ビードを確実に形成できる。また、初層裏波溶接工程後に、特定の積層ビード高さまで第1の入熱量範囲で積層溶接する第1の積層溶接工程により、開先幅方向の収縮変形(塑性変形)が適度に進展し、この適度に進展する塑性変形によって裏面側の裏ビード部分及びその近傍に残留する引張応力を極大の圧縮応力に変化させることができる。   In the narrow groove welding method of the present invention, a desired back bead is formed on the back side which is important in one-side welding of a pipe member joint or a plate member joint by a first layer back wave welding process in which a back bead is formed on the back side of the groove bottom. Can be reliably formed. In addition, after the first layer backside welding process, the shrinkage deformation (plastic deformation) in the groove width direction is appropriately progressed by the first laminating welding process in which the laminating welding is performed in the first heat input range up to a specific laminated bead height. The tensile deformation remaining in the back bead portion on the back side and in the vicinity thereof can be changed to a maximum compressive stress by the plastic deformation that progresses appropriately.

また、前記溶接ワイヤを前記アーク溶接部分に無通電のまま供給して溶着させ、あるいは前記溶接ワイヤを前記アーク溶接部分に加熱通電しながら供給して溶着させることにより、溶接すべき開先内を所要の溶接金属で満たすことができ、ワイヤ加熱通電よる溶着量の増加及び溶接能率の向上を図ることができる。   Further, the welding wire is supplied and welded to the arc welding portion without energization, or the welding wire is supplied and welded to the arc welding portion while being heated and energized, so that the inside of the groove to be welded can be obtained. It can be filled with the required weld metal, and it is possible to increase the amount of welding and improve the welding efficiency by heating the wire.

また、本発明は、上記目的を達成するための、管部材又は板部材を突き合せて開先継手を形成し、その底部から上部まで片面溶接された溶接構造物であって、開先底部の裏面側に裏ビードを形成した初層溶接金属部と、この初層溶接金属部と接する部分から特定の積層ビード高さまで第1の入熱量範囲で積層溶接して形成した第1の積層溶接金属部と、この第1の積層溶接金属部と接する残りの開先部分から開先上部の最終層まで第2の入熱量範囲で積層溶接して形成した第2の積層溶接金属部とを備えたことを特徴と溶接構造物を提案する。   Further, the present invention is a welded structure in which a groove joint is formed by abutting a pipe member or a plate member to achieve the above object, and is welded on one side from the bottom to the top thereof. A first layer weld metal part having a back bead formed on the back surface side, and a first layer weld metal formed by layer welding in a first heat input range from a portion in contact with the first layer weld metal part to a specific laminate bead height And a second laminated weld metal portion formed by lamination welding in the second heat input range from the remaining groove portion in contact with the first laminated weld metal portion to the final layer at the upper portion of the groove. Propose that feature and welded structure.

特に、前記積層溶接で使用した複数の入熱条件より小さい1つ以上の入熱条件を使用して前記第1の積層溶接金属部と接する残りの開先部分から開先上部の最終層まで積層溶接して形成した第2の積層溶接金属部とを備えていることが好ましい。前記第1の入熱量範囲は4kJ/cm以上12kJ/cm以下であり、好ましくは4kJ/cm以上10kJ/cm以下である。その結果、開先幅方向の収縮変形(塑性変形)が適度に進展し、裏面側の裏ビード部分及びその近傍に残留する引張応力を極大の圧縮応力に変化させることができる。   In particular, lamination is performed from the remaining groove portion in contact with the first laminated weld metal part to the final layer at the upper part of the groove using one or more heat input conditions smaller than the plurality of heat input conditions used in the lamination welding. It is preferable to include a second laminated weld metal portion formed by welding. The first heat input range is 4 kJ / cm or more and 12 kJ / cm or less, preferably 4 kJ / cm or more and 10 kJ / cm or less. As a result, shrinkage deformation (plastic deformation) in the groove width direction is appropriately advanced, and the tensile stress remaining in the back bead portion on the back side and in the vicinity thereof can be changed to a maximum compressive stress.

また、前記第2の入熱量範囲は1kJ/cm以上6kJ/cm以下であるとよい。また、前記特定の積層ビード高さは、板厚の3/10以上7/10以下の範囲であるとよい。   The second heat input range is preferably 1 kJ / cm or more and 6 kJ / cm or less. The specific laminated bead height may be in the range of 3/10 to 7/10 of the plate thickness.

このように1つ又は複数の入熱条件又はこれに該当する溶接条件を用いて開先上部の最終層まで積層溶接することにより、上述したように、溶接表面側に生じる俵絞め変形が小さく抑制され、反対側の裏面側の裏ビード部分及びその近傍に圧縮応力が残留し、腐食環境下で適用されても、応力腐食割れを防止できる。   Thus, by laminating and welding up to the final layer at the upper part of the groove using one or a plurality of heat input conditions or welding conditions corresponding thereto, as described above, the wrinkling deformation generated on the weld surface side is suppressed to a small level. In addition, even if compressive stress remains in the back bead portion on the back side on the opposite side and in the vicinity thereof, stress corrosion cracking can be prevented even when applied in a corrosive environment.

また、前記溶接金属部は、1層1パスずつ積層溶接又は1層1パスずつ積層溶接する途中で複数パスに振分けて積層溶接されているとよい。その結果、開先継手の底部から上部まで順番に積み重ねた良好な溶接ビードの断面を得ることができる。   In addition, the weld metal portion may be laminated and welded to a plurality of passes in the course of laminating welding one layer at a time or laminating welding one layer per pass. As a result, it is possible to obtain a good weld bead cross-section that is stacked in order from the bottom to the top of the groove joint.

また、表面側の俵絞め変形量(凹み量)が1.5mm 以下であるとよい。さらに、裏面側の裏ビード部分及びこの近傍の母材熱影響部分が材料の降伏応力から圧縮側の範囲に形成されているとよい。   Further, the amount of deformation of the wrinkle on the surface side (the amount of dents) is preferably 1.5 mm or less. Further, the back bead portion on the back surface side and the base material heat-affected portion in the vicinity thereof may be formed within the compression side range from the yield stress of the material.

また、前記第1の積層溶接金属部と第2の積層溶接金属部とが接する部分又はこの近傍の溶接断面部又はこれに類以する溶接断面部が形状変化しており、この形状変化は、ビード幅変化,溶け込み変化,積層リップル変化,金属組織変化等とできる。   In addition, the shape of the portion where the first laminated weld metal portion and the second laminated weld metal portion are in contact with each other, or the weld cross-section in the vicinity thereof or a weld cross-section similar thereto, is changed. It can be bead width change, penetration change, laminate ripple change, metal structure change, etc.

また、第2の積層溶接金属部を、前記積層溶接で使用した複数の入熱条件より小さい1つ以上の入熱条件を使用して前記第1の積層溶接金属部と接する残りの開先部分から開先上部の最終層まで積層溶接して形成したものとできる。   Further, the remaining groove portion contacting the second laminated weld metal portion with the first laminated weld metal portion using one or more heat input conditions smaller than the plurality of heat input conditions used in the laminate welding. To the final layer at the top of the groove.

このような構成により、溶接変形の抑制及び引張応力の抑制によって裏面側の裏ビード部分及びその近傍に圧縮応力が残留し、腐食環境下で適用されても、応力腐食割れを防止でき、長寿命化に寄与する。また、溶接中に内面側を水冷したり、溶接完了後に高価な加熱処理装置を設けたり、加熱処理を行う必要がなく、溶接施工のみであり、製作コストを低減でき、良好な溶接品質を確保し、ワイヤ使用量及び溶接所要時間を削減できる。   With such a configuration, compressive stress remains in and around the back bead portion on the back side due to suppression of welding deformation and suppression of tensile stress, and even when applied in a corrosive environment, stress corrosion cracking can be prevented and long life is achieved. Contributes to In addition, there is no need to water-cool the inner surface during welding, or to install an expensive heat treatment device after the completion of welding, or to perform heat treatment, only welding work can be done, manufacturing costs can be reduced, and good welding quality is ensured In addition, the amount of wire used and the time required for welding can be reduced.

また、本発明は、管部材又は板部材を突き合せて形成した開先継手の底部から上部まで片面溶接が可能であり、上記目的を達成する溶接装置であって、非消耗電極の取付け取外し可能な溶接トーチと、この溶接トーチを開先継手の溶接線方向,上下左右方向に任意移動,溶接ワイヤを前記溶接トーチ先端部分又はアーク溶接部分に供給及び上下左右位置の調整可能な溶接台車と、パルスアーク溶接又は直流アーク溶接の選択,所定溶接条件の出力制御可能なTIG溶接電源と、初層裏波溶接工程で使用する入熱量範囲の条件設定,初層溶接後に特定の積層ビード高さまで積層溶接する第1の積層溶接工程で使用する第1の入熱量範囲の条件設定、その後に最終層まで積層溶接する第2の積層溶接工程で使用する第2の入熱量範囲の条件設定が可能な条件設定手段と、この条件設定手段の指示に従って前記溶接台車を駆動制御し、前記TIG溶接電源を出力制御し、前記溶接トーチの左右上下位置,溶接ワイヤの送り量及び左右上位置を調整する溶接制御装置とを備えたことを特徴とする溶接装置である。   In addition, the present invention is a welding apparatus that can perform one-side welding from the bottom to the top of a groove joint formed by abutting a pipe member or a plate member, and achieves the above-mentioned object, and is capable of attaching and detaching non-consumable electrodes. A welding torch, and a welding carriage that can arbitrarily move the welding torch in the welding line direction, up and down, left and right directions of the groove joint, supply a welding wire to the welding torch tip part or arc welding part, and adjust the vertical and horizontal positions. Selection of pulse arc welding or DC arc welding, TIG welding power source capable of controlling output of predetermined welding conditions, setting of heat input range conditions used in the first layer backside welding process, lamination up to a specific laminated bead height after the first layer welding The condition setting of the first heat input range used in the first laminating welding process to be welded, and then the condition setting of the second heat input range used in the second laminating welding process of laminating and welding up to the final layer are performed. Condition setting means, and driving control of the welding carriage in accordance with instructions of the condition setting means, output control of the TIG welding power source, and adjustment of the horizontal and vertical positions of the welding torch, the welding wire feed amount and the horizontal and vertical positions And a welding control device that performs the welding control.

その結果、開先底部の裏面側に裏ビードを形成する前記初層裏波溶接工程,特定の積層高さまで積層溶接する第1の積層溶接工程,残りの開先部分から開先上部の最終層まで積層溶接する第2の積層溶接工程を確実に施工できる。   As a result, the first layer back wave welding process for forming a back bead on the back side of the groove bottom, the first layer welding process for layer welding to a specific stack height, and the final layer from the remaining groove part to the top of the groove It is possible to reliably perform the second laminating welding process for laminating and welding.

以下、本発明の内容について、図1〜図10の実施例に用いて具体的に説明する。   Hereinafter, the contents of the present invention will be described in detail with reference to the embodiments shown in FIGS.

図1は、本発明の狭開先溶接方法及びその溶接構造物の溶接手順概要の一実施例を示す説明図であり、図中の(1)は開先継手の開先底部を初層裏波溶接した時の溶接断面、
(2)は特定の積層ビード高さHbまで積層溶接した時の溶接断面、(3)は残りの開先部分から開先上部の最終層まで積層溶接した時の溶接断面である。また、図2は、開先継手の溶接過程で変化する裏ビード部分の応力解析結果の一実施例を示す説明図である。図中には複数の入熱量及び入熱切替えて各々溶接した時の応力変化を示している。また、図3は、他の一実施例であり、板厚が異なる継手を各々溶接した時の応力変化を示している。
FIG. 1 is an explanatory view showing an embodiment of a narrow groove welding method and a welding procedure outline of the welded structure according to the present invention, in which (1) in FIG. Welding cross section when wave welding,
(2) is a welded cross section when laminated welded to a specific laminated bead height Hb, and (3) is a welded cross section when laminated welded from the remaining groove portion to the final layer above the groove. FIG. 2 is an explanatory view showing an example of the stress analysis result of the back bead portion that changes in the welding process of the groove joint. In the figure, a plurality of heat input amounts and stress changes when the respective heat input is switched and welded are shown. Moreover, FIG. 3 is another Example, and has shown the stress change when each joint with which plate | board thickness differs is welded.

図1に示すように、最初の開先形状の製作工程51は、溶接対象の継手部材を所定寸法に機械加工したり、溶接現場に搬送したり、加工後の部材や部品を組立したりする工程である。この継手部材1,2は、主に原子力プラント,火力発電プラント,化学プラントに使用される厚板の配管や容器などの管部材又は板部材であり、突き合せて形成した開先継手の底部から上部まで片面溶接する必要がある。同時に、裏面側の裏ビード15部分及びその近傍に残留する応力を圧縮応力に改善する必要がある。また、次の溶接準備工程52は、溶接台車,溶接トーチ,ワイヤなどの取付け,溶接電源や溶接制御装置の立上げ,溶接動作の準備を行う工程である。   As shown in FIG. 1, in the first groove-shaped manufacturing step 51, a joint member to be welded is machined to a predetermined size, transported to a welding site, and the processed members and parts are assembled. It is a process. The joint members 1 and 2 are pipe members or plate members such as thick plate pipes and containers mainly used in nuclear power plants, thermal power plants, and chemical plants. It is necessary to weld one side to the top. At the same time, it is necessary to improve the stress remaining in the back bead 15 portion on the back side and the vicinity thereof to compressive stress. The next welding preparation step 52 is a step of attaching a welding carriage, welding torch, wire, etc., starting up a welding power source and a welding control device, and preparing for a welding operation.

初層裏波溶接工程53は、図1(1)に示すように、開先底部の裏面側に適正範囲の裏ビード幅Bを形成させる21の初層裏波溶接(P=1)を行う工程である。また、この初層裏波溶接の前に、開先底部を浅く溶かして接合するワイヤなしの仮付け溶接を行うようにしてもよい。適正範囲の裏ビード幅Bは、例えば4〜7mmに形成するとよい。好ましくは4〜6mmである。裏ビード形成が必要な初層裏波溶接では、開先底部の裏面側まで溶融可能なアークの入熱条件又はこれに該当する溶接条件を出力させ、裏ビード15の幅Bが適正範囲に形成するように1つ以上の条件因子(例えば、ピーク電流かベース電流か平均溶接電流,ピーク電圧か平均アーク電圧かアーク長,ワイヤ送り速度,溶接速度)を調整又は制御するとよい。裏ビード形成に必要な入熱量については、開先底部の厚み(ルートフェイスf)や幅wの大きさ,材質の違いによって異なるが、概ね4〜20kJ/cmの入熱量範囲で形成可能であり、好ましくは6〜12kJ/cmで対応すればよい。なお、単位長さ当りの入熱量Q(kJ/cm)は、平均溶接電流Ia(A),平均アーク電圧Ea(V)と溶接速度V(mm/s)との関係式{Q=Ia*Ea/(100*V)}より算出することができる。   In the first layer back welding process 53, as shown in FIG. 1 (1), 21 first layer back welding (P = 1) is performed to form a back bead width B in an appropriate range on the back surface side of the groove bottom. It is a process. Moreover, you may make it perform the tack welding without a wire which melt | dissolves a groove bottom part shallowly and joins before this first layer back wave welding. The back bead width B in the proper range is preferably 4 to 7 mm, for example. Preferably it is 4-6 mm. In the first layer back wave welding that requires the formation of the back bead, the heat input condition of the arc that can be melted to the back surface side of the groove bottom or the welding condition corresponding to this is output, and the width B of the back bead 15 is formed in an appropriate range. One or more condition factors (e.g., peak current or base current or average welding current, peak voltage or average arc voltage or arc length, wire feed rate, welding speed) may be adjusted or controlled. The amount of heat input required for forming the back bead varies depending on the thickness of the groove bottom (root face f), width w, and material, but it can be formed in the range of 4 to 20 kJ / cm. However, it may be preferably 6 to 12 kJ / cm. Note that the heat input Q (kJ / cm) per unit length is a relational expression {Q = Ia * between the average welding current Ia (A), the average arc voltage Ea (V) and the welding speed V (mm / s). Ea / (100 * V)}.

次の第1の積層溶接工程41は、図1(2)に示すように、初層裏波溶接工程53後に、特定範囲の積層ビード高さHbまで第1の入熱量範囲Q1で積層溶接する工程である。この第1の積層溶接工程41により、開先幅方向の収縮変形(塑性変形)が適度に進展し、この適度に進展する塑性変形によって裏面側の裏ビード部分及びその近傍に残留する引張応力を極大の圧縮応力に変化させることができる。特定範囲の積層ビード高さHbは、溶接すべき継手部材1,2の板厚Tの3/10以上7/10以下である。また、前記第1の入熱量範囲Q1は4kJ/cm以上12kJ/cm以下にするとよい。この入熱量範囲Q1から1つ以上の複数の入熱条件又はこれに該当する溶接条件を用いて、前記特定範囲の積層ビード高さHbまで積層溶接するとよい。例えば、初層溶接後の数パスを8kJ/cm前後の入熱条件で溶接し、その後に、入熱量を4〜5kJ/cmに減少させて、板厚半分程度の積層ビード高さHbまで積層溶接することもできる。また、初層溶接後の溶接を5kJ/cm程度又は6kJ/cm程度の入熱一定条件で特定範囲の積層ビード高さHbまで積層溶接することもできる。   In the next first laminating welding step 41, as shown in FIG. 1 (2), after the first layer back wave welding step 53, laminating welding is performed in the first heat input range Q1 up to the laminating bead height Hb in a specific range. It is a process. By this first laminating welding step 41, shrinkage deformation (plastic deformation) in the groove width direction is moderately progressed, and the tensile stress remaining in the back bead portion on the back side and in the vicinity thereof due to this moderately progressing plastic deformation. The maximum compression stress can be changed. Laminated bead height Hb in a specific range is 3/10 or more and 7/10 or less of plate thickness T of joint members 1 and 2 to be welded. Further, the first heat input range Q1 is preferably 4 kJ / cm or more and 12 kJ / cm or less. By using one or more heat input conditions from this heat input range Q1 or welding conditions corresponding thereto, it is preferable to perform lamination welding to the laminated bead height Hb in the specific range. For example, several passes after the first layer welding are welded under a heat input condition of about 8 kJ / cm, and then the heat input is reduced to 4 to 5 kJ / cm and laminated to a laminated bead height Hb of about half the plate thickness. It can also be welded. Further, the welding after the first layer welding can be laminated and welded up to a specific range of laminated bead height Hb under a constant heat input condition of about 5 kJ / cm or 6 kJ / cm.

また、この第1の積層溶接工程41では、前記第1の入量熱量範囲Q1の入熱条件又はこれに該当する溶接条件を1つ以上用いて1層1パスずつ積層溶接することにより、特定の積層ビード高さまで欠陥のない良好な核溶接ビードを得ることができる。同時に、上述したように、開先幅方向の収縮変形(塑性変形)が適度に進展し、裏面側の裏ビード部分及びその近傍に残留する引張応力を極大の圧縮応力に変化させることができる。前記第1の積層溶接工程41では、前記第1の入量熱量範囲Q1の入熱条件又はこれに該当する溶接条件を1つ以上用いて1層1パスずつ積層溶接する途中で複数パスに振分けて積層溶接することも可能である。   Moreover, in this 1st lamination | stacking welding process 41, it specifies by carrying out the lamination | stacking welding for 1 layer 1 pass at a time using one or more heat input conditions of the said 1st input heat quantity range Q1, or the welding conditions applicable to this. A good nuclear weld bead having no defects up to the height of the laminated bead can be obtained. At the same time, as described above, the shrinkage deformation (plastic deformation) in the groove width direction is appropriately advanced, and the tensile stress remaining in the back bead portion on the back side and the vicinity thereof can be changed to the maximum compressive stress. In the first lamination welding step 41, one or more heat input conditions in the first input heat quantity range Q1 or one or more welding conditions corresponding thereto are used, and one pass is assigned to a plurality of passes in the middle of the lamination welding. It is also possible to laminate and weld.

次の第2の積層溶接工程42は、図1(3)に示すように、前記第1の積層溶接工程
41後に、残りの開先部分から開先上部の最終層39(P=N)まで第2の入熱量範囲
Q2の入熱条件又はこれに該当する溶接条件を使用して積層溶接する工程である。この第2の積層溶接工程42により、溶接表面側に生じる俵絞め変形が小さく抑制され、反対側の裏面側の裏ビード部分及びその近傍に圧縮応力が残留し、腐食環境下で適用されても、応力腐食割れを防止することができる。第2の積層溶接工程42で使用する第2の入熱量範囲Q2は、第1の積層溶接工程で使用する入熱量Q1より小さい値であり、1kJ/cm以上6kJ/cm以下である。好ましくは2kJ/cm以上4kJ/cm以下である。この入熱量範囲Q2から1つ又は複数の入熱条件又はこれに該当する溶接条件を用いて開先上部の最終層まで積層溶接するとよい。例えば、4kJ/cm程度の入熱条件又はこれに該当する溶接条件を選択して最終層まで積層溶接できる。また、この積層溶接の途中で入熱条件を減少させて、最終層及びこの近傍の数パスを積層溶接できる。なお、前記第2の積層溶接工程42(後半溶接)で使用する入熱量Q2が1kJ/cmより小さいと、溶接できずに融合不良が生じる可能性があるので好ましくない。反対に、この入熱量Q2が6kJ/cmより大き過ぎると、前記俵絞め変形が増加進展し、裏ビード部分及びその近傍に加わる引張応力が上昇して残留するので好ましくない。
As shown in FIG. 1 (3), the next second lamination welding process 42 is performed after the first lamination welding process 41, from the remaining groove portion to the final layer 39 (P = N) on the groove upper portion. This is a step of performing lamination welding using heat input conditions in the second heat input range Q2 or welding conditions corresponding thereto. This second laminating welding step 42 suppresses wrinkle deformation that occurs on the welding surface side, and compressive stress remains on the back bead portion on the back side on the opposite side and in the vicinity thereof, even if applied in a corrosive environment. , Stress corrosion cracking can be prevented. The second heat input range Q2 used in the second lamination welding process 42 is smaller than the heat input Q1 used in the first lamination welding process, and is 1 kJ / cm or more and 6 kJ / cm or less. Preferably they are 2 kJ / cm or more and 4 kJ / cm or less. From this heat input amount range Q2, one or a plurality of heat input conditions or welding conditions corresponding thereto may be laminated and welded to the final layer above the groove. For example, a heat input condition of about 4 kJ / cm or a welding condition corresponding to this can be selected and laminated welding can be performed to the final layer. Further, the heat input condition can be reduced during the lamination welding, and the final layer and several passes in the vicinity thereof can be laminated. Note that if the heat input Q2 used in the second lamination welding step 42 (second half welding) is smaller than 1 kJ / cm, it is not preferable because welding cannot be performed and a fusion failure may occur. On the contrary, if the heat input Q2 is more than 6 kJ / cm, it is not preferable because the squeezing deformation increases and the tensile stress applied to the back bead portion and its vicinity increases and remains.

溶接時の入熱条件は、設定又は出力すべき平均電流Ia(A),平均アーク電圧Ea
(V),溶接速度V(mm/s)の条件因子と密接な関係にあり、特定の入熱量Q(kJ/cm)になるように関係式{Q=Ia*Ea/(100*V)}を用いて適正なIa,Ea,Vの値を決めればよい。また、直流アーク溶接中のアーク電圧は微小変化するが、およその平均値を採用すればよい。また、パルスアーク溶接中の電流及びアーク電圧は、高いピーク電流(ピーク電圧)と低いベース電流(ベース電圧)とを繰返しているが、およその平均値を採用すればよい。また、前記入熱量Q(又は入熱条件)の制御についても、上記平均電流Iaの増減制御又は溶接速度の増減制御によって容易に達成できる。
The heat input conditions during welding are the average current Ia (A) and average arc voltage Ea to be set or output.
(V), which is closely related to the condition factor of the welding speed V (mm / s), and the relational expression {Q = Ia * Ea / (100 * V) so that a specific heat input Q (kJ / cm) is obtained. } May be used to determine appropriate values of Ia, Ea, and V. Further, although the arc voltage during DC arc welding changes slightly, an approximate average value may be adopted. Further, the current and arc voltage during pulse arc welding repeat high peak current (peak voltage) and low base current (base voltage), but an approximate average value may be adopted. Also, the control of the heat input Q (or heat input condition) can be easily achieved by increasing / decreasing the average current Ia or increasing / decreasing the welding speed.

また、第2の積層溶接工程42では、前記第2の入量熱量範囲Q2の入熱条件又はこれに該当する溶接条件を1つ以上用いて1層1パスずつ積層溶接又は1層1パスずつ積層溶接する途中で複数パスに振分けて積層溶接することにより、低入熱条件であっても、開先壁面を確実に溶融でき、開先上部の最終層39まで欠陥のない良好な各溶接ビードを得ることができる。同時に、溶接表面側に生じる俵絞め変形が小さく抑制され、反対側の裏面側の裏ビード部分及びその近傍に圧縮応力が残留し、腐食環境下で適用されても、応力腐食割れを防止できる。また、溶接中に内面側を水冷したり、溶接完了後に高価な加熱処理装置を設けたり、加熱処理を行う必要がなく、溶接施工のみであり、製作コストを低減でき、良好な溶接品質を確保し、ワイヤ使用量及び溶接所要時間を削減できる。   Further, in the second lamination welding step 42, one or more layers are welded one by one using one or more of the heat input conditions of the second input heat quantity range Q2 or the welding conditions corresponding thereto. Each welded weld bead can be reliably melted even under low heat input conditions, with no defects up to the final layer 39 above the groove, by performing multiple welding in multiple passes during the lamination welding. Can be obtained. At the same time, squeezing deformation that occurs on the weld surface side is suppressed to a small extent, and compressive stress remains in the back bead portion on the reverse side and the vicinity thereof, and even when applied in a corrosive environment, stress corrosion cracking can be prevented. In addition, there is no need to water-cool the inner surface during welding, or to install an expensive heat treatment device after the completion of welding, or to perform heat treatment, only welding work can be done, manufacturing costs can be reduced, and good welding quality is ensured In addition, the amount of wire used and the time required for welding can be reduced.

図2及び図3に示すように、初層裏波溶接で形成した裏ビード部分には、収縮変形によって最初に引張応力が生成する。この引張応力は入熱量が大きいほど高くなる傾向がある。また、初層溶接後に積層する第1の積層溶接工程41((b)前半溶接)では、開先幅方向の収縮変形(塑性変形)の進行によって、前記裏ビード部分に大きな圧縮応力が付加され、また、入熱量や板厚の大きさによって圧縮応力の極大値が変化する解析結果になっている。特に、裏ビード部分及びその近傍に付加される圧縮応力は、開先内を積層溶接する積層ビード高さHbや入熱量Qや板厚Tや開先形状によって大きく変化し、開先幅方向の収縮変形が収束に至る積層ビード高さ辺りで極大になる。また、圧縮応力の極大値は、板厚Tが厚くなるに従って積層ビード高さの比率Hb/Tが大きくなる方向に移行しており、例えば、板厚Tが20mmの場合で0.4前後の位置、40mmの場合で0.6前後の位置に変化している。   As shown in FIGS. 2 and 3, tensile stress is first generated by shrinkage deformation in the back bead portion formed by the first layer back wave welding. This tensile stress tends to increase as the heat input increases. Further, in the first lamination welding step 41 (first welding in (b)) that is laminated after the first layer welding, a large compressive stress is applied to the back bead portion by the progress of the shrinkage deformation (plastic deformation) in the groove width direction. Moreover, the analysis results show that the maximum value of the compressive stress changes depending on the amount of heat input and the thickness of the plate. In particular, the compressive stress applied to the back bead portion and the vicinity thereof greatly varies depending on the stack bead height Hb, heat input Q, plate thickness T, and groove shape in the groove, and in the groove width direction. The shrinkage deformation is maximized around the height of the laminated bead that converges. In addition, the maximum value of the compressive stress shifts in a direction in which the ratio Hb / T of the stacked bead height increases as the plate thickness T increases. For example, when the plate thickness T is 20 mm, the maximum value is about 0.4. In the case of 40 mm, the position has changed to around 0.6.

したがって、前記(b)前半溶接では、各板厚Tに対応した積層ビード高さHbまで、適正な入熱量範囲の入熱条件又はこれに該当する溶接条件で各々積層溶接することによって、最も効果的に極大の圧縮応力を得ることができる。その積層ビード高さHbは、板厚Tの概ね3/10以上7/10以下(0.3*T≦Hb≦0.7*T)の範囲であり、好ましくは板厚Tの2/5以上3/5以下(0.4*T≦Hb≦0.6*T)の範囲にするとよい。なお、前記第1の積層溶接工程41で使用する入熱量Q1が4kJ/cmより小さ過ぎると、溶融領域の過小及び開先幅方向の収縮変形不足によって、裏面側の裏ビード部分及びその近傍に付加される圧縮応力が大きくならない可能性があるので好ましくない。反対に、この入熱量Q1が12kJ/cmより大き過ぎると、溶融領域の過大及び開先幅方向の収縮変形増大によって、裏面側の裏ビード部分及びその近傍に付加される圧縮応力が抑制されて小さくなる可能性があるので好ましくない。   Therefore, in (b) the first half welding, the most effective effect is achieved by laminating and welding each of the heat input conditions within the appropriate heat input range up to the laminated bead height Hb corresponding to each plate thickness T or the welding conditions corresponding thereto. In particular, a maximum compressive stress can be obtained. The laminated bead height Hb is in the range of approximately 3/10 to 7/10 (0.3 * T ≦ Hb ≦ 0.7 * T) of the plate thickness T, preferably 2/5 of the plate thickness T. It is good to set it as the range of 3/5 or less (0.4 * T <= Hb <= 0.6 * T). If the heat input Q1 used in the first laminating welding process 41 is less than 4 kJ / cm, the back bead portion on the back side and the vicinity thereof are caused by the melt region being too small and the shrinkage deformation in the groove width direction being insufficient. Since the applied compressive stress may not increase, it is not preferable. On the other hand, if the heat input Q1 is larger than 12 kJ / cm, the compressive stress applied to the back bead portion on the back side and the vicinity thereof is suppressed due to excessive melting area and increased shrinkage deformation in the groove width direction. Since it may become small, it is not preferable.

また、図2及び図3に示したように、残りの開先部分から開先上部の最終層まで積層する第2の積層溶接工程42((c)後半溶接)では、溶接表面側に生じる俵絞め変形の進行によって、裏面側の裏ビード部分及びその近傍に反作用の引張応力が生成する。この引張応力は、主に入熱量や板厚の大きさに依存し、板厚Tが薄くなるほど高めになる傾向があり、同時に、低入熱で溶接することによって抑制できる解析結果になっている。したがって、前記(c)後半溶接では、低入熱条件に切替えて積層溶接することにより、板厚Tが異なっても、裏ビード部分及びその近傍に圧縮応力を確実に残留させることができる。板厚が厚い40mmの場合は、(b)前半溶接及び(c)後半溶接をほぼ同一の特定入熱条件で施工して、裏ビード部分及びその近傍に圧縮応力を残留させることも可能であるが、前記(c)後半溶接時に低入熱切替えの積層溶接を施工することによって、高めの圧縮応力を確実に得ることができる。特に、裏面側の裏ビード部分及びこの近傍の母材熱影響部分が材料の降伏応力から圧縮側の範囲に形成されていることにより、腐食環境下で適用されても、応力腐食割れを防止でき、長寿命化に寄与する。   In addition, as shown in FIGS. 2 and 3, in the second lamination welding step 42 ((c) second-half welding) in which lamination is performed from the remaining groove portion to the final layer at the upper portion of the groove, flaws generated on the welding surface side. With the progress of the squeezing deformation, a reaction tensile stress is generated in the back bead portion on the back surface side and in the vicinity thereof. This tensile stress mainly depends on the amount of heat input and the thickness of the plate, and tends to increase as the plate thickness T decreases. At the same time, the analysis results can be suppressed by welding with low heat input. . Therefore, in the latter half welding (c), by switching to low heat input conditions and performing lamination welding, even if the plate thickness T is different, compressive stress can be reliably left in the back bead portion and the vicinity thereof. When the plate thickness is 40 mm, (b) the first half welding and (c) the second half welding can be performed under substantially the same specific heat input conditions, and the compressive stress can be left in the back bead portion and the vicinity thereof. However, it is possible to reliably obtain a high compressive stress by performing the lamination welding with the low heat input switching at the time of the latter half of the welding (c). In particular, since the back bead part on the back side and the base heat affected part in the vicinity are formed in the range from the yield stress of the material to the compression side, stress corrosion cracking can be prevented even when applied in a corrosive environment. Contributes to longer life.

図1に示したように、前記初層裏波溶接工程53,第1及び第2の積層溶接工程41,42では、非消耗電極方式のパルスアーク溶接又は直流アーク溶接を施工し、開先内のアーク溶接部分に溶接ワイヤを供給して溶着させることにより、開先底部から開先上部まで溶接スパッタの発生がない美麗な溶接ビードを形成できる。溶接ワイヤ5は、継手部材1,2と同種の溶接ワイヤを第1の積層溶接工程41及び第2の積層溶接工程42で使用することにより、溶接すべき開先内を管部材又は板部材と同種の溶接ワイヤで充填して確実に埋めることができる。特に、前記継手部材1,2がオーステナイト系ステンレス鋼材
(例えば、SUS304系,SUS316系)の場合には、この継手部材1,2と同種のオーステナイト系ワイヤ(例えば、Y308系,Y316系のワイヤ)を第1の積層溶接工程41及び第2の積層溶接工程42で使用すればよい。また、前記オーステナイ系ワイヤの代わりにニッケル合金のインコネル系ワイヤを前記第2の積層溶接工程42で使用することにより、継手部材1,2との線膨張係数の偏差で生じる溶接変形の抑制効果によって、裏面側の裏ビード部分及びその近傍に残留する圧縮応力を高めることができる。
As shown in FIG. 1, in the first layer backside welding step 53, the first and second lamination welding steps 41 and 42, non-consumable electrode type pulse arc welding or DC arc welding is performed, and the inside of the groove is formed. By supplying and welding a welding wire to the arc welded portion, it is possible to form a beautiful weld bead without welding spatter from the groove bottom to the groove top. The welding wire 5 uses a welding wire of the same type as the joint members 1 and 2 in the first lamination welding process 41 and the second lamination welding process 42, so that the inside of the groove to be welded is a pipe member or a plate member. It can be reliably filled by filling with the same kind of welding wire. In particular, when the joint members 1 and 2 are austenitic stainless steel materials (for example, SUS304 series and SUS316 series), the same kind of austenitic wires as the joint members 1 and 2 (for example, Y308 series and Y316 series wires). May be used in the first lamination welding process 41 and the second lamination welding process 42. Further, by using an inconel wire of nickel alloy in the second lamination welding step 42 instead of the austenitic wire, the effect of suppressing welding deformation caused by the deviation of the linear expansion coefficient from the joint members 1 and 2 is achieved. The compressive stress remaining in the back bead portion on the back surface side and in the vicinity thereof can be increased.

図4は、本発明の狭開先溶接方法及び溶接構造物に係わる開先形状,装置概略構成を示す一実施例の説明図であり、(1)は溶接前の継手部材の開先断面、(2)は開先底部中央にインサート材を設けた開先断面、(3)は溶接装置の構成概要及び溶接中の溶接断面を示している。また、図5は、本発明の狭開先溶接方法及び溶接構造物の溶接概要を示す一実施例の溶接断面であり、(1)は入熱量の切替え及び1層1パスずつ積層溶接した溶接断面、(2)は1層1パスずつ積層溶接する途中で複数パスに振分けて積層溶接した溶接断面を示している。   FIG. 4 is an explanatory view of an embodiment showing a groove shape and apparatus schematic configuration relating to the narrow groove welding method and welded structure of the present invention, (1) is a groove cross section of a joint member before welding, (2) is a groove cross section in which an insert material is provided at the center of the groove bottom, and (3) shows a schematic configuration of the welding apparatus and a weld cross section during welding. FIG. 5 is a weld cross section of an embodiment showing an outline of welding of the narrow gap welding method and welded structure of the present invention. (1) is a welding in which the heat input is switched and the layers are welded one by one for each pass. Section (2) shows a welded section in which the layers are welded in a plurality of passes while being laminated and welded one layer at a time.

図4(1)(2)に示すように、継手部材1,2は、開先低部の裏面1b,2bから開先表面1a,2aの上部まで積層する片面溶接が必要な容器や配管や案内管など厚板の管部材又は板部材を突き合せた狭い開先継手である。また、開先底部中央にインサート材
19を設けた狭い開先継手である。特に、原子力発電プラント,火力発電プラント,化学プラントなどで使用される溶接構造物の継手部材であり、片面溶接の施工が必要であると共に、裏面側の裏ビード15及びその近傍に生じる残留応力を圧縮応力に改善する必要がある。この継手部材1,2の材質は、主にオーステナイト系ステンレス鋼(例えば、SUS304系,SUS316系)である。また、この材質と異なる他のオーステナイト系ステンレス鋼(例えば、SUS309系,SUS321系,SUS347系)であってもよい。さらに、ステンレス鋼と異なる低炭素鋼,低合金鋼であってもよい。
As shown in FIGS. 4 (1) and 2 (2), the joint members 1 and 2 are made of containers, pipes or the like that require single-sided welding to be laminated from the back surfaces 1b and 2b of the groove lower portion to the upper portions of the groove surfaces 1a and 2a It is a narrow groove joint in which a thick plate tube member or plate member such as a guide tube is abutted. Moreover, it is a narrow groove joint in which the insert material 19 is provided at the groove bottom center. In particular, it is a joint member for welded structures used in nuclear power plants, thermal power plants, chemical plants, etc., and requires single-sided welding, and the residual stress generated in the back bead 15 on the back side and in the vicinity thereof. It is necessary to improve the compressive stress. The material of the joint members 1 and 2 is mainly austenitic stainless steel (for example, SUS304 series, SUS316 series). Moreover, the other austenitic stainless steel (For example, SUS309 type | system | group, SUS321 type | system | group, SUS347 type | system | group) different from this material may be sufficient. Furthermore, low carbon steel and low alloy steel different from stainless steel may be used.

また、管部材の開先継手を溶接施工する場合は、この管部材そのものが拘束体となって、溶接過程で生じる反り変形や俵絞め変形を抑制できる。板部材の開先継手を溶接施工する場合には、溶接過程で生じる反り変形や俵絞め変形を抑制するための変形拘束冶具やこれに該当する拘束部材を設けることにより、前記変形を抑制できる。   Moreover, when welding the groove joint of a pipe member, this pipe member itself becomes a restraint body, and can suppress the warp deformation and the wrinkle squeezing deformation which occur in the welding process. In the case of welding the groove joint of the plate member, the deformation can be suppressed by providing a deformation restraining jig for restraining warpage deformation and wrinkle squeezing deformation generated in the welding process and a restraining member corresponding thereto.

開先底部の開先幅w又はこの開先底部中央に設けるインサート材19の幅を含む開先底部幅wを3mm以上7mm以下の寸法範囲、開先上部までの開先角度(片面角度θを2倍した角度)を2度以上8度以下の範囲に形成、好ましくは開先底部幅wを4mm以上6mm以下の寸法範囲、開先角度を4度以上6度以下の寸法範囲に形成することにより、上述した低入熱切替えの積層溶接が確実に施工でき、同時に、溶接すべき開先断面積を格段に減少し、溶接による収縮変形や俵絞め変形を抑制し、溶接ワイヤの使用量を削減できる。なお、前記開先底部幅wが3mmより狭くなると、開先内3に挿入する電極6の外面と開先内3の壁面との隙間が極端に狭く、しかも、初層溶接及びその後の積層溶接による収縮変形によって開先幅全体が収縮し、開先壁面への電極6の接触やアーク発生が起こり易く、開先上部までの積層溶接が困難となるので好ましくない。反対に、この開先底部幅wが7mmより広くなると、開先断面積の増加によって溶接パス数及びワイヤ溶着量が増加し、溶接による収縮変形や俵絞め変形が増すことになる。したがって、開先底部幅wの範囲を3mm以上7mm以下に特定した。   The groove width w including the groove width w of the groove bottom or the width of the insert material 19 provided at the center of the groove bottom is a dimension range of 3 mm to 7 mm, and the groove angle to the groove upper portion (single-side angle θ (Doubled angle) is formed in the range of 2 to 8 degrees, preferably the groove bottom width w is in the range of 4 mm to 6 mm, and the groove angle is in the range of 4 to 6 degrees. As a result, the above-mentioned laminated welding with low heat input switching can be reliably performed, and at the same time, the groove cross-sectional area to be welded is greatly reduced, shrinkage deformation due to welding and crimping deformation are suppressed, and the amount of welding wire used is reduced. Can be reduced. When the groove bottom width w becomes smaller than 3 mm, the gap between the outer surface of the electrode 6 inserted into the groove 3 and the wall surface of the groove 3 is extremely narrow, and the first layer welding and the subsequent layer welding are performed. The entire groove width contracts due to the contraction deformation caused by the above, and contact of the electrode 6 with the groove wall surface and arcing are likely to occur, and it is difficult to perform lamination welding up to the upper part of the groove. On the other hand, when the groove bottom width w is wider than 7 mm, the number of welding passes and the amount of wire welding increase due to an increase in the groove cross-sectional area, and the shrinkage deformation and the wrinkle tightening deformation due to welding increase. Therefore, the range of the groove bottom width w was specified as 3 mm or more and 7 mm or less.

開先底部のルートフェイスfについては、約1〜2.5mm の範囲に形成すること、好ましくは約1.5mm前後に形成することにより、裏面側まで容易に溶融させることができる。また、インサート材19を開先底部中央に設けることにより、開先底部の突合せ部に生じ易い段違いやギャップの影響を緩和でき、特に、初層裏波溶接時に、凹みのない凸形状でほぼ均一な裏ビード幅を良好に得ることができる。   The root face f at the bottom of the groove can be easily melted to the back side by forming it in the range of about 1 to 2.5 mm, preferably about 1.5 mm. In addition, by providing the insert material 19 in the center of the groove bottom, it is possible to alleviate the effects of steps and gaps that are likely to occur at the butt portion of the groove bottom. A good back bead width can be obtained.

また、アーク溶接は、図4(3)に示すように、溶接トーチ7(TIGトーチ)に装備した非消耗性の電極6先端と継手部材1,2との間にTIG溶接電源8より給電して開先内でアーク10を発生させ、そのアーク10溶接部分にワイヤ5を送給及び溶融させて溶接するようにしている。TIG溶接電源8は、溶接モードを選択するスイッチによってパルスアーク溶接又は直流アーク溶接の切り換えが可能な溶接電源である。パルスアーク溶接を選択した場合は、このパルスアーク溶接の給電に必要な高いピーク電流と低いベース電流,アーク電圧などの各条件値を任意に出力でき、パルス周波数の任意変更(例えば1Hz〜最大500Hz)もできる。例えば、1〜10Hz領域の低パルス溶接、10〜
100Hz領域の中パルス溶接、100〜500Hz領域の高パルス溶接を行うことができる。また、直流アーク溶接を選択した場合には、平均溶接電流に該当する所望の直流電流,アーク電圧(平均アーク電圧)を出力できる。
In arc welding, as shown in FIG. 4 (3), power is supplied from a TIG welding power source 8 between the tip of the non-consumable electrode 6 provided on the welding torch 7 (TIG torch) and the joint members 1 and 2. Then, the arc 10 is generated in the groove, and the wire 5 is fed and melted to the welding portion of the arc 10 for welding. The TIG welding power source 8 is a welding power source capable of switching between pulse arc welding and DC arc welding by a switch for selecting a welding mode. When pulsed arc welding is selected, each condition value such as high peak current, low base current, and arc voltage required for power supply for pulsed arc welding can be output arbitrarily, and pulse frequency can be arbitrarily changed (for example, 1 Hz to maximum 500 Hz) ) Is also possible. For example, low pulse welding in the 1-10 Hz region,
Medium pulse welding in the 100 Hz region and high pulse welding in the 100 to 500 Hz region can be performed. When DC arc welding is selected, desired DC current and arc voltage (average arc voltage) corresponding to the average welding current can be output.

溶接制御装置9aは、溶接トーチ7及びワイヤ5を搭載した溶接台車4(省略)の走行,TIG溶接電源8の出力,溶接トーチ7(電極6)の上下左右位置を制御する。また、アーク10溶接部分へワイヤ5を供給するワイヤ供給装置11のワイヤ5の上下左右位置を調整する指令制御をする。さらに、操作ペンダント9bは、溶接制御装置9aに接続されており、溶接条件調整手段,トーチ位置及びワイヤ位置調整手段を内蔵している。   The welding control device 9a controls the traveling of the welding carriage 4 (omitted) on which the welding torch 7 and the wire 5 are mounted, the output of the TIG welding power source 8, and the vertical and horizontal positions of the welding torch 7 (electrode 6). Moreover, the command control which adjusts the vertical and horizontal positions of the wire 5 of the wire supply device 11 that supplies the wire 5 to the arc 10 welding portion is performed. Further, the operation pendant 9b is connected to the welding control device 9a and incorporates welding condition adjusting means, torch position and wire position adjusting means.

制御装置では、各溶接条件を設定したり、これらの条件値を溶接中に割り込んで調整できる。特にパルスアーク溶接を選択した場合は、ピーク電流とそのピーク時間,ベース電流とそのベース時間、又はパルス周波数とピーク電流の時間比率,電極高さの制御(AVC制御)に使用するピーク電圧又はベース電圧又は平均アーク電圧,ピークワイヤ送りとベースワイヤ送り,溶接速度又はこの溶接速度に該当する走行速度、また、直流アーク溶接を選択した場合は、平均溶接電流,電極高さの制御(AVC制御)に使用する平均アーク電圧又はアーク長,ワイヤ送り速度,溶接速度又はこの溶接速度に該当する走行速度を適宜調整する。   In the control device, each welding condition can be set, or these condition values can be interrupted and adjusted during welding. Especially when pulse arc welding is selected, peak current and peak time, base current and base time, or time ratio of pulse frequency and peak current, peak voltage or base used for electrode height control (AVC control) Voltage or average arc voltage, peak wire feed and base wire feed, welding speed or running speed corresponding to this welding speed, and if DC arc welding is selected, control of average welding current and electrode height (AVC control) The average arc voltage or arc length, wire feed speed, welding speed, or traveling speed corresponding to this welding speed used in the above is adjusted as appropriate.

さらに、トーチ位置及びワイヤ位置調整手段により、溶接トーチ7(電極6)の位置ずれ,ワイヤ5の位置ずれを調整できる。   Furthermore, the positional deviation of the welding torch 7 (electrode 6) and the positional deviation of the wire 5 can be adjusted by the torch position and wire position adjusting means.

また、入熱切替えの狭開先溶接を施工する溶接装置は、開先内3に挿入する非消耗電極6の取付け取外し可能な溶接トーチ7と、この溶接トーチ7を開先継手の溶接線方向,上下左右方向に任意移動,溶接ワイヤ5を前記溶接トーチ7先端部分又はアーク10溶接部分に供給及び上下左右位置の調整可能な溶接台車(省略)と、パルスアーク溶接又は直流アーク溶接の選択,所定溶接条件の出力制御可能なTIG溶接電源8と、初層裏波溶接工程53で使用する入熱量範囲の条件設定,初層溶接後に特定の積層ビード高さHbまで積層溶接する第1の積層溶接工程41で使用する第1の入熱量範囲の条件設定、その後に最終層まで積層溶接する第2の積層溶接工程42で使用する第2の入熱量範囲の条件設定が可能な条件設定手段と、この条件設定手段の指示に従って前記溶接台車を駆動制御し、前記TIG溶接電源8を出力制御し、前記溶接トーチ7の左右上下位置,溶接ワイヤ5の送り量及び左右上位置を調整する溶接制御装置9aとを備えるとすることもできる。   Further, a welding apparatus for performing narrow groove welding for switching heat input includes a welding torch 7 capable of attaching / detaching a non-consumable electrode 6 to be inserted into the groove 3 and a welding line direction of the groove joint. , Arbitrary movement in the vertical and horizontal directions, supply of the welding wire 5 to the tip portion of the welding torch 7 or the welding portion of the arc 10 and selection of a welding cart (omitted) capable of adjusting the vertical and horizontal positions, pulse arc welding or DC arc welding, TIG welding power source 8 capable of controlling the output of predetermined welding conditions, setting of conditions of heat input range used in first layer back wave welding process 53, first lamination for laminating and welding up to a specific laminated bead height Hb after first layer welding A condition setting means capable of setting conditions for the first heat input range used in the welding step 41, and thereafter setting conditions for the second heat input range used in the second layer welding step 42 for laminating and welding to the final layer; This article A welding control device 9a for driving and controlling the welding carriage in accordance with an instruction from a setting means, controlling the output of the TIG welding power source 8, and adjusting the horizontal and vertical positions of the welding torch 7, the feed amount of the welding wire 5 and the horizontal and vertical positions; Can also be provided.

このような構成の溶接装置により、開先底部の裏面側に裏ビードを形成する前記初層裏波溶接工程,特定の積層高さまで積層溶接する第1の積層溶接工程,残りの開先部分から開先上部の最終層まで積層溶接する第2の積層溶接工程を確実に施工できる。この一連の溶接施工により、上述したように、溶接表面側に生じる俵絞め変形が小さく抑制され、反対側の裏面側の裏ビード部分及びその近傍に圧縮応力が残留し、腐食環境下で適用されても、応力腐食割れを防止できる。また、溶接中に内面側を水冷したり、溶接完了後に高価な加熱処理装置を設けたり、加熱処理を行う必要がなく、溶接施工のみであり、製作コストを低減でき、良好な溶接品質を確保し、ワイヤ使用量及び溶接所要時間を削減できる。   From the welding apparatus having such a configuration, the first layer back wave welding step of forming a back bead on the back side of the groove bottom, the first layer welding step of layer welding to a specific layer height, and the remaining groove portion It is possible to reliably perform the second lamination welding process in which the lamination welding is performed up to the final layer above the groove. As described above, this series of welding operations suppresses the wrinkling deformation that occurs on the welding surface side, and the compressive stress remains in the back bead portion on the back side on the opposite side and in the vicinity thereof, and is applied in a corrosive environment. However, stress corrosion cracking can be prevented. In addition, there is no need to water-cool the inner surface during welding, or to install an expensive heat treatment device after the completion of welding, or to perform heat treatment, only welding work can be done, manufacturing costs can be reduced, and good welding quality is ensured In addition, the amount of wire used and the time required for welding can be reduced.

開先内3のアーク10溶接部分に流すシールドガス33は、Ar+数パーセントH2 入りの混合ガス又はAr+数十パーセントHe入りの混合ガスを使用すればよい。例えば、Ar+3〜7%H2 入りの混合ガスを使用すると、不活性の純Arガスと比べてエネルギ密度やアークの集中性が高まり、溶融状態及び溶け込みを良くでき、溶接速度が向上する。 As the shielding gas 33 flowing through the arc 10 welding portion in the groove 3, a mixed gas containing Ar + several percent H 2 or a mixed gas containing Ar + several tens percent He may be used. For example, when a mixed gas containing Ar + 3 to 7% H 2 is used, energy density and arc concentration are increased as compared with inert pure Ar gas, the molten state and penetration can be improved, and the welding speed is improved.

また、電極6は、開先底部幅wより狭い細径で円形断面を有する非消耗性のタングステン電極棒であり、高融点材のLa23入りW,Y23入りW,ThO2 入りWの電極棒を使用すればよい。例えば、開先底部幅wより狭い外径φ2.4又はφ1.6の円形断面の電極棒(電極先端のみを円錐形状に加工した電極)を開先内へ挿入して使用することにより、特殊形状の偏平断面(非円形断面)の高価な電極でなくても、開先内のアーク溶接を適正に施工できる。また、円形断面の細径電極は、安価で使い勝手も良く、さらに、電極交換時でも、消耗部の電極先端を簡単に再研磨加工するのみで再使用できる。 Further, the electrode 6 is a non-consumable tungsten electrode rod having a narrow diameter and a circular cross section narrower than the groove bottom width w, and is made of a high melting point material containing La 2 O 3, W containing Y 2 O 3 , ThO 2. It is only necessary to use a W-shaped electrode rod. For example, by inserting an electrode rod having a circular cross section with an outer diameter φ2.4 or φ1.6 narrower than the groove bottom width w (an electrode with only the electrode tip processed into a conical shape) into the groove, Even if the electrode is not an expensive electrode having a flat cross section (non-circular cross section), arc welding in the groove can be properly performed. In addition, the small-diameter electrode having a circular cross section is inexpensive and easy to use, and can be reused by simply repolishing the electrode tip of the consumable part even when replacing the electrode.

図5に示すように、継手部材1,2の溶接部分は、開先底部の裏面側に裏ビード15を形成した初層溶接金属部410と、この初層溶接金属部410と接する部分から特定の積層ビード高さHbまで第1の入熱量範囲Q1で積層溶接して形成した第1の積層溶接金属部411と、この第1の積層溶接金属部411と接する残りの開先部分から開先上部の最終層39まで第2の入熱量範囲Q2で積層溶接して形成した第2の積層溶接金属部422とを備える。   As shown in FIG. 5, the welded parts of the joint members 1 and 2 are identified from the first layer weld metal part 410 in which the back bead 15 is formed on the back side of the groove bottom part and the part in contact with the first layer weld metal part 410. The first laminated weld metal portion 411 formed by lamination welding in the first heat input range Q1 up to the laminated bead height Hb, and the groove from the remaining groove portion in contact with the first laminated weld metal portion 411 A second laminated weld metal part 422 formed by lamination welding in the second heat input range Q2 up to the upper final layer 39.

第2の積層溶接金属部422は、前記積層溶接で使用した複数の入熱条件より小さい1つ以上の入熱条件を使用して前記第1の積層溶接金属部411と接する部位より残りの開先部分を開先上部の最終層39まで積層溶接して形成される。   The second laminated weld metal part 422 is opened from the portion in contact with the first laminated weld metal part 411 using one or more heat input conditions smaller than the plurality of heat input conditions used in the laminate welding. The tip part is formed by laminating and welding up to the final layer 39 at the upper part of the groove.

その結果、溶接表面側に生じる俵絞め変形が小さく抑制され、溶接変形の抑制及び引張応力の抑制によって反対側の裏面側の裏ビード部分及びその近傍に圧縮応力が残留し、腐食環境下で適用されても、応力腐食割れを防止でき、長寿命化に寄与する。   As a result, squeezing deformation that occurs on the welding surface side is suppressed to a small extent, and compression stress remains in the back bead portion on the back side on the opposite side and its vicinity due to suppression of welding deformation and suppression of tensile stress. However, it can prevent stress corrosion cracking and contribute to longer life.

また、溶接中に内面側を水冷したり、溶接完了後に高価な加熱処理装置を設けたり、加熱処理を行う必要がなく、溶接施工のみであり、製作コストを低減でき、良好な溶接品質を確保し、ワイヤ使用量及び溶接所要時間を削減できる。   In addition, there is no need to water-cool the inner surface during welding, or to install an expensive heat treatment device after the completion of welding, or to perform heat treatment, only welding work can be done, manufacturing costs can be reduced, and good welding quality is ensured In addition, the amount of wire used and the time required for welding can be reduced.

特定範囲の積層ビード高さHbは、上述したように、溶接すべき継手部材1,2の板厚Tの3/10以上7/10以下である。好ましくは板厚Tの2/5以上3/5以下にするとよい。また、前記第1の入熱量範囲Q1は、4kJ/cm以上12kJ/cm以下にするとよい。この入熱量範囲Q1から1つ以上の複数の入熱条件を用いて、前記特定範囲の積層ビード高さHbまで積層溶接して前記第1の積層溶接金属部411を形成するとよい。第2の入熱量範囲Q2は、1kJ/cm以上6kJ/cm以下であり、好ましくは2kJ/cm以上4kJ/cm以下である。この入熱量範囲Q2から1つ又は複数の入熱条件を用いて開先上部の最終層まで積層溶接して前記第2の積層溶接金属部422を形成することにより、上述したように、溶接変形の抑制及び引張応力の抑制によって裏面側の裏ビード部分及びその近傍に圧縮応力が残留し、腐食環境下で適用されても、応力腐食割れを防止でき、長寿命化に寄与する。   As described above, the laminated bead height Hb in the specific range is 3/10 or more and 7/10 or less of the plate thickness T of the joint members 1 and 2 to be welded. The thickness T is preferably 2/5 or more and 3/5 or less. The first heat input range Q1 may be 4 kJ / cm or more and 12 kJ / cm or less. The first laminated weld metal part 411 may be formed by laminating and welding up to the specific range of the laminated bead height Hb using one or more heat input conditions from the heat input range Q1. The second heat input range Q2 is 1 kJ / cm or more and 6 kJ / cm or less, preferably 2 kJ / cm or more and 4 kJ / cm or less. By laminating and welding from this heat input range Q2 to the final layer at the upper part of the groove using one or a plurality of heat input conditions, the second laminated weld metal part 422 is formed as described above. Compressive stress remains on the back bead portion on the back side and in the vicinity thereof due to suppression of tensile stress and suppression of tensile stress, and even when applied in a corrosive environment, stress corrosion cracking can be prevented, contributing to a longer life.

また、溶接対象の継手部材1,2がオーステナイト系ステンレス鋼材(例えば、SUS304系,SUS316系)の場合、少なくとも第1の積層溶接金属部411又は初層溶接金属部410及び前記第1の積層溶接金属部は、継手部材1,2の材質と同種のオーステナイト系ワイヤ(例えば、Y308系,Y316系のワイヤ)を溶着することにより、高温水などの腐食環境下にさらされる内面側又は底面側の溶接裏面部から特定の積層高さまで、継手材と同種のオーステナイト系の溶接金属で充填でき、同時に、裏ビード部分及びその近傍に圧縮応力を残留させることができる。第2の積層溶接金属部422についても、継手部材1,2の材質と同種の前記オーステナイト系ワイヤを溶着するとよい。また、溶接対象の継手部材1,2が前記オーステナイト系ステンレス鋼材と異なる他のオーステナイト系ステンレス鋼材(例えば、SUS309系,SUS321系,SUS347系)であれば、この継手部材と同種のオーステナイト系ワイヤ(例えば、Y309系,Y347系のワイヤ) を溶着するとよい。さらに、前記継手部材がステンレス鋼と異なる低炭素鋼,低合金鋼であれば、この継手部材と同種のワイヤを使用すればよい。   Further, when the joint members 1 and 2 to be welded are austenitic stainless steel materials (for example, SUS304 series, SUS316 series), at least the first laminated weld metal part 411 or the first layer welded metal part 410 and the first laminated weld. The metal part is formed on the inner surface side or the bottom surface side exposed to a corrosive environment such as high-temperature water by welding an austenitic wire of the same type as the material of the joint members 1 and 2 (for example, a Y308 series wire or a Y316 series wire). From the weld back surface portion to a specific lamination height, it can be filled with the same kind of austenitic weld metal as the joint material, and at the same time, compressive stress can remain in the back bead portion and the vicinity thereof. Also for the second laminated weld metal portion 422, the austenite wire of the same type as the material of the joint members 1 and 2 may be welded. Further, if the joint members 1 and 2 to be welded are other austenitic stainless steel materials different from the austenitic stainless steel materials (for example, SUS309 series, SUS321 series, SUS347 series), the same kind of austenitic wire ( For example, Y309 series and Y347 series wires) may be welded. Furthermore, if the joint member is a low carbon steel or low alloy steel different from stainless steel, the same type of wire as the joint member may be used.

また、第1の積層溶接金属部411は、前記第1の入量熱量範囲Q1の溶接条件を1つ以上用いて1層1パスずつ積層溶接され、第2の積層溶接金属部422は、前記第2の入量熱量範囲Q2の溶接条件を1つ以上用いて1層1パスずつ積層溶接又は1層1パスずつ積層溶接する途中で複数パスに振分けて積層溶接されることにより、低入熱条件であっても、開先壁面を確実に溶融でき、継手部材1,2の底部から開先上部の最終層まで欠陥のない良好な各溶接ビードを得ることができる。また、上述したように、溶接変形の抑制及び引張応力の抑制によって裏面側の裏ビード部分及びその近傍に圧縮応力が残留し、腐食環境下で適用されても、応力腐食割れを防止でき、長寿命化に寄与する。   Further, the first laminated weld metal part 411 is laminated and welded one layer at a time using one or more welding conditions of the first input heat quantity range Q1, and the second laminated weld metal part 422 is Low heat input can be achieved by using one or more welding conditions in the second heat input calorie range Q2 and performing layer-by-layer welding for each layer or layer-by-layer welding with one pass for each layer. Even under the conditions, the groove wall surface can be reliably melted, and good weld beads without defects can be obtained from the bottom of the joint members 1 and 2 to the final layer at the top of the groove. In addition, as described above, by suppressing welding deformation and suppressing tensile stress, compressive stress remains in the back bead portion and its vicinity on the back side, and even when applied in a corrosive environment, stress corrosion cracking can be prevented, and long Contributes to longer life.

また、前記溶接ワイヤを前記アーク溶接部分に無通電のまま供給して溶着させ、あるいは前記溶接ワイヤを前記アーク溶接部分に加熱通電しながら供給して溶着させることもできる。ワイヤ加熱通電よる溶着量の増加及び溶接能率の向上を図ることができる。   Further, the welding wire can be supplied and welded to the arc welding portion without energization, or the welding wire can be supplied and welded to the arc welding portion while being heated. It is possible to increase the welding amount and improve the welding efficiency due to the wire heating energization.

図6は、本発明の狭開先溶接方法及び溶接構造物の溶接概要を示す他の一実施例の溶接断面である。前記図5との主な相違点は、第2の積層溶接においてニッケル合金のインコネル系ワイヤ又はマルテンサイト系ワイヤを使用することである。その他は図5と同じである。また、図7は、温度と各材料の平均線膨張係数の関係を示す説明図である。   FIG. 6 is a weld cross section of another embodiment showing an outline of welding of a narrow groove welding method and a welded structure according to the present invention. The main difference from FIG. 5 is that a nickel alloy inconel wire or martensite wire is used in the second lamination welding. Others are the same as FIG. Moreover, FIG. 7 is explanatory drawing which shows the relationship between temperature and the average linear expansion coefficient of each material.

図6に示したように、継手部材1,2がオーステナイト系ステンレス材の場合、第1の積層溶接金属部411、又は初層溶接金属部410と第1の積層溶接金属部411は、前記継手部材1,2の材質と同種のオーステナイト系ワイヤ61が溶着され、この上部に積層する第2の積層溶接金属部422には、ニッケル合金のインコネル系ワイヤ62又はマルテンサイト系ワイヤ63が溶着されている。このように溶着することにより、線膨張係数の偏差やマルテンサイト変態で生じる溶接変形の抑制効果によって、裏面側の裏ビード部分及びその近傍に残留する圧縮応力を高めることができる。   As shown in FIG. 6, when the joint members 1 and 2 are austenitic stainless materials, the first laminated weld metal part 411 or the first layer weld metal part 410 and the first laminate weld metal part 411 An austenitic wire 61 of the same type as the material of the members 1 and 2 is welded, and a nickel alloy inconel wire 62 or martensitic wire 63 is welded to the second laminated weld metal portion 422 laminated on the upper part. Yes. By welding in this way, the compressive stress remaining in the back bead portion on the back side and in the vicinity thereof can be increased due to the effect of suppressing the welding deformation caused by the deviation of the linear expansion coefficient and the martensitic transformation.

また、前記第2の積層溶接金属部422を、1層1パスずつ積層溶接し、又は1層1パスずつ積層溶接する途中で複数パスに振分けて積層溶接することにより、低入熱条件であっても、開先壁面を確実に溶融でき、開先上部の最終層まで欠陥のない良好な各溶接ビードを得られる。同時に、上述したように、線膨張係数の偏差で生じる溶接変形の抑制効果によって、裏面側の裏ビード部分及びその近傍に残留する圧縮応力を高められ、応力腐食割れの防止による長寿命化に寄与する。   In addition, the second laminated weld metal part 422 is laminated and welded one layer at a time, or is divided into a plurality of passes and laminated welded one layer at a time. However, it is possible to reliably melt the groove wall surface and obtain each weld bead having no defects up to the final layer above the groove. At the same time, as described above, the effect of suppressing welding deformation caused by the deviation of the linear expansion coefficient can increase the compressive stress remaining in the back bead portion and its vicinity on the back side, contributing to a longer life by preventing stress corrosion cracking. To do.

また、第2の積層溶接金属部422は、第1の積層溶接金属部411より小さい入熱量で積層溶接することにより、前記第1の積層溶接金属部411と第2の積層溶接金属部
422とが接する部分又はこの近傍の溶接断面部を形状変化させることができる。この形状変化は、ビード幅変化,溶け込み変化,積層リップル変化,金属組織変化のいずれか1つ以上であればよい。例えば、積層リップルの密集化によって断面観察を容易にし、金属組織の微細化によって品質が向上する。
Further, the second laminated weld metal part 422 is laminated and welded with a smaller heat input than the first laminated weld metal part 411, so that the first laminated weld metal part 411, the second laminated weld metal part 422, It is possible to change the shape of the welded cross section in the vicinity of the contact portion or the vicinity thereof. This shape change may be any one or more of bead width change, penetration change, laminate ripple change, and metallographic change. For example, cross-section observation is facilitated by the denseness of laminated ripples, and the quality is improved by miniaturizing the metal structure.

また、最終層の溶接終了後に残存する溶接表面側の俵絞め変形量(凹み量)は、板厚や入熱量や開先形状によって変化するが、概ね1.5mm以下であるとよい。好ましくは1.0mm以下である。この俵絞め変形を小さく抑制することにより、裏側に生成される引張応力が小さく抑制でき、裏ビード部分及びその近傍に圧縮応力を残留させられる。例えば、最終層の溶接終了後に、裏面側の裏ビード部分及びこの近傍の母材熱影響部分が材料の降伏応力から圧縮側に形成できれば、腐食環境下で使用される溶接構造物であっても、応力腐食割れを防止できる。   Further, the amount of deformation (dent) on the welding surface side remaining after the final layer is welded varies depending on the plate thickness, heat input, and groove shape, but is preferably about 1.5 mm or less. Preferably it is 1.0 mm or less. By suppressing the wrinkle-squeezing deformation to a small extent, the tensile stress generated on the back side can be suppressed to a small level, and compressive stress can be left in the back bead portion and the vicinity thereof. For example, if the back bead part on the back side and the base metal heat-affected part in the vicinity of the back layer can be formed on the compression side from the yield stress of the material after welding of the final layer, even a welded structure used in a corrosive environment Can prevent stress corrosion cracking.

図7に示すように、インコネル系ワイヤ(例えば、インコネル82ワイヤ)の平均線膨張係数(□の線)は、例えば、約100℃時で約13.4(×10-6/℃) であり、SUS304材(◇の線)の約17.3(×10-6/℃)よりも3.9(×10-6/℃)小さい。また、SUS316Lワイヤの平均線膨張係数(△の線)と比べても約2.6(×10-6/℃)小さい。この平均線膨張係数の偏差によって、溶接金属部422に変形抑制作用が働き、裏ビード部分及びその近傍に残留する圧縮応力が高くなる。 As shown in FIG. 7, the average linear expansion coefficient (square line) of an Inconel wire (for example, Inconel 82 wire) is, for example, about 13.4 (× 10 −6 / ° C.) at about 100 ° C. SUS304 material (line of ◇) is 3.9 (× 10 −6 / ° C.) smaller than about 17.3 (× 10 −6 / ° C.). In addition, it is about 2.6 (× 10 −6 / ° C.) smaller than the average linear expansion coefficient (Δ line) of the SUS316L wire. Due to the deviation of the average linear expansion coefficient, a deformation suppressing action acts on the weld metal portion 422, and the compressive stress remaining in the back bead portion and the vicinity thereof becomes high.

また、マルテンサイトワイヤの平均線膨張係数(〇の線)は、他の材料の平均線膨張係数と比べて小さく、温度の下降時に、さらに激減する特性を有している。マルテンサイト系ワイヤは、オーステナイト系ステンレス鋼の溶接継手材と融合性の良いマルテンサイト系のステンレスワイヤであって、少なくとも化学組成のNiが8〜12重量%、Crが8〜12重量%含有し、マルテンサイト変態開始温度が100℃以上、300℃以下であるマルテンサイト系ステンレスワイヤを使用するとよい。したがって、インコネル系ワイヤの代わりにマルテンサイト系ワイヤを用いて、前記第2の積層溶接金属部422を積層溶接できる。このマルテンサイト系ワイヤによる積層溶接により、平均線膨張係数の偏差及びマルテンサイト変態を生じる溶接金属部に変形抑制作用及び膨張作用が働き、裏ビード部分及びその近傍に残留する圧縮応力をさらに高められる。   In addition, the average linear expansion coefficient (O line) of martensite wire is smaller than the average linear expansion coefficient of other materials, and has a characteristic of further drastically decreasing when the temperature is lowered. The martensitic wire is a martensitic stainless wire that has good fusion properties with the welded joint material of austenitic stainless steel, and contains at least 8 to 12% by weight of Ni of chemical composition and 8 to 12% by weight of Cr. A martensitic stainless wire having a martensitic transformation start temperature of 100 ° C. or higher and 300 ° C. or lower may be used. Therefore, the second laminated weld metal part 422 can be laminated and welded using a martensite wire instead of the Inconel wire. By laminating with this martensite-based wire, the deformation of the average metal expansion coefficient and the weld metal part that causes martensitic transformation have a deformation suppressing action and an expanding action, and the compressive stress remaining in the back bead portion and its vicinity can be further increased. .

表1は、溶接施工条件の一実施例であり、図1,図5,図6及び図7に示した初層裏波溶接,第1及び第2の積層溶接で使用可能な溶接条件である。   Table 1 is an example of welding conditions, and is a welding condition that can be used in the first layer back wave welding and the first and second laminated weldings shown in FIG. 1, FIG. 5, FIG. 6, and FIG. .

Figure 0004528683
Figure 0004528683

図8は、本発明の狭開先溶接方法で施工した配管溶接の断面写真を示す一実施例である。また、図9は、図8に示した配管溶接における積層高さと溶接パス毎の入熱量,開先肩幅,裏側の収縮量,表側の俵絞めによる凹み量との関係を示す説明図である。溶接継手の配管は、外径が314mm、板厚が29.5mm 、材質がSUS304系のステンレス鋼である。また、溶接ワイヤは、配管部材と同種のオーステナイト系ワイヤ(Y308L)を使用している。初層から最終層まで積層溶接した累計パス数は、31層31パスであるが、積層溶接すべき開先断面積,溶接パス毎の入熱量,ワイヤ溶着量などの違いによって変化する。   FIG. 8 is an example showing a cross-sectional photograph of pipe welding performed by the narrow groove welding method of the present invention. FIG. 9 is an explanatory diagram showing the relationship between the stacking height in the pipe welding shown in FIG. 8 and the heat input amount for each welding pass, the groove shoulder width, the shrinkage amount on the back side, and the dent amount due to the front side squeezing. The pipe of the welded joint is SUS304 stainless steel with an outer diameter of 314 mm, a plate thickness of 29.5 mm, and a material. Moreover, the austenitic wire (Y308L) of the same kind as a piping member is used for the welding wire. The cumulative number of passes that are laminated and welded from the first layer to the last layer is 31 layers and 31 passes, but varies depending on differences in the groove cross-sectional area to be laminated and welded, the amount of heat input for each welding pass, the amount of wire welding, and the like.

図8及び図9に示すように、仮付け溶接後の(a)初層溶接(裏ビード形成溶接,初層溶接金属部410)では、裏面側に裏ビード15を形成させている。この初層溶接後の第1の積層溶接((b)前半溶接、第1の溶接金属部411)では、第1の入熱量範囲Q1の特定入熱条件(4≦Q1≦12kJ/cm)又はこれに該当する特定溶接条件を複数用いて積層溶接している。さらに、第2の積層溶接((c)後半溶接、第2の溶接金属部422)では、積層ビード高さHb(Σh+f)が板厚Tの半分程度に到達した地点で、前記第1の入熱量範囲Q1で使用した入熱条件又はこれに該当する溶接条件より小さい第2の入熱量範囲Q2の特定入熱条件(2≦Q2≦5kJ/cm)又はこれに該当する特定溶接条件に切替えて開先上部の最終層まで積層溶接している。開先上面の肩幅w,裏面側の収縮量
ΔL2(所定寸法長さLの収縮)は、主に前記初層溶接及び第1の積層溶接の過程で生じる開先幅方向の収縮変形の進行によって増加している。また、溶接表側に生じる俵絞めによる凹み量Δc(俵絞め変形)は、第2の積層溶接の進行過程で生じる結果になっている。このように溶接施工することにより、図8に示したような良好な溶接断面部を得られる。また、溶接終了後に残留する表面側の凹み量Δcを小さく形成することにより、裏側に生成される引張応力が小さく抑制でき、裏ビード部分及びその近傍に圧縮応力を残留させることができる。ここでは配管溶接を一例に示したが、継手形状が異なる板部材の溶接であってもよい。
As shown in FIGS. 8 and 9, in (a) first layer welding (back bead formation welding, first layer weld metal part 410) after tack welding, a back bead 15 is formed on the back surface side. In the first laminated welding after the first layer welding ((b) first half welding, first weld metal part 411), the specific heat input condition (4 ≦ Q1 ≦ 12 kJ / cm) in the first heat input range Q1 or Lamination welding is performed using a plurality of specific welding conditions corresponding to this. Further, in the second laminated welding ((c) second-half welding, second welded metal portion 422), the first entry is made at a point where the laminated bead height Hb (Σh + f) reaches about half of the plate thickness T. Switch to the specific heat input condition (2 ≦ Q2 ≦ 5 kJ / cm) in the second heat input range Q2 (2 ≦ Q2 ≦ 5 kJ / cm) smaller than the heat input condition used in the heat amount range Q1 or the welding condition corresponding thereto, or the specific welding condition corresponding thereto Lamination welding is performed up to the final layer at the top of the groove. The shoulder width w on the groove upper surface and the shrinkage ΔL2 on the back surface side (shrinkage of a predetermined length L) are mainly due to the progress of shrinkage deformation in the groove width direction that occurs in the process of the first layer welding and the first laminated welding. It has increased. In addition, the amount of depression Δc due to wrinkling generated on the front side of the welding (claw drawing deformation) is a result generated in the progress of the second laminated welding. By performing welding in this way, a good weld cross section as shown in FIG. 8 can be obtained. Further, by forming the surface-side dent amount Δc remaining after the end of welding, the tensile stress generated on the back side can be suppressed small, and the compressive stress can remain in the back bead portion and its vicinity. Here, pipe welding is shown as an example, but welding of plate members having different joint shapes may be used.

図10は、溶接施工後の配管内面の残留応力測定結果の一実施例であり、溶接施工は図8及び図9で説明した通りである。残留応力測定は、ひずみゲージ開放法(配管内側の測定箇所にひずみゲージを貼り付け、短冊切りの1次切断開放の工程から最終スリット切りの3次開放の工程を経て、周方向の開放ひずみ値εθと軸方向の開放ひずみ値εzとの測定結果より、周方向の残留応力σθ、軸方向の残留応力を算出)を用いて測定した結果である。裏面側の裏ビード部分及びその近傍の残留応力は、図10に示すように、溶接線直角方向の軸方向残留応力σz(〇印の線)が最大で約−35MPaの圧縮応力であり、また、溶接線方向の周方向残留応力σθ(◆印の線)が最大で約−138MPaの圧縮応力になっている。上記の圧縮応力はビード中央部分の値であり、応力腐食割れ防止で最も重要なビード境界部及び溶接熱影響部では、さらに高い圧縮応力が得られている。   FIG. 10 shows an example of the residual stress measurement result on the inner surface of the pipe after welding, and the welding is as described in FIGS. 8 and 9. Residual stress measurement is based on the strain gauge opening method (a strain gauge is attached to the measurement point inside the pipe, the strip-cut primary cut-open process goes through the final slit cut-out tertiary open process, and the open strain value in the circumferential direction. This is a result of measurement using a calculation result of circumferential residual stress σθ and axial residual stress from the measurement result of εθ and the axial open strain value εz. As shown in FIG. 10, the residual stress in the back bead portion on the back side and the vicinity thereof is a compressive stress having a maximum axial residual stress σz in the direction perpendicular to the weld line (circled line) of about −35 MPa. The circumferential residual stress σθ (line marked with ◆) in the weld line direction is a compressive stress of about −138 MPa at the maximum. The above compressive stress is the value at the bead central portion, and higher compressive stress is obtained at the bead boundary and weld heat affected zone, which are the most important for preventing stress corrosion cracking.

このように、本発明の狭開先溶接方法を施工すれば、裏面側の裏ビード部分及びその近傍の残留応力を圧縮応力に改善でき、腐食環境下で適用されても、応力腐食割れを防止でき、長寿命化に寄与する。また、溶接中に内面側を水冷したり、溶接完了後に高価な加熱処理装置を設けたり、加熱処理を行う必要がなく、溶接施工のみであり、製作コストを低減でき、良好な溶接品質を確保し、ワイヤ使用量及び溶接所要時間を削減できる。   In this way, if the narrow groove welding method of the present invention is applied, the backside bead portion on the back side and the residual stress in the vicinity thereof can be improved to compressive stress, and even when applied in a corrosive environment, stress corrosion cracking is prevented. Can contribute to longer life. In addition, there is no need to water-cool the inner surface during welding, or to install an expensive heat treatment device after the completion of welding, or to perform heat treatment, only welding work can be done, manufacturing costs can be reduced, and good welding quality is ensured In addition, the amount of wire used and the time required for welding can be reduced.

本発明の狭開先溶接方法及びその溶接構造物の溶接手順概要の一実施例を示す説明図である。It is explanatory drawing which shows one Example of the welding procedure outline | summary of the narrow groove welding method and its welded structure of this invention. 開先継手の溶接過程で変化する裏ビード部分の応力解析結果の一実施例を示す説明図である。It is explanatory drawing which shows one Example of the stress analysis result of the back bead part which changes in the welding process of a groove joint. 開先継手の溶接過程で変化する裏ビード部分の応力解析結果の他の一実施例を示す説明図である。It is explanatory drawing which shows another Example of the stress analysis result of the back bead part which changes in the welding process of a groove joint. 本発明の狭開先溶接方法及び溶接構造物に係わる開先形状,装置概略構成を示す一実施例の説明図である。It is explanatory drawing of one Example which shows the groove shape and apparatus schematic structure regarding the narrow groove welding method and welding structure of this invention. 本発明の狭開先溶接方法及び溶接構造物の溶接概要を示す一実施例の溶接断面である。It is a welding cross section of one Example which shows the welding outline of the narrow groove welding method of this invention, and a welded structure. 本発明の狭開先溶接方法及び溶接構造物の溶接概要を示す他の一実施例の溶接断面である。It is the welding cross section of another Example which shows the welding outline | summary of the narrow groove welding method and welding structure of this invention. 温度と各材料の平均線膨張係数の関係を示す説明図である。It is explanatory drawing which shows the relationship between temperature and the average linear expansion coefficient of each material. 本発明の狭開先溶接方法で施工した配管溶接の断面写真を示す一実施例である。It is one Example which shows the cross-sectional photograph of the piping welding constructed | assembled with the narrow groove welding method of this invention. 図8に示した配管溶接における積層高さと溶接パス毎の入熱量,開先肩幅,裏側の収縮量,表側の俵絞めによる凹み量との関係を示す説明図である。It is explanatory drawing which shows the relationship between the lamination | stacking height in the pipe welding shown in FIG. 8, the amount of heat inputs for every welding path, a groove shoulder width, the shrinkage | contraction amount of a back side, and the amount of dents by the front side squeezing. 溶接施工後の配管内面の残留応力測定結果の一実施例である。It is one Example of the residual stress measurement result of the piping inner surface after welding construction.

符号の説明Explanation of symbols

1,2…継手部材、1b,2b…開先裏面、3…開先内、4…溶接台車、5…ワイヤ、6…電極、7…溶接トーチ、8…TIG溶接電源、9a…溶接制御装置、9b…操作ペンダント、10…アーク、11…ワイヤ送給モータ、15…裏ビード、19…インサート材、21…初層溶接のビード断面、39…最終層のビード断面、41…第1の積層溶接工程、42…第2の積層溶接工程、51…開先形状の製作工程、52…溶接準備工程、53…初層裏波溶接工程、56…第1の入熱量範囲Q1、57…第2の入熱量範囲Q2、61…オーステナイト系ワイヤ、62…インコネル系ワイヤ、63…マルテンサイト系ワイヤ、
410…初層溶接金属部、411…第1の溶接金属部、422…第2の溶接金属部、T…板厚、Hb…積層ビード高さ、w…開先底部幅、f…ルートフェイス、2θ…開先角度。

DESCRIPTION OF SYMBOLS 1, 2 ... Joint member, 1b, 2b ... Groove back surface, 3 ... Inside groove, 4 ... Welding cart, 5 ... Wire, 6 ... Electrode, 7 ... Welding torch, 8 ... TIG welding power supply, 9a ... Welding control apparatus 9b: Operation pendant, 10: Arc, 11: Wire feed motor, 15: Back bead, 19: Insert material, 21: Bead section of first layer welding, 39: Bead section of final layer, 41: First layer Welding step, 42 ... second lamination welding step, 51 ... groove shape manufacturing step, 52 ... weld preparation step, 53 ... first layer backside welding step, 56 ... first heat input range Q1, 57 ... second Heat input range Q2, 61 ... austenitic wire, 62 ... inconel wire, 63 ... martensite wire,
410 ... first layer weld metal part, 411 ... first weld metal part, 422 ... second weld metal part, T ... plate thickness, Hb ... laminated bead height, w ... groove bottom width, f ... root face, 2θ: groove angle.

Claims (11)

オーステナイト系ステンレス鋼からなる管部材又は板部材を突き合せて形成した開先継手の底部から上部まで、非消耗電極方式のアーク溶接によってオーステナイト系ステンレスワイヤを開先内に溶着させながら片面溶接すると共に、該片面溶接によって開先底部の裏面側の残留応力を改善する狭開先溶接方法において、
開先底部の裏面側に裏ビードを形成する初層裏波溶接工程と、この初層裏波溶接工程後に、特定の積層ビード高さまで第1の入熱量範囲で積層溶接する第1の積層溶接工程と、この第1の積層溶接工程後に、前記第1の積層溶接工程で使用した複数の入熱条件より小さい1つ以上の入熱条件を使用して残りの開先部分から開先上部の最終層まで第2の入熱量範囲で積層溶接する第2の積層溶接工程とを有し、
前記裏面側の裏ビード部分及びその近傍の熱影響部分に圧縮残留応力を形成させることを特徴とする狭開先溶接方法。
From the bottom to the top of a groove joint formed by abutting a pipe member or plate member made of austenitic stainless steel, one-side welding while welding austenitic stainless steel wire in the groove by arc welding of non-consumable electrode method In the narrow groove welding method for improving the residual stress on the back surface side of the groove bottom by the one-side welding,
A first layer back welding process for forming a back bead on the back side of the groove bottom, and a first layer welding for performing a layer welding in a first heat input range up to a specific layer bead height after the first layer back welding process And after the first laminating welding step, the remaining groove portion is connected to the upper portion of the groove using one or more heat input conditions smaller than the plurality of heat input conditions used in the first laminating welding process . A second laminating process for laminating and welding in the second heat input range up to the final layer ,
A narrow groove welding method, wherein compressive residual stress is formed in a back bead portion on the back surface side and a heat-affected portion in the vicinity thereof .
請求項1に記載の狭開先溶接方法において、前記第1の積層溶接工程で用いる第1の入熱量範囲は4kJ/cm以上12kJ/cm以下であり、前記第2の積層溶接工程で用いる第2の入熱量範囲は1kJ/cm以上6kJ/cm以下であり、かつ、前記第1の積層溶接工程で使用した入熱条件より小さい入熱条件を使用することを特徴とする狭開先溶接方法。 2. The narrow gap welding method according to claim 1, wherein a first heat input range used in the first laminating welding process is 4 kJ / cm or more and 12 kJ / cm or less, and the first laminating welding process uses the first heat input range. The heat input range of No. 2 is 1 kJ / cm or more and 6 kJ / cm or less, and uses a heat input condition smaller than the heat input condition used in the first laminating welding process. . 請求項1に記載の狭開先溶接方法において、前記特定の積層ビード高さは、板厚の3/10以上7/10以下の範囲であることを特徴とする狭開先溶接方法。 2. The narrow groove welding method according to claim 1, wherein the specific laminated bead height is in a range of 3/10 to 7/10 of a plate thickness . 請求項1に記載の狭開先溶接方法において、前記開先継手は、開先底幅を3mm以上7mm以下の範囲、開先角度を2度以上8度以下の範囲に形成することを特徴とする狭開先溶接方法。 2. The narrow groove welding method according to claim 1, wherein the groove joint is formed with a groove bottom width in a range of 3 mm to 7 mm and a groove angle in a range of 2 degrees to 8 degrees. Narrow groove welding method. 請求項1に記載の狭開先溶接方法において、前記第1の積層溶接工程では、前記第1の入熱範囲の入熱条件を用いて1層1パスずつ積層溶接し、前記第2の積層溶接工程では、前記第1の積層溶接工程で使用した入熱条件より小さい入熱条件を用いて1層1パスずつ積層溶接するか又はその途中の上層部分で複数パスに振分けて積層溶接することを特徴とする狭開先溶接方法。 2. The narrow gap welding method according to claim 1, wherein in the first laminating welding step, laminating welding is performed one layer at a time using heat input conditions in the first heat input range, and the second laminating process is performed. In the welding process, one layer per layer is laminated and welded using a heat input condition smaller than the heat input condition used in the first laminating welding process, or a plurality of passes are laminated and laminated welded at an upper layer portion in the middle. A narrow groove welding method characterized by 請求項1または5に記載の狭開先溶接方法において、前記第2の積層工程では、前記オーステナイト系ステンレスワイヤからニッケル合金のインコネル系ワイヤ又はマルテンサイト系ワイヤに交換し、この交換した前記ワイヤを前記開先内に溶着させながら溶接することを特徴とする狭開先溶接方法。 The narrow gap welding method according to claim 1 or 5, wherein in the second laminating step, the austenitic stainless wire is replaced with an inconel wire or martensitic wire of a nickel alloy, and the replaced wire A narrow groove welding method, wherein welding is performed while welding in the groove. オーステナイト系ステンレス鋼からなる管部材又は板部材を突き合せて形成した開先継手の底部から上部まで、非消耗電極方式のアーク溶接によってオーステナイト系ステンレスワイヤを開先内に溶着させながら片面溶接されていると共に、該片面溶接によって開先底部の裏面側の残留応力を改善した溶接構造物において、One-sided welding is performed by welding austenitic stainless steel wire into the groove by arc welding using a non-consumable electrode method from the bottom to the top of the groove joint formed by abutting a pipe member or plate member made of austenitic stainless steel. In addition, in the welded structure in which the residual stress on the back side of the groove bottom is improved by the one-side welding,
開先底部の裏面側に裏ビードを形成した初層溶接金属部と、この初層溶接金属部と接する部分から特定の積層ビード高さまで第1の入熱量範囲で積層溶接して形成した第1の積層溶接金属部と、前記積層溶接で使用した複数の入熱条件より小さい1つ以上の入熱条件を使用して前記第1の積層溶接金属部と接する残りの開先部分から開先上部の最終層まで積層溶接して形成した第2の積層溶接金属部とを備え、A first-layer weld metal part having a back bead formed on the back side of the groove bottom part, and a first weld formed by laminating and welding in a first heat input range from a portion in contact with the first-layer weld metal part to a specific laminate bead height And a groove upper portion from the remaining groove portion in contact with the first laminated weld metal portion using at least one heat input condition smaller than the plurality of heat input conditions used in the laminate welding. A second laminated weld metal part formed by laminating and welding up to the final layer of
前記裏面側の裏ビード部分及びその近傍の熱影響部分に圧縮残留応力が形成されていることを特徴とする溶接構造物。A welded structure in which compressive residual stress is formed in a back bead portion on the back surface side and a heat-affected portion in the vicinity thereof.
請求項7に記載の溶接構造物において、前記第1の入熱量範囲は4kJ/cm以上12kJ/cm以下であり、前記第2の入熱量範囲は1kJ/cm以上6kJ/cm以下であり、かつ、前記第1の積層溶接金属部の形成に使用した入熱条件より小さい入熱条件を使用して積層溶接したことを特徴とする溶接構造物。The welded structure according to claim 7, wherein the first heat input range is 4 kJ / cm or more and 12 kJ / cm or less, the second heat input range is 1 kJ / cm or more and 6 kJ / cm or less, and A welded structure obtained by performing lamination welding using a heat input condition smaller than the heat input condition used for forming the first laminated weld metal part. 請求項7に記載の溶接構造物において、前記特定の積層ビード高さは、板厚の3/10以上7/10以下の範囲であることを特徴とする溶接構造物。8. The welded structure according to claim 7, wherein the specific laminated bead height is in a range of 3/10 to 7/10 of a plate thickness. 請求項7に記載の溶接構造物において、表面側の俵絞め変形量(凹み量)が1.5mm以下であることを特徴とする溶接構造物。8. The welded structure according to claim 7, wherein the amount of deformation (dent) on the front side is 1.5 mm or less. 請求項7に記載の溶接構造物において、少なくとも前記第1の積層溶接金属部と第2の積層溶接金属部とが接する部分又はこの近傍の溶接断面部又はこれに類以する溶接断面部が形状変化しており、この形状変化は、ビード幅変化,溶け込み変化,積層リップル変化,金属組織変化のいずれか1つ以上であることを特徴とする溶接構造物。 8. The welded structure according to claim 7, wherein at least a portion where the first laminated weld metal portion and the second laminated weld metal portion are in contact with each other, a weld cross section in the vicinity thereof, or a weld cross section similar thereto is formed. A welded structure characterized in that the shape change is at least one of a bead width change, a penetration change, a laminate ripple change, and a metallographic change .
JP2005205037A 2005-07-14 2005-07-14 Narrow groove welding method, welded structure, and welding apparatus therefor Expired - Fee Related JP4528683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005205037A JP4528683B2 (en) 2005-07-14 2005-07-14 Narrow groove welding method, welded structure, and welding apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005205037A JP4528683B2 (en) 2005-07-14 2005-07-14 Narrow groove welding method, welded structure, and welding apparatus therefor

Publications (2)

Publication Number Publication Date
JP2007021516A JP2007021516A (en) 2007-02-01
JP4528683B2 true JP4528683B2 (en) 2010-08-18

Family

ID=37782947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005205037A Expired - Fee Related JP4528683B2 (en) 2005-07-14 2005-07-14 Narrow groove welding method, welded structure, and welding apparatus therefor

Country Status (1)

Country Link
JP (1) JP4528683B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4538394B2 (en) * 2005-09-21 2010-09-08 日立Geニュークリア・エナジー株式会社 Residual stress improvement welding method and welded structure
JP4912097B2 (en) * 2006-09-08 2012-04-04 東電工業株式会社 MULTILAYER WELDING METHOD FOR STAINLESS STEEL PIPE AND MULTILAYER WELDING
JP5038775B2 (en) * 2007-05-15 2012-10-03 株式会社東芝 Welding method for structures
JP5260268B2 (en) 2008-12-26 2013-08-14 日立Geニュークリア・エナジー株式会社 Manufacturing method of core shroud for nuclear power plant and nuclear power plant structure
KR101677317B1 (en) * 2013-07-03 2016-11-17 주식회사 포스코 Method for manufacturing electrical steel sheet laminated core for reducing core loss and increasing strength and laminated core produced by the same
KR101982160B1 (en) * 2016-12-23 2019-08-28 주식회사 포스코 Welding joint of thick steel plate having excellent low temperature toughness and welding method of the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548133A (en) * 1977-06-22 1979-01-22 Hitachi Ltd Welding method for austenitic stainless steel
JP2002224829A (en) * 2001-02-05 2002-08-13 Hitachi Ltd Method and equipment for welding narrow groove with peak pulse tig
JP2005095915A (en) * 2003-09-24 2005-04-14 Hitachi Ltd Circumferential multilayer sequence welding method, and automatic welding equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548133A (en) * 1977-06-22 1979-01-22 Hitachi Ltd Welding method for austenitic stainless steel
JP2002224829A (en) * 2001-02-05 2002-08-13 Hitachi Ltd Method and equipment for welding narrow groove with peak pulse tig
JP2005095915A (en) * 2003-09-24 2005-04-14 Hitachi Ltd Circumferential multilayer sequence welding method, and automatic welding equipment

Also Published As

Publication number Publication date
JP2007021516A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
US20060201915A1 (en) Welding process for stainless steel piping
JP4528683B2 (en) Narrow groove welding method, welded structure, and welding apparatus therefor
US11110546B2 (en) Laser hot wire welding of multi-layered structures
JP2009061483A (en) Two sided welding method and two sided welded structure
JP4415863B2 (en) Multilayer prime welding method and multilayer prime welded structure
US11161191B2 (en) Process and apparatus for welding workpiece having heat sensitive material
JP4538394B2 (en) Residual stress improvement welding method and welded structure
Akinlabi et al. TIG & MIG hybrid welded steel joint: A review
US8110772B1 (en) System and method for multi-pass computer controlled narrow-gap electroslag welding applications
Latifi Jr Advanced orbital pipe welding
Wordofa et al. Gas metal arc welding input parameters impacts on weld quality characteristics of steel materials a comprehensive exploration
JP2006205183A (en) Multi-layer welding structure of stainless steel
KR102094678B1 (en) Tube sheet automatic overlay welding device
Abioye et al. Analysis of the mechanical properties and penetration depth of gas metal arc welding on AISI 304 stainless steel
Singh et al. Analysis of Hardness in Metal Inert Gas Welding of Two Dissimilar Metals, Mild Steel & Stainless Steel
Gill et al. Hot Filler Wire Addition in Computer Assisted Arc Welding and Cladding Processes-A Review
Midawi et al. Comparison of hardness and microstructures produced using GMAW and hot-wire TIG mechanized welding of high strength steels
Anirudhan et al. Manufacturing of a bimetallic structure of stainless steel and mild steel through wire arc additive manufacturing—a critical review
JP2006192438A (en) Multi-layered welding method of narrow bevel joint
JP2022190285A (en) WELDED STRUCTURE AND Ni ALLOY PADDING/WELDING METHOD
Kovalenko et al. Adequacy of thermohydrodynamic model of through penetration in TIG and A-TIG welding of Nimonic-75 Nickel alloy
JP5473796B2 (en) Stainless steel sheet welding method and welded joint
Ogundimu et al. Hybrid welding of 304 austenitic stainless steel
PATHAK COMPARATIVE STUDY OF MECHANICAL AND MICROSTRUCTURE PROPERTIES OF AA6082-T6 USING CMT AND FSP OVER CMT WELDING
Goncharova et al. Spot Welded Joints of Steels Produced by Electric Arc and Laser Welding in Different Spatial Positions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070927

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4528683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees