JP5038775B2 - Welding method for structures - Google Patents

Welding method for structures Download PDF

Info

Publication number
JP5038775B2
JP5038775B2 JP2007128976A JP2007128976A JP5038775B2 JP 5038775 B2 JP5038775 B2 JP 5038775B2 JP 2007128976 A JP2007128976 A JP 2007128976A JP 2007128976 A JP2007128976 A JP 2007128976A JP 5038775 B2 JP5038775 B2 JP 5038775B2
Authority
JP
Japan
Prior art keywords
welding
analysis
residual stress
weld
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007128976A
Other languages
Japanese (ja)
Other versions
JP2008284556A (en
Inventor
利恵 角谷
利之 斎藤
達也 久保
政之 淺野
稔 小畑
正明 菊池
貴一 伊藤
貴広 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007128976A priority Critical patent/JP5038775B2/en
Publication of JP2008284556A publication Critical patent/JP2008284556A/en
Application granted granted Critical
Publication of JP5038775B2 publication Critical patent/JP5038775B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Description

本発明は、構造物の溶接時の溶接熱影響による引張の残留応力を改善する構造物の溶接方法に関する。   The present invention relates to a method for welding a structure that improves residual tensile stress due to the influence of welding heat during welding of the structure.

一般に、溶接構造物の応力腐食割れ(SCC)の発生や進展、溶接構造物の疲労強度等の低下の原因に溶接による熱膨張と塑性歪みによる残留応力とがある。   In general, there are thermal expansion due to welding and residual stress due to plastic strain as causes of stress corrosion cracking (SCC) occurrence and progress in welded structures and fatigue strength reduction of welded structures.

原子力発電プラントの容器、配管などの構造物の材料であるオーステナイト系ステンレス鋼材は、溶接により結晶粒界にCr炭化物が析出し易く、結晶粒界近傍にCr欠乏層が形成されて腐食環境下では割れ感受性(材料の鋭敏化)が高くなることが知られている。また、溶接部(溶接金属部および熱影響部)に高い引張残留応力が存在する状態で高温水などの腐食環境に暴露されると、応力腐食割れが発生し易い。   Austenitic stainless steel, which is a material for structures such as containers and pipes in nuclear power plants, tends to precipitate Cr carbide at the grain boundaries by welding, and a Cr-deficient layer is formed near the grain boundaries. It is known that cracking susceptibility (material sensitization) increases. Further, if the welded part (welded metal part and heat-affected part) is exposed to a corrosive environment such as high-temperature water in a state where a high tensile residual stress exists, stress corrosion cracking is likely to occur.

この応力腐食割れを防止するためには、材料の鋭敏化、引張残留応力、腐食環境の3因子の中から1つの因子を取り除く必要がある。このため、水などの腐食環境に暴露される溶接部の表面近傍に残留する引張応力を圧縮応力に改善することが強く求められている。   In order to prevent this stress corrosion cracking, it is necessary to remove one of the three factors of material sensitization, tensile residual stress, and corrosive environment. For this reason, it is strongly required to improve the tensile stress remaining in the vicinity of the surface of the welded part exposed to a corrosive environment such as water to a compressive stress.

この溶接に起因する残留応力を低減する方法として溶接金属の材料や溶接時の入熱条件などを具体化した溶接条件を開示した発明がある。
特開2006−198657号公報 特開2007−21516号公報
As a method for reducing the residual stress resulting from this welding, there is an invention that discloses welding conditions that materialize the material of the weld metal and the heat input conditions during welding.
JP 2006-198557 A JP 2007-21516 A

構造物の溶接時の熱影響による引張残留応力に起因する応力腐食割れの対策として、溶接部表層部を表面改善処理により表面圧縮応力を形成して応力改善し、応力腐食割れの発生を防止する試みが行われている。   As a countermeasure against stress corrosion cracking due to tensile residual stress due to thermal effects during welding of structures, the surface of the welded part is improved by forming surface compressive stress by surface improvement treatment to prevent the occurrence of stress corrosion cracking An attempt is being made.

ここで表面改善処理とは、構造物の母材および溶接部の表面に例えばショットピーニングやレーザピーニング、ウォータジェットピーニングを個々に施し、母材および溶接部の表面に圧縮応力を付加して残留応力改善を行うことである。ショットピーニングは、母材および溶接部の表面に小さな金属球(ショット)を高速度で当てて残留応力を改善し、また表面の疲労強度や耐磨耗性、耐応力腐食特性を向上させる。レーザピーニングは、母材および溶接部の表面にエネルギの大きなパルスレーザを照射して母材および溶接部を構成する材料の原子のプラズマを表面に発生させ、このプラズマ発生の反力による衝撃波を母材および溶接部の中を伝播させて残留応力を改善させる。また、ウォータジェットピーニングは、母材および溶接部の表面に水流を高速度で当てて残留応力を改善させる。   Here, the surface improvement treatment means, for example, that shot peening, laser peening, or water jet peening is individually applied to the base material of the structure and the surface of the welded portion, and compressive stress is applied to the surface of the base material and the welded portion to add residual stress. It is to make improvements. Shot peening improves the residual stress by applying small metal balls (shots) to the surface of the base metal and the weld at high speed, and improves the fatigue strength, wear resistance, and stress corrosion resistance of the surface. In laser peening, the surface of the base metal and the welded part is irradiated with a high-energy pulse laser to generate atomic plasma on the surface of the material constituting the base metal and the welded part, and a shock wave due to the reaction force of this plasma generation is generated on the base. Propagating through materials and welds to improve residual stress. Water jet peening improves residual stress by applying water flow at high speed to the surface of the base material and the weld.

しかし、この表面改善処理では、応力改善される溶接部の深さは表層部に限定され、また製造工数の増加による製造コストの増大、溶接後に接近困難になる溶接部に対する実施の困難性などの問題があり、応力腐食割れの防止に対して信頼性の高い溶接継手をより低コストで提供するための製造方法が求められている。   However, in this surface improvement treatment, the depth of the welded portion where the stress is improved is limited to the surface layer portion, the manufacturing cost increases due to an increase in the number of manufacturing steps, the difficulty of implementation for the welded portion that becomes difficult to access after welding, etc. There is a problem, and there is a need for a manufacturing method for providing a reliable welded joint at a lower cost for preventing stress corrosion cracking.

また、上述の特許文献は、溶接金属の材料や溶接時の入熱条件などを具体化した構造物の溶接条件を設定することで応力腐食割れの対策として圧縮残留応力を導入するものである。   Moreover, the above-mentioned patent document introduces compressive residual stress as a measure against stress corrosion cracking by setting the welding conditions of a structure that embodies the material of the weld metal and the heat input conditions during welding.

そこで、溶接熱影響による溶接部の板厚(深さ)方向および平面方向の残留応力の分布を制御することあるいは溶接部へ積極的に圧縮残留応力を導入することにより、応力腐食割れに対して裕度の大きい溶接部を有する溶接構造物を提供することができる。   Therefore, by controlling the distribution of residual stress in the plate thickness (depth) direction and plane direction of the weld due to the influence of welding heat, or by actively introducing compressive residual stress into the weld, It is possible to provide a welded structure having a weld portion with a large margin.

従来技術では、溶接金属のマルテンサイト変態による変態膨張を利用して、溶接部の板厚方向の内部まで引張残留応力を低減する方法が示されているが、原子力発電プラントにおける原子炉圧力容器内の炉内構造物のような腐食環境で使用される溶接構造物では、耐食性等の問題により適用には適さない。   In the prior art, a method of reducing the tensile residual stress to the inside in the plate thickness direction of the weld by using transformation expansion due to martensitic transformation of the weld metal has been shown. A welded structure used in a corrosive environment such as a furnace internal structure is not suitable for application due to problems such as corrosion resistance.

本発明はこれらの課題を解決するために実際の溶接工程を実施する以前に溶接部の近傍の残留応力を圧縮残留応力にする溶接条件を解析的手法により算出して行う構造物の溶接方法を提供する。   In order to solve these problems, the present invention provides a welding method for a structure in which a welding condition in which a residual stress in the vicinity of a weld is made a compressive residual stress is calculated by an analytical method before an actual welding process is performed. provide.

上述の課題を解決するため本発明では、腐食環境に暴露される溶接部を有する構造物の溶接方法において、溶接時の熱影響を模擬した解析条件を設定して前記溶接部近傍の温度分布を求める伝熱解析を行った後、前記温度分布に基づいて熱弾塑性応力解析を行い前記溶接部近傍の残留応力を求め、腐食環境に暴露される溶接部近傍の表面の残留応力が圧縮応力になる前記解析条件を特定し、この特定した前記解析条件を反映した溶接条件を設定して前記構造物を溶接し、前記解析条件は、溶接時の溶接電流や溶接電圧、溶接速度から計算される単位あたりの溶接入熱と、冷却方法と、予熱方法と、複数の溶接パスを施工する際の溶接順序と、その溶接位置とを備え、これらの条件を所要に設定し組み合わせて前記残留応力を求め、前記解析条件の設定に際して、溶接時に施工する複数の溶接パスの全数よりも少ない代表溶接パス位置を所要に選択し、前記代表溶接パス位置の解析条件を所要に設定し組み合わせて前記残留応力を求めることを特徴とする構造物の溶接方法を提供する。 In order to solve the above-described problems, in the present invention, in a method for welding a structure having a weld that is exposed to a corrosive environment, an analysis condition that simulates the thermal effect during welding is set, and the temperature distribution in the vicinity of the weld is determined. After performing the required heat transfer analysis, a thermal elastic-plastic stress analysis is performed based on the temperature distribution to determine the residual stress in the vicinity of the weld, and the residual stress in the vicinity of the weld exposed to the corrosive environment is converted into a compressive stress. The analysis condition is specified, the welding condition reflecting the specified analysis condition is set, and the structure is welded. The analysis condition is calculated from the welding current, welding voltage, and welding speed at the time of welding. Welding heat input per unit, cooling method, preheating method, welding sequence when constructing a plurality of welding passes, and the welding position, these conditions are set and combined as necessary to reduce the residual stress demand, the analysis conditions Upon setting of a representative welding path located less than all of the plurality of welding passes of applying during the welding select the required, the Rukoto determined the residual stress in combination to set the analysis conditions of the representative weld pass position to the required A feature welding method is provided.

本発明によれば、実際の溶接工程を実施する以前に溶接部の近傍の残留応力を圧縮残留応力にする溶接条件を解析的手法により算出して行う構造物の溶接方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the welding method of the structure performed by calculating the welding condition which makes the residual stress of the vicinity of a welding part compressive residual stress by an analytical method before implementing an actual welding process can be provided.

本発明に係る構造物の溶接方法の実施形態について、図面を参照して説明する。   An embodiment of a method for welding a structure according to the present invention will be described with reference to the drawings.

なお、応力は引張応力を正、圧縮応力を負として扱う。   Note that the stress is treated as positive tensile stress and negative compressive stress.

[第1の実施形態]
本発明に係る構造物の溶接方法の第1実施形態について、図1から図9を参照して説明する。
[First Embodiment]
1st Embodiment of the welding method of the structure based on this invention is described with reference to FIGS.

図1および図2は、沸騰水型原子炉の原子炉格納容器に収容される炉心シュラウド1の溶接部周囲の概略を説明する図である。   1 and 2 are diagrams for explaining the outline of the periphery of the welded portion of the core shroud 1 housed in the reactor containment vessel of the boiling water reactor.

原子炉圧力容器に収容される炉心シュラウド1は、ステンレス鋼からなる略円筒形状の母材2に開先3が構成され、この開先3が溶接部4により溶接される。   In the core shroud 1 accommodated in the reactor pressure vessel, a groove 3 is formed on a substantially cylindrical base material 2 made of stainless steel, and the groove 3 is welded by a welding portion 4.

この開先3の開先形状は片側開先である。溶接機を炉心シュラウド1の円筒内側に配置して、溶接金属を炉心シュラウド1の円筒外面側から内面側へ溶接して溶接部4が構成される。   The groove shape of the groove 3 is a one-side groove. A welder is disposed inside the cylinder of the core shroud 1, and the weld metal 4 is welded from the cylindrical outer surface side to the inner surface side of the core shroud 1.

本実施形態における構造物の溶接方法は、この炉心シュラウド1の溶接部4近傍の外面に生じる残留応力を圧縮残留応力にする溶接条件を解析により事前に設定して溶接する方法である。   The welding method of the structure in this embodiment is a method of welding by setting in advance a welding condition for converting the residual stress generated on the outer surface in the vicinity of the welded portion 4 of the core shroud 1 to a compressive residual stress.

図3は、構造物の溶接条件を設定する方法を示す図である。   FIG. 3 is a diagram illustrating a method of setting welding conditions for a structure.

図3においてステップS1では、まず原子炉圧力容器の炉内構造物である炉心シュラウド1の外面(内面)および母材2の板厚方向の開先3位置に実際の溶接工程における全溶接パス数より少ない複数の溶接施工部を設定する。この溶接施工部は全溶接パスを代表する所要の溶接パス位置または複数の溶接パスをグループ化した位置を選択して設定する。つぎに構造物を構成する炉心シュラウド1のそれぞれの溶接施工部の溶接条件による熱影響を模擬した解析条件を作成する。さらにこのそれぞれの溶接施工部の解析条件に基づく伝熱解析と、この伝熱解析より得られた温度分布に基づく熱弾塑性応力解析とから構成される残留応力解析を行う。この残留応力解析の結果から炉心シュラウド1の溶接部4近傍の外面に生じる残留応力を圧縮残留応力にする溶接施工部の解析条件を複数設定するパラメータ解析を行う。   In FIG. 3, in step S <b> 1, first, the total number of welding passes in the actual welding process is placed on the outer surface (inner surface) of the core shroud 1 that is the reactor internal structure of the reactor pressure vessel and the groove 3 position in the thickness direction of the base material 2. Set fewer welded sections. The welding section selects and sets a required welding pass position representing all the welding passes or a position where a plurality of welding passes are grouped. Next, an analysis condition that simulates the thermal effect of the welding condition of each welded portion of the core shroud 1 constituting the structure is created. Further, a residual stress analysis is performed which includes a heat transfer analysis based on the analysis conditions of each welded portion and a thermoelastic-plastic stress analysis based on the temperature distribution obtained from the heat transfer analysis. Based on the result of the residual stress analysis, parameter analysis is performed to set a plurality of analysis conditions for the welded portion in which the residual stress generated on the outer surface in the vicinity of the welded portion 4 of the core shroud 1 is compressed residual stress.

ステップS2では、まずステップS1のパラメータ解析で得られた複数の溶接施工部の解析条件から所要の解析条件を選択する。つぎにこの選択した溶接施工部の解析条件が反映される溶接施工部の溶接条件を、この溶接施工部の周囲に施工する実際の溶接工程における複数の溶接パス(グループ化した溶接パス)の溶接条件とする。さらにこのグループ化した溶接パスの溶接条件を模擬した解析条件を作成する適正条件選択を行う。   In step S2, first, a required analysis condition is selected from the analysis conditions of a plurality of weld construction parts obtained by the parameter analysis in step S1. Next, the welding conditions of the welded part that reflects the analysis conditions of the selected welded part are welded to multiple weld paths (grouped weld paths) in the actual welding process that is performed around the welded part. Condition. Furthermore, appropriate conditions are selected to create analysis conditions that simulate the welding conditions of the grouped welding paths.

ステップS3は、このステップS2で作成した溶接パスの解析条件に基づく伝熱解析と、この伝熱解析より得られた温度分布に基づく熱弾塑性応力解析とから構成される残留応力解析により全パス解析を行う。   Step S3 is based on the residual stress analysis composed of the heat transfer analysis based on the analysis condition of the welding path created in Step S2 and the thermoelastic-plastic stress analysis based on the temperature distribution obtained from this heat transfer analysis. Perform analysis.

ステップS4は、このステップS3の全パス解析より得られる残留応力解析の結果が炉心シュラウド1の溶接部4近傍の外面に生じる残留応力を圧縮残留応力にするか否かを判断して最適条件を決定する。満足する場合は、溶接パスの解析条件を反映した実際の溶接工程における溶接パスの溶接条件を設定し、満足しない場合はステップ2へ移行する。   In step S4, the optimum condition is determined by determining whether or not the residual stress analysis result obtained from the all-pass analysis in step S3 is the residual stress generated on the outer surface in the vicinity of the welded portion 4 of the core shroud 1 as a compressive residual stress. decide. When satisfied, the welding condition of the welding path in the actual welding process reflecting the analysis condition of the welding path is set, and when not satisfied, the process proceeds to Step 2.

このパラメータ解析は、一例として炉心シュラウド1の外面の開先3位置に溶接施工部5Aが溶接される溶接形態6A(図4(A))、炉心シュラウド1の外面から母材2の板厚方向約1/4の深さの開先3位置に溶接施工部5Bが溶接される溶接形態6B(図4(B))、炉心シュラウド1の外面(内面)から母材2の板厚方向約1/2の深さの開先3位置に溶接施工部5Cが溶接された溶接形態6C(図4(C))、炉心シュラウド1の内面から母材2の板厚方向約1/4の深さの開先3位置に溶接施工部5Dが溶接された溶接形態6D(図4(D))および炉心シュラウド1の内面の開先3位置に溶接施工部5Eが溶接された溶接形態6E(図4(E))の各々の溶接形態について残留応力解析を行う。   In this parameter analysis, as an example, a welding configuration 6A (FIG. 4 (A)) in which the welding portion 5A is welded to the position of the groove 3 on the outer surface of the core shroud 1, the thickness direction of the base material 2 from the outer surface of the core shroud 1 A welding configuration 6B (FIG. 4B) in which the welding portion 5B is welded to the groove 3 position having a depth of about ¼, and the thickness direction of the base material 2 from the outer surface (inner surface) of the core shroud 1 is about 1 6C (FIG. 4 (C)) in which the welding portion 5C is welded to the groove 3 position at a depth of / 2, and the depth of about 1/4 of the base material 2 from the inner surface of the core shroud 1 A welding configuration 6D (FIG. 4D) in which the welding construction portion 5D is welded to the groove 3 position and a welding configuration 6E in which the welding construction portion 5E is welded to the groove 3 position on the inner surface of the core shroud 1 (FIG. 4). (E)) Residual stress analysis is performed for each welding mode.

なお、最終溶接施工部位である炉心シュラウド1の内面の溶接施工部位5Eは化粧盛を行う際などの複数のパスで溶接する実際の溶接工程を模擬するために1パスずつ残留応力解析を行う。   In addition, the welding part 5E on the inner surface of the core shroud 1 which is the final welding part is subjected to residual stress analysis for each pass in order to simulate an actual welding process in which welding is performed in a plurality of passes, such as when performing cosmetic finishing.

この残留応力解析は、溶接施工部5の溶接による加熱を模擬した溶接形態6の伝熱解析と、この伝熱解析より得られる温度分布に基づいた熱弾塑性応力解析とから構成される。この伝熱解析は、溶接施工部5の溶接入熱量H、溶接時の予熱Tおよび冷却時間Sの解析条件を複数組み合わせて行う。   This residual stress analysis is composed of a heat transfer analysis of a welding form 6 that simulates heating by welding of the welding portion 5 and a thermoelastic-plastic stress analysis based on a temperature distribution obtained from this heat transfer analysis. This heat transfer analysis is performed by combining a plurality of analysis conditions for the welding heat input H of the welding construction part 5, the preheating T at the time of welding, and the cooling time S.

また、パラメータ解析における熱弾塑性応力解析は、溶接施工部5Bが溶接される溶接形態6Bの母材2と既溶接部7B、溶接施工部5Cが溶接される溶接形態6Cの母材2と既溶接部7C、溶接施工部5Dが溶接される溶接形態6Dの母材2と既溶接部7D、溶接施工部5Eが溶接される溶接形態6Eの母材2と既溶接部7Eのそれぞれの母材2と既溶接部7には応力が残留していない条件で解析を行う。   In addition, the thermoelastic-plastic stress analysis in the parameter analysis is performed on the base material 2 of the welded form 6B to which the welded part 5B is welded and the base material 2 of the welded form 6C to which the welded part 7B and the welded part 5C are welded. Base material 2 and welded part 7D of welded form 6D to which welded part 7C and welded part 5D are welded, and base material 2 of welded form 6E and welded part 5E to welded welded part 5E, respectively. 2 and the welded part 7 are analyzed under the condition that no stress remains.

図5は、図2(C)に示された炉心シュラウド1の外面(内面)から母材2の板厚方向1/2の深さの開先3位置に溶接施工部5Cが溶接された溶接形態6Cについて、溶接時の予熱Tおよび冷却時間Sを一定とし溶接入熱量Hを所要に選択した残留応力解析の結果の一例であり、炉心シュラウド1の溶接部4近傍の外面に生じる残留応力の周方向成分を示す図である。   FIG. 5 shows welding in which a welded portion 5C is welded from the outer surface (inner surface) of the core shroud 1 shown in FIG. It is an example of the result of the residual stress analysis which preheated T at the time of welding and cooling time S were made constant, and the welding heat input H was selected as required for Form 6C, and the residual stress generated on the outer surface near the weld 4 of the core shroud 1 It is a figure which shows the circumferential direction component.

図5に示された溶接入熱量Hは[数1]の関係がある。
[数1]
溶接入熱量HC1>溶接入熱量HC2>溶接入熱量HC3
The welding heat input H shown in FIG. 5 has a relationship of [Equation 1].
[Equation 1]
Weld heat input H C1 > Weld heat input H C2 > Weld heat input H C3

図5の残留応力解析の結果から、炉心シュラウド1の外面(内面)から母材2の板厚方向1/2の深さの開先3位置を溶接したときに炉心シュラウド1の溶接部4近傍の外面に生じる残留応力が圧縮残留応力になる溶接入熱量Hの解析条件は溶接入熱量HC1である。 From the result of the residual stress analysis in FIG. 5, the vicinity of the welded portion 4 of the core shroud 1 is welded from the outer surface (inner surface) of the core shroud 1 to the position of the groove 3 at a depth in the thickness direction 1/2 of the base material 2. The analysis condition of the welding heat input H that causes the residual stress generated on the outer surface of the steel to be compressive residual stress is the welding heat input H C1 .

図6は、図2(C)に示された炉心シュラウド1の外面(内面)から母材2の板厚方向1/2の深さの開先3位置に溶接施工部5Cが溶接された溶接形態6Cについて、溶接時の予熱Tおよび溶接入熱量Hを一定とし冷却時間Sを所要に選択した残留応力解析の結果の一例であり、炉心シュラウド1の溶接部4近傍の外面に生じる残留応力の周方向成分を示す図である。   FIG. 6 shows welding in which a welding portion 5C is welded from the outer surface (inner surface) of the core shroud 1 shown in FIG. It is an example of the result of the residual stress analysis which preheating T at the time of welding and welding heat input H were made constant, and cooling time S was selected suitably about form 6C, and the residual stress produced on the outer surface near the weld 4 of the core shroud 1 It is a figure which shows the circumferential direction component.

図6に示された冷却時間Sは[数2]の関係がある。
[数2]
冷却時間SC1<冷却時間SC2<冷却時間SC3
The cooling time S shown in FIG. 6 has a relationship of [Equation 2].
[Equation 2]
Cooling time S C1 <Cooling time S C2 <Cooling time S C3

図6の残留応力解析の結果から、炉心シュラウド1の外面(内面)から母材2の板厚方向1/2の深さの開先3位置を溶接したときに炉心シュラウド1の外面の溶接部4近傍に生じる残留応力が圧縮残留応力になる冷却時間Sの解析条件は冷却時間SC1である。 From the result of the residual stress analysis in FIG. 6, the welded portion of the outer surface of the core shroud 1 is welded from the outer surface (inner surface) of the core shroud 1 to the position of the groove 3 at a depth of 1/2 in the thickness direction of the base material 2. The analysis condition of the cooling time S in which the residual stress generated in the vicinity of 4 becomes the compressive residual stress is the cooling time SC1 .

図7は、予熱Tを一定とした溶接入熱量Hと冷却時間Sとの残留応力解析の結果の関係を示す図である。   FIG. 7 is a diagram showing the relationship between the results of residual stress analysis between the welding heat input amount H and the cooling time S with the preheating T being constant.

図7に示すように、予熱Tを一定とした場合は、溶接入熱量Hが大きく冷却時間Sが小さい解析条件の組み合わせであれば炉心シュラウド1の溶接部4近傍の外面に生じる残留応力が圧縮残留応力になる。   As shown in FIG. 7, when the preheating T is constant, the residual stress generated on the outer surface near the welded portion 4 of the core shroud 1 is compressed if the welding heat input H is large and the cooling time S is small. Residual stress.

さらに、炉心シュラウド1の外面(内面)および母材2の板厚方向へ所要の深さの開先3位置に溶接施工部が溶接された他の溶接形態6A、6B、6Dおよび6Eについても、溶接時の予熱Tを一定とし溶接入熱量Hおよび冷却時間Sを所要に選択した残留応力解析を行う。   Further, other welding forms 6A, 6B, 6D, and 6E in which the welding portion is welded at the position of the groove 3 having a required depth in the thickness direction of the outer surface (inner surface) of the core shroud 1 and the base material 2, Residual stress analysis is performed with the preheating T during welding constant and the welding heat input H and cooling time S selected as required.

そうすると、炉心シュラウド1の外面(内面)および母材2の板厚方向へ所要の深さの開先3位置に溶接施工部が溶接された溶接形態6A、6B、6C、6Dおよび6Eについて溶接時の予熱Tを一定とした溶接入熱量Hと、冷却時間Sを表す指標である熱伝達率αとを変数とする残留応力(評定とする炉心シュラウド1の溶接部4近傍の外面の周方向成分の最大値)との関係を数式化[数3]し、溶接入熱量Hおよび冷却時間Sを組み合わせた適切な解析条件を選択できる。
[数3]
σmax=A・H + B・α + C・H・α
σmax:評定とする炉心シュラウド1の外面の周方向成分の最大残留応力
H:溶接入熱量
α:熱伝達率
A、B、C:溶接形態6A、6B、6C、6Dおよび6Eについての本実施形態における残留応力解析の結果から求めた定数
Then, when welding is performed on welding forms 6A, 6B, 6C, 6D, and 6E in which the welding portion is welded to the position of the groove 3 having a required depth in the thickness direction of the outer surface (inner surface) of the core shroud 1 and the base material 2. The residual stress (circumferential component of the outer surface in the vicinity of the welded portion 4 of the core shroud 1 to be evaluated) having as variables the welding heat input H with a constant preheating T and the heat transfer coefficient α which is an index representing the cooling time S (Equation 3) and a suitable analysis condition combining the welding heat input H and the cooling time S can be selected.
[Equation 3]
σ max = A · H + B · α + C · H · α
σ max : Maximum residual stress of the circumferential component of the outer surface of the core shroud 1 to be evaluated H: Weld heat input α: Heat transfer coefficient A, B, C: This implementation for welding forms 6A, 6B, 6C, 6D and 6E Constants obtained from the results of residual stress analysis on morphology

なお、[数3]は、パラメータ解析で得られた残留応力について溶接入熱量Hと冷却時間Sを表す指標である熱伝達率αとの関係を最小二乗法で近似した一例である。伝熱解析の解析条件である溶接入熱量H、溶接時の予熱T、冷却時間Sを任意に固定または設定した複数の残留応力の解析結果から[数3]のような関係式を得ることで、新たな解析条件を設定する際に残留応力におよぼす影響を概算した有効な予測の下に新たな解析条件を設定することが可能になる。   [Equation 3] is an example in which the relationship between the heat input H and the heat transfer coefficient α, which is an index representing the cooling time S, is approximated by the least square method for the residual stress obtained by the parameter analysis. By obtaining a relational expression such as [Equation 3] from a plurality of residual stress analysis results in which welding heat input H, which is an analysis condition of heat transfer analysis, preheating T at the time of welding, and cooling time S are arbitrarily fixed or set. Therefore, it is possible to set a new analysis condition based on an effective prediction that approximates the effect on the residual stress when setting a new analysis condition.

ここで、溶接形態6A、6B、6C、6Dおよび6Eの伝熱解析の解析条件である溶接入熱量H、溶接時の予熱Tおよび冷却時間Sをそれぞれ溶接形態6AについてHAn、TAm、SAl、溶接形態6BについてHBn、TBm、SBl、溶接形態6CについてHCn、TCm、SCl、溶接形態6DについてHDn、TDm、SDl、溶接形態6EについてHEn、TEm、SElと表す。 Here, the welding heat input H, which is the analysis condition of the heat transfer analysis of the welding forms 6A, 6B, 6C, 6D, and 6E, the preheating T and the cooling time S at the time of welding, respectively, H An , T Am , S Al , H Bn , T Bm , S B1 for welding form 6B, H Cn , T Cm , S Cl for welding form 6C, H Dn , T Dm , S D1 for welding form 6D, H En , T Em for welding form 6E , S El .

また、図8に示すように、炉心シュラウド1の外面の開先3位置周囲の複数の溶接パスをグループ化して溶接部分8A、炉心シュラウド1の外面から母材2の板厚方向約1/4の深さの開先3位置周囲の複数の溶接パスをグループ化して溶接部分8B、炉心シュラウド1の外面(内面)から母材2の板厚方向約1/2の深さの開先3位置周囲の複数の溶接パスをグループ化して溶接部分8C、炉心シュラウド1の内面から母材2の板厚方向約1/4の深さの開先3位置周囲の複数の溶接パスをグループ化して溶接部分8D、および炉心シュラウド1の内面の開先3位置周囲の複数の溶接パスをグループ化して溶接部分8Eとする。   Further, as shown in FIG. 8, a plurality of welding paths around the position of the groove 3 on the outer surface of the core shroud 1 are grouped to form a welded portion 8 </ b> A, from the outer surface of the core shroud 1 in the thickness direction of the base metal 2. A plurality of weld paths around the groove 3 at a depth of 3 mm are grouped to form a groove 3 position at a depth of about 1/2 of the thickness of the base metal 2 from the outer surface (inner surface) of the welded portion 8B and the core shroud 1. A plurality of surrounding weld paths are grouped to weld the welded portion 8C and a plurality of weld paths around the groove 3 position at a depth of about 1/4 of the thickness direction of the base metal 2 from the inner surface of the core shroud 1. A portion 8D and a plurality of weld passes around the position of the groove 3 on the inner surface of the core shroud 1 are grouped to form a weld portion 8E.

なお解析条件である溶接入熱量Hは実際の溶接工程において溶接電流、溶接電圧、溶接速度から計算される単位あたりの溶接入熱量である。また解析条件である冷却時間Sは実際の溶接工程において溶接部に水冷や流速を変えた水冷、扇風機や空気噴射による強制空冷、水噴射による水冷、ドライアイス噴射による冷却などの冷却方法により溶接条件に反映する。さらに解析条件である予熱Tは実際の溶接工程において溶接部に高周波加熱やガスバーナーなどによる加熱方法により溶接条件に反映する。   The welding heat input H, which is an analysis condition, is a welding heat input per unit calculated from the welding current, welding voltage, and welding speed in the actual welding process. In addition, the cooling time S, which is an analysis condition, is determined by a cooling method such as water cooling in the actual welding process, water cooling with a changed flow velocity, forced air cooling with a fan or air jet, water cooling with water jet, or cooling with dry ice jet. To reflect. Further, the preheating T which is an analysis condition is reflected in the welding condition by high-frequency heating or a heating method using a gas burner or the like in the welded part in the actual welding process.

適正条件選択は、例えば溶接部分8Aの解析条件としてHAn、TAmおよびSAl、溶接部分8Bの解析条件としてHBn、TBmおよびSBl、溶接部分8Cの解析条件としてHCn、TCmおよびSCl、溶接部分8Dの解析条件としてHDn、TDmおよびSDl、溶接部分8Eの解析条件としてHEn、TEmおよびSElを選択して組み合わせる。 Appropriate conditions are selected, for example, as H An , T Am and S Al as analysis conditions for the welded portion 8A, H Bn , T Bm and S B1 as analysis conditions for the welded portion 8B, and H Cn , T Cm as analysis conditions for the welded portion 8C. And S Cl , H Dn , T Dm and S Dl are selected as analysis conditions for the welded portion 8D, and H En , T Em and S El are selected and combined as the analysis conditions for the welded portion 8E.

全パス解析は、適正条件選択で組み合わせた解析条件に基づいて溶接部分8A、8B、8C、8D、8Eの伝熱解析を行い、この伝熱解析の結果を各溶接部分に対応する実際の溶接工程における溶接パスの熱弾塑性解析の解析条件として全溶接パスの熱弾塑性解析を行う。   In the all-pass analysis, heat transfer analysis is performed on the welded portions 8A, 8B, 8C, 8D, and 8E based on the analysis conditions combined by selecting appropriate conditions, and the results of this heat transfer analysis are actually welded corresponding to each welded portion. Thermo-elasto-plastic analysis of all weld passes is performed as analysis conditions for thermo-elasto-plastic analysis of weld passes in the process.

この全パス解析の結果から、炉心シュラウド1の溶接部4近傍の外面に生じる残留応力が圧縮残留応力か否かを判断して最適条件を決定する。満足する場合は、この解析条件を実際の溶接工程における溶接パスの溶接条件として設定し、満足しない場合は適正条件選択へ戻って全パス解析と炉心シュラウド1の溶接部4近傍の外面に生じる残留応力の評価が所要になるまで繰り返す。   From the results of this all-pass analysis, it is determined whether or not the residual stress generated on the outer surface in the vicinity of the welded portion 4 of the core shroud 1 is a compressive residual stress, and the optimum condition is determined. If satisfied, this analysis condition is set as the welding condition of the welding path in the actual welding process. If not satisfied, the process returns to the selection of the appropriate condition, and the residual generated on the outer surface near the weld 4 of the core shroud 1 Repeat until stress assessment is required.

図9は、本実施形態により行う所要の解析条件の組み合わせから得た全パス解析の結果の一例を示す図である。   FIG. 9 is a diagram illustrating an example of the result of all path analysis obtained from a combination of required analysis conditions performed according to the present embodiment.

溶接部分8Aの解析条件としてHA1、TA1およびSA1、溶接部分8Bの解析条件としてHB1、TB1およびSB1、溶接部分8Cの解析条件としてHC1、TC1およびSC1、溶接部分8Dの解析条件としてHD1、TD1およびSD1、溶接部分8Eの解析条件としてHE1、TE1およびSE1を選択して組み合わせた結果、炉心シュラウド1の溶接部4近傍の外面に生じる残留応力は周方向成分、軸方向成分とも圧縮残留応力となる。 H A1 , T A1 and S A1 as analysis conditions for the welded part 8A, H B1 , T B1 and S B1 as analysis conditions for the welded part 8B, H C1 , T C1 and S C1 as analysis conditions for the welded part 8C, and welded parts As a result of selecting and combining H D1 , T D1 and S D1 as analysis conditions for 8D and H E1 , T E1 and S E1 as analysis conditions for welded portion 8E, residuals generated on the outer surface of welded portion 4 of core shroud 1 The stress is a compressive residual stress in both the circumferential component and the axial component.

図10は、本実施形態の溶接条件を設定する他の方法を示す図である。   FIG. 10 is a diagram showing another method for setting the welding conditions of the present embodiment.

図10においてステップS1Aでは、まず炉心シュラウド1の外面(内面)および母材2の板厚方向の開先3位置に実際の溶接工程における溶接パス数より少ない複数の溶接施工部を設定する。つぎにそれぞれの溶接施工部を模擬した模擬試験体を製作する。さらにこのそれぞれの溶接施工部の溶接条件を設定する。この溶接条件に基づきそれぞれの模擬試験体を溶接して溶接前後の残留応力の変化を測定する。この残留応力の変化の測定より得られた結果から炉心シュラウド1の溶接部4近傍の外面に生じる残留応力を圧縮残留応力にする溶接施工部の溶接条件を複数取得し、この溶接条件を模擬した解析条件を複数準備する模擬試験体によるパラメータ取得を行う。   In FIG. 10, in step S <b> 1 </ b> A, first, a plurality of welded portions less than the number of welding passes in the actual welding process are set at the outer surface (inner surface) of the core shroud 1 and the groove 3 position in the thickness direction of the base material 2. Next, a simulated test body simulating each welding part is manufactured. Furthermore, the welding conditions of each welding construction part are set. Based on these welding conditions, each simulated specimen is welded and the change in residual stress before and after welding is measured. From the results obtained from the measurement of this change in residual stress, a plurality of welding conditions were obtained for the welded portion where the residual stress generated on the outer surface in the vicinity of the welded portion 4 of the core shroud 1 was compressed residual stress, and this welding condition was simulated. Parameter acquisition is performed using a mock specimen that prepares multiple analysis conditions.

ステップS2以降のステップは、ステップS1Aの模擬試験体によるパラメータ取得で得られた複数の溶接施工部の解析条件に基づいて、図3に示すステップと同様に炉心シュラウド1の溶接部4近傍の外面に生じる残留応力を圧縮残留応力にする溶接条件を解析により事前に設定する。   Steps subsequent to step S2 are based on the analysis conditions of the plurality of weld construction parts obtained by parameter acquisition by the simulated specimen in step S1A, and the outer surface in the vicinity of the weld part 4 of the core shroud 1 as in the step shown in FIG. Welding conditions to make the residual stress generated in the compression compressive residual stress are set beforehand by analysis.

この模擬試験体によるパラメータ取得では、一例としてまず炉心シュラウド1の外面の開先3位置に溶接施工部5Aが溶接される溶接形態6A(図4(A))、炉心シュラウド1の外面から母材2の板厚方向約1/4の深さの開先3位置に溶接施工部5Bが溶接される溶接形態6B(図4(B))、炉心シュラウド1の外面(内面)から母材2の板厚方向約1/2の深さの開先3位置に溶接施工部5Cが溶接された溶接形態6C(図4(C))、炉心シュラウド1の内面から母材2の板厚方向約1/4の深さの開先3位置に溶接施工部5Dが溶接された溶接形態6D(図4(D))および炉心シュラウド1の内面の開先3位置に溶接施工部5Eが溶接された溶接形態6E(図4(E))の各々の溶接形態について溶接条件に基づく溶接を行い、炉心シュラウド1の溶接部4近傍の外面に生じる残留応力を測定する。   In the parameter acquisition by the simulated specimen, first, as an example, a weld form 6A (FIG. 4A) in which the welding portion 5A is welded to the position of the groove 3 on the outer surface of the core shroud 1, the base material from the outer surface of the core shroud 1 is used. 2 in the welding configuration 5B (FIG. 4B) in which the welded portion 5B is welded to the groove 3 at a depth of about ¼ of the thickness direction of the plate thickness 2 of the base material 2 from the outer surface (inner surface) of the core shroud 1. A welded form 6C (FIG. 4C) in which a welded portion 5C is welded to a groove 3 position having a depth of about 1/2 in the plate thickness direction, from the inner surface of the core shroud 1 to about 1 in the plate thickness direction of the base material 2. Weld form 6D (FIG. 4 (D)) in which the welded part 5D is welded to the groove 3 position at a depth of / 4 and welding in which the welded part 5E is welded to the groove 3 position on the inner surface of the core shroud 1 Welding based on welding conditions was performed for each welding form of Form 6E (FIG. 4E). Measuring the residual stress generated in the welded portion 4 near the outer surface of the core shroud 1.

なお、最終溶接施工部位である炉心シュラウド1の内面の溶接施工部位5Eは複数のパスで溶接する実際の溶接工程を模擬するために1パスずつ残留応力を測定する。   Note that the welding site 5E on the inner surface of the core shroud 1, which is the final welding site, measures the residual stress for each pass in order to simulate an actual welding process for welding in a plurality of passes.

この溶接条件は、溶接施工部5の溶接入熱量H、溶接時の予熱Tおよび冷却時間Sの条件を複数組み合わせて設定する。   This welding condition is set by combining a plurality of conditions of the welding heat input H of the welding work part 5, the preheating T and the cooling time S during welding.

また、残留応力測定は、例えばX線回折法による残留応力測定、切断解放法、穿孔法などの測定方法により行う。   The residual stress is measured by a measuring method such as a residual stress measurement by an X-ray diffraction method, a cutting release method, a drilling method, or the like.

切断解放法では、例えば模擬試験体に歪みゲージを貼付し、溶接前の歪みの初期値を測定し、溶接後に歪みゲージ周囲をサイコロ状(10mm×10mm×5mm程度)に切断し、切断後の歪みを測定し、切断前後の歪みの変化から切断による歪みの解放量を求めて、その歪みの開放量から残留応力を算出する。   In the cutting release method, for example, a strain gauge is attached to a mock specimen, the initial value of strain before welding is measured, and the periphery of the strain gauge is cut into a dice shape (about 10 mm × 10 mm × 5 mm) after welding. The strain is measured, the amount of strain released by cutting is obtained from the change in strain before and after cutting, and the residual stress is calculated from the amount of strain released.

また、穿孔法では、例えば模擬試験体に歪みゲージを貼付し、溶接前の歪みの初期値を測定し、溶接後に歪みゲージ周囲を穿孔し、穿孔前後孔の歪みの変化から切断による歪みの解放量を求め、この歪みの解放量から残留応力を算出する。孔は徐々に深く穿孔させて歪みはその都度測定する。   In the drilling method, for example, a strain gauge is affixed to a mock specimen, the initial value of strain before welding is measured, the area around the strain gauge is drilled after welding, and strain is released by cutting from changes in the strain before and after drilling. The amount is obtained, and the residual stress is calculated from the strain release amount. The holes are made deeper and the strain is measured each time.

この模擬試験体によるパラメータ取得における残留応力測定の結果から、炉心シュラウド1の外面(内面)および母材2の板厚方向へ所要の深さの開先3位置に溶接施工部が溶接された溶接形態6A、6B、6C、6Dおよび6Eについての溶接時の溶接入熱量H、予熱Tおよび冷却時間Sを表す指標である熱伝達率αを変数とする残留応力(評定とする炉心シュラウド1の溶接部4近傍の外面の周方向成分の最大値)との関係を数式化(数3)し、溶接入熱量Hおよび冷却時間Sを組み合わせた適切な解析条件を選択できる。   From the result of the residual stress measurement in the parameter acquisition by this simulated specimen, the welded part is welded at the groove 3 position of the required depth in the thickness direction of the outer surface (inner surface) of the core shroud 1 and the base material 2. Residual stress (welding of core shroud 1 for evaluation) with variables of heat transfer coefficient α, which is an index representing welding heat input H, preheating T, and cooling time S during welding for forms 6A, 6B, 6C, 6D and 6E The relationship with the maximum value of the circumferential component of the outer surface in the vicinity of the portion 4 can be expressed as a mathematical expression (Equation 3), and an appropriate analysis condition combining the welding heat input H and the cooling time S can be selected.

そうすると、模擬試験体によるパラメータ取得により得られた解析条件から、適正条件選択(ステップS2)、全パス解析(ステップS3)を行い、炉心シュラウド1の溶接部4近傍の外面に生じる残留応力を圧縮残留応力とする溶接条件を得る(ステップS4)。   Then, appropriate conditions are selected (step S2) and all-pass analysis (step S3) from the analysis conditions obtained by parameter acquisition by the simulated specimen, and the residual stress generated on the outer surface near the weld 4 of the core shroud 1 is compressed. Welding conditions for residual stress are obtained (step S4).

また、パラメータ解析とパラメータ取得を併用してパラメータ解析の結果をパラメータ取得によりサーベイすることで、全パス解析の精度向上を図ることができる。   Also, by using parameter analysis and parameter acquisition together and surveying the results of parameter analysis by parameter acquisition, it is possible to improve the accuracy of all-path analysis.

本実施形態によれば、炉心シュラウド1の溶接部4近傍の外面に生じる残留応力を圧縮残留応力とすることができ、耐応力腐食割れ感受性が改善される。   According to the present embodiment, the residual stress generated on the outer surface near the welded portion 4 of the core shroud 1 can be made the compressive residual stress, and the stress corrosion cracking susceptibility is improved.

また、従来の溶接工程で実施されていた表面改善処理による残留応力改善処理を施工することなく炉心シュラウド1の溶接部4近傍の外面の残留応力を圧縮残留応力とすることができ、工程の短縮とこれに伴うコストダウンの効果を得る。   In addition, the residual stress in the vicinity of the welded portion 4 of the core shroud 1 can be made the compressive residual stress without performing the residual stress improving process by the surface improving process performed in the conventional welding process, thereby shortening the process. And the cost reduction effect accompanying this is obtained.

さらに、解析的手法により実際の溶接工程を実施する以前に溶接部、特に溶接後は容易にアクセスすることが困難になる溶接部の近傍の残留応力を圧縮残留応力にすることができる。   Furthermore, the residual stress in the vicinity of the welded portion, particularly the welded portion that is difficult to access easily after welding, can be made the compressive residual stress before the actual welding process is performed by the analytical method.

[第2の実施形態]
本発明に係る溶接構造物の溶接方法の第2実施形態について、図11から図13を参照して説明する。
[Second Embodiment]
A second embodiment of the welding method for a welded structure according to the present invention will be described with reference to FIGS. 11 to 13.

本実施形態において第1実施形態の構造物の溶接方法と同じ構成には同一の符号を付し、重複する説明は省略する。   In the present embodiment, the same components as those of the structure welding method according to the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

本実施形態における構造物の溶接方法は、炉心シュラウド1Aの溶接部4近傍の外面に生じる残留応力を圧縮残留応力にする溶接条件を解析により事前に設定して溶接する方法である。   The structure welding method in the present embodiment is a welding method in which welding conditions are set in advance by analysis so that the residual stress generated on the outer surface near the welded portion 4 of the core shroud 1A is a compressive residual stress.

図11および図12は、本実施形態における炉心シュラウド1Aの溶接部4の概略を説明する断面図である。   11 and 12 are cross-sectional views for explaining the outline of the welded portion 4 of the core shroud 1A in the present embodiment.

炉心シュラウド1Aの溶接部4は、一例として実際の溶接工程における開先3の溶接パス数を例えば23パスとして溶接し(図11)、この後に炉心シュラウド1Aの最内周面に施工する最終溶接層10の溶接パス数を例えば15パスとして溶接し(図12)、溶接部4の全体では合計38パスの溶接パスで構成される。また、炉心シュラウド1Aの溶接時の環境は、例えば1パスから3パスまでは大気環境で行い、4パスから38パスまでは炉心シュラウド1Aの外側に水を満たした環境で行う。この1パスから3パスまでのパス数は炉心シュラウド1Aの外側に水を満たす際の水圧を保持できる所要の厚みであればよく、またこの厚みは約5mm程度あれば炉心シュラウド1Aの外側に水を満たすことで溶接条件である溶接入熱量を約30kJ/cmとしても炉心シュラウド1の溶接部4近傍の外面におよぼす熱影響は小さい。   As an example, the welded portion 4 of the core shroud 1A is welded by setting the number of welding passes of the groove 3 in the actual welding process to 23, for example (FIG. 11), and then the final welding to be performed on the innermost peripheral surface of the core shroud 1A. The number of welding passes of the layer 10 is welded, for example, as 15 passes (FIG. 12), and the weld portion 4 as a whole is composed of 38 weld passes in total. The environment during welding of the core shroud 1A is, for example, an atmospheric environment from 1 to 3 passes, and an environment in which water is filled outside the core shroud 1A from 4 to 38 passes. The number of passes from the first pass to the third pass may be a required thickness that can maintain the water pressure when water is filled outside the core shroud 1A, and if this thickness is about 5 mm, water is placed outside the core shroud 1A. By satisfying the above, even if the welding heat input, which is a welding condition, is about 30 kJ / cm, the thermal effect on the outer surface in the vicinity of the welded portion 4 of the core shroud 1 is small.

すなわち、本実施形態では、炉心シュラウド1Aの外側に水を満たした環境下で溶接する4パスから38パスについて、パラメータ解析および全パス解析における伝熱解析の解析条件である冷却時間Sを小さくする。   That is, in the present embodiment, the cooling time S, which is the analysis condition for the heat transfer analysis in the parameter analysis and the all-pass analysis, is reduced for the four to 38 passes that are welded in an environment where the outside of the core shroud 1A is filled with water. .

本実施形態では、まず実施形態1と同様に図2に示された溶接施工部5A、5B、5C、5D、5Eについて各々の溶接形態6A、6B、6C、6D、6Eのパラメータ解析を行いかつ最適条件選択を行う。   In the present embodiment, first, similarly to the first embodiment, the parameters of the welding forms 6A, 6B, 6C, 6D, and 6E are analyzed for the welding portions 5A, 5B, 5C, 5D, and 5E shown in FIG. Select the optimum condition.

つぎに全パス解析を行う。なお溶接入熱量Hにより溶接金属の供給量が増える場合を考慮して、図11で示された1パスから20パスまでの溶接パスを略2パス程度毎にグループ化して解析パス数を半分程度にした全パス解析を行うこともできる。   Next, all path analysis is performed. In consideration of the case where the welding metal supply amount increases due to the welding heat input H, the welding passes from 1 to 20 shown in FIG. 11 are grouped approximately every 2 passes, and the number of analysis passes is reduced to about half. It is also possible to perform all path analysis.

また、炉心シュラウド1Aの最内面に施工する最終溶接層10の溶接パス数を、所要に変更することで、炉心シュラウド1Aの溶接部4近傍の外面に生じる残留応力を圧縮残留応力にする最終溶接層10の最適な軸方向溶接部の幅Dを求めることができる。   Further, by changing the number of welding passes of the final weld layer 10 to be applied to the innermost surface of the core shroud 1A as necessary, the final welding that changes the residual stress generated on the outer surface near the welded portion 4 of the core shroud 1A to compressive residual stress. The optimum axial weld width D of the layer 10 can be determined.

図13は本実施形態における残留応力解析の結果の一例を示す図である。   FIG. 13 is a diagram showing an example of the result of residual stress analysis in the present embodiment.

解析の対象とした炉心シュラウド1Aの板厚は約50mm、開先は底が4〜6mm、開口部が10〜15mmの開先形状を有し、炉心シュラウド1Aの母材と溶接金属とはオーステナイト系ステンレス鋼である。   The core thickness of the core shroud 1A to be analyzed is about 50 mm, the groove has a groove shape of 4 to 6 mm at the bottom, and the opening is 10 to 15 mm. The base metal and the weld metal of the core shroud 1A are austenite. Stainless steel.

解析条件として溶接部4の1パスから3パスの溶接終了後に炉心シュラウド1Aの外面を水で満たした環境にする場合に、4パス以降の溶接パスについて約10kJ/cm以上約30kJ/cm以下(約20kJ/cm以上が望ましい。)の溶接入熱量で溶接することで炉心シュラウド1Aの溶接部4近傍の外面の残留応力を圧縮残留応力にできる。さらに炉心シュラウド1Aの最内面に施工する最終溶接層10の軸方向溶接部の幅Dを50mm以上にすることで炉心シュラウド1Aの溶接部4近傍の外面の残留応力を圧縮残留応力にできる。   As an analysis condition, when the outer surface of the core shroud 1A is filled with water after the first to third passes of the weld 4 are welded, the welding pass after the fourth pass is about 10 kJ / cm or more and about 30 kJ / cm or less ( The residual stress in the vicinity of the welded portion 4 of the core shroud 1A can be made a compressive residual stress by welding at a welding heat input of about 20 kJ / cm or more. Further, by setting the width D of the axial welded portion of the final weld layer 10 applied to the innermost surface of the core shroud 1A to 50 mm or more, the residual stress near the welded portion 4 of the core shroud 1A can be made the compressive residual stress.

本実施形態によれば、炉心シュラウド1Aの溶接部4近傍の外面に生じる残留応力を圧縮残留応力とすることができ、耐応力腐食割れ感受性が改善される。   According to the present embodiment, the residual stress generated on the outer surface near the welded portion 4 of the core shroud 1A can be made the compressive residual stress, and the stress corrosion cracking susceptibility is improved.

また、従来の溶接工程で実施されていた表面改善処理による残留応力改善処理を施工することなく炉心シュラウド1Aの溶接部4近傍の外面の残留応力を圧縮残留応力とすることができ、工程の短縮とこれに伴うコストダウンの効果を得る。   Further, the residual stress on the outer surface near the welded portion 4 of the core shroud 1A can be made the compressive residual stress without performing the residual stress improving process by the surface improving process carried out in the conventional welding process, thereby shortening the process. And the cost reduction effect accompanying this is obtained.

[第3の実施形態]
本発明に係る溶接構造物の溶接方法の第3実施形態について、図14から図17を参照して説明する。
[Third Embodiment]
A third embodiment of the welding method for a welded structure according to the present invention will be described with reference to FIGS. 14 to 17.

本実施形態において第1実施形態の構造物の溶接方法と同じ構成には同一の符号を付し、重複する説明は省略する。   In the present embodiment, the same components as those of the structure welding method according to the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

本実施形態における構造物の溶接方法は、ステンレス鋼からなる配管12の溶接部4近傍の内面に生じる残留応力を圧縮残留応力にする溶接条件を解析により事前に設定して溶接する方法である。   The welding method of the structure in this embodiment is a method in which welding is performed by setting in advance a welding condition in which the residual stress generated on the inner surface in the vicinity of the welded portion 4 of the pipe 12 made of stainless steel is a compressive residual stress.

図14および図15は、原子力発電プラントなどで使用される内面が腐食環境に暴露される配管12の溶接部周囲の概略を説明する図である。   FIG. 14 and FIG. 15 are diagrams for explaining the outline around the welded portion of the pipe 12 where the inner surface used in a nuclear power plant or the like is exposed to a corrosive environment.

配管12は、ステンレス鋼からなる略円筒形状の母材2に開先3が構成され、この開先3が溶接部4により溶接されている。   In the pipe 12, a groove 3 is formed on a substantially cylindrical base material 2 made of stainless steel, and the groove 3 is welded by a welding portion 4.

この開先3の開先形状はV型継手である。溶接機を配管12の円筒外側に配置して、溶接金属を配管12の円筒内面側から外面側へ溶接して溶接部4を構成する。なお配管12は母材2の継手にV型継手が使用されているが、突合せ継手、当て金継手または重ね継手などの継手で構成しても良く、また継手の開先形状はI型またはU型などの開先を使用できる。   The groove shape of the groove 3 is a V-shaped joint. A welder is disposed outside the cylinder of the pipe 12, and weld metal is welded from the cylinder inner surface side to the outer surface side of the pipe 12 to constitute the welded portion 4. The pipe 12 uses a V-shaped joint as a joint of the base material 2, but may be composed of a joint such as a butt joint, a metal joint, or a lap joint. A groove such as a mold can be used.

配管12の溶接部4は、一例として実際の溶接工程における溶接パス数を例えば5パスとして溶接し(図15)構成される。また、配管12の溶接時の環境は、例えば1パスから3パスまでは大気環境で行い、4パスから5パスまでは配管12の内部に水を満たした環境で行う。この1パスから3パスまでのパス数は配管12の内部に水を満たす際の水圧を保持できる所要の厚みであればよい。   As an example, the welded portion 4 of the pipe 12 is constructed by welding the number of welding passes in an actual welding process, for example, as 5 passes (FIG. 15). Moreover, the environment at the time of welding of the pipe 12 is, for example, an atmosphere environment from the first pass to the third pass, and an environment in which the inside of the pipe 12 is filled with water from the fourth pass to the fifth pass. The number of passes from the first pass to the third pass may be a required thickness that can maintain the water pressure when water is filled in the pipe 12.

すなわち本実施形態では、配管12の内部に水を満たした環境下で溶接する4パスから5パスについて、パラメータ解析および全パス解析における伝熱解析の解析条件である冷却時間Sを小さくする。さらに、配管12の内部に満たされる水の冷却効果を大きくするために水の流れを考慮した熱伝達率αを反映した冷却時間Sを解析条件にして、この熱伝達率αから配管12の溶接部4近傍の内面に圧縮残留応力が生じる水の流速を求めることができる。   That is, in the present embodiment, the cooling time S, which is the analysis condition of the heat transfer analysis in the parameter analysis and the all-pass analysis, is reduced for 4 to 5 passes that are welded in an environment where the inside of the pipe 12 is filled with water. Further, in order to increase the cooling effect of the water filled in the pipe 12, the cooling time S reflecting the heat transfer coefficient α in consideration of the water flow is used as an analysis condition, and the pipe 12 is welded from the heat transfer coefficient α. The flow rate of water at which compressive residual stress is generated on the inner surface in the vicinity of the portion 4 can be obtained.

本実施形態では、まず実施形態1と同様に図15に示された1パスから5パスまでの溶接パスについて各々の溶接形態のパラメータ解析を行い、つぎに最適条件選択を行い、さらに全パス解析を行う。   In the present embodiment, as in the first embodiment, first, parameter analysis of each welding mode is performed on the welding passes from 1 to 5 shown in FIG. 15, then optimum conditions are selected, and further, all pass analysis is performed. I do.

図16および図17は本実施形態における残留応力解析の結果の一例を示す図である。   16 and 17 are diagrams showing an example of the result of the residual stress analysis in the present embodiment.

全パス解析の解析条件として溶接部4の1パスから3パスの溶接終了後に配管12の内部を水で満たした環境にした場合に、4パスから5パスの溶接パスについて配管12の内部を満たす水の流速を0.01m/秒以上とすることで配管12の溶接部4近傍の内面の残留応力を圧縮残留応力にできる。   As an analysis condition for all-pass analysis, when the inside of the pipe 12 is filled with water after the end of the first to third passes of the weld 4, the inside of the pipe 12 is filled for four to five passes. By setting the water flow rate to 0.01 m / second or more, the residual stress on the inner surface of the pipe 12 in the vicinity of the welded portion 4 can be made the compressive residual stress.

本実施形態によれば、配管12の溶接部4近傍の内面に生じる残留応力を圧縮残留応力とすることができ、耐応力腐食割れ感受性が改善される。   According to this embodiment, the residual stress generated on the inner surface in the vicinity of the welded portion 4 of the pipe 12 can be made the compressive residual stress, and the stress corrosion cracking susceptibility is improved.

本発明に係る構造物の溶接方法の第1実施形態を示すもので、沸騰水型原子炉の原子炉圧力容器に収容される炉心シュラウドの溶接部周囲の概略を説明する図。BRIEF DESCRIPTION OF THE DRAWINGS The 1st Embodiment of the welding method of the structure which concerns on this invention is shown, and the figure explaining the outline around the welding part of the core shroud accommodated in the reactor pressure vessel of a boiling water reactor. 前記原子炉圧力容器に収容される炉心シュラウドの溶接部周囲の概略を説明する断面図。Sectional drawing explaining the outline around the welding part of the core shroud accommodated in the said reactor pressure vessel. 本発明に係る構造物の溶接方法の第1実施形態における溶接条件を設定する方法を示す流れ図。The flowchart which shows the method of setting the welding conditions in 1st Embodiment of the welding method of the structure which concerns on this invention. 本発明に係る構造物の溶接方法の第1実施形態における溶接条件を設定する方法のうちパラメータ解析の条件を説明する図であり、(A)は炉心シュラウドの開先部の外面の位置に溶接施工部が溶接される溶接形態の概略を示す断面図、(B)は炉心シュラウドの開先部の外面から母材の板厚方向約1/4の深さ位置に溶接施工部が溶接される溶接形態の概略を示す断面図、(C)は炉心シュラウドの開先部の外面(内面)から母材の板厚方向約1/2の深さ位置に溶接施工部が溶接された溶接形態の概略を示す断面図、(D)は炉心シュラウドの開先部の内面から母材の板厚方向約1/4の深さ位置に溶接施工部が溶接された溶接形態の概略を示す断面図、(E)は炉心シュラウドの開先部の内面の位置に溶接施工部が溶接された溶接形態の概略を示す断面図。It is a figure explaining the conditions of parameter analysis among the methods of setting the welding conditions in the first embodiment of the welding method of the structure according to the present invention, and (A) is welded to the position of the outer surface of the groove portion of the core shroud. Sectional drawing which shows the outline of the welding form by which a construction part is welded, (B) is a welding construction part welded to the depth position of about 1/4 of the thickness direction of a base material from the outer surface of the groove part of a core shroud. Sectional drawing which shows the outline of a welding form, (C) is a welding form in which the welding construction part was welded from the outer surface (inner surface) of the groove part of a core shroud to the depth position of about 1/2 of the thickness direction of the base metal. Sectional drawing which shows outline, (D) is sectional drawing which shows the outline of the welding form by which the welding construction part was welded from the inner surface of the groove part of a core shroud to the depth position of about 1/4 of the thickness direction of a base material, (E) is a welded form in which the weld construction part is welded to the position of the inner surface of the groove part of the core shroud. Sectional view showing a schematic. 本発明に係る構造物の溶接方法の第1実施形態における溶接条件を設定する方法のうちパラメータ解析の条件を説明する図であり、図4(C)に示された溶接形態について、溶接時の予熱および冷却時間を一定とし溶接入熱量を所要に選択した残留応力解析(周方向成分)の結果の一例を示す図。It is a figure explaining the conditions of parameter analysis among the methods of setting the welding conditions in the first embodiment of the welding method of the structure according to the present invention, and the welding mode shown in FIG. The figure which shows an example of the result of the residual stress analysis (circumferential component) which made the preheating and cooling time constant, and selected the welding heat input as required. 本発明に係る構造物の溶接方法の第1実施形態における溶接条件を設定する方法のうちパラメータ解析の条件を説明する図であり、図4(C)に示された溶接形態について、溶接時の予熱および溶接入熱量を一定とし冷却時間を所要に選択した残留応力解析(周方向成分)の結果の一例を示す図。It is a figure explaining the conditions of parameter analysis among the methods of setting the welding conditions in the first embodiment of the welding method of the structure according to the present invention, and the welding mode shown in FIG. The figure which shows an example of the result of the residual stress analysis (circumferential component) which selected precooling and welding heat input constant and cooling time required. 本発明に係る構造物の溶接方法の第1実施形態における溶接条件を設定する方法のうちパラメータ解析の条件を説明する図であり、予熱を一定とした溶接入熱量と冷却時間との残留応力解析の結果の関係を示す図。It is a figure explaining the conditions of parameter analysis among the methods of setting the welding conditions in the first embodiment of the welding method of the structure according to the present invention, and the residual stress analysis of the welding heat input and the cooling time with constant preheating The figure which shows the relationship of the result of. 本発明に係る構造物の溶接方法の第1実施形態における溶接条件を設定する方法のうちパラメータ解析により得られた解析条件の組み合わせの一例を示す図。The figure which shows an example of the combination of the analysis conditions obtained by parameter analysis among the methods of setting the welding conditions in 1st Embodiment of the welding method of the structure which concerns on this invention. 本発明に係る構造物の溶接方法の第1実施形態における溶接条件を設定する方法のうち全パス解析の結果の一例を示す図。The figure which shows an example of the result of all pass analysis among the methods of setting the welding conditions in 1st Embodiment of the welding method of the structure which concerns on this invention. 本発明に係る構造物の溶接方法の第1実施形態における溶接条件を設定する方法を示す流れ図。The flowchart which shows the method of setting the welding conditions in 1st Embodiment of the welding method of the structure which concerns on this invention. 本発明に係る構造物の溶接方法の第2実施形態により溶接される沸騰水型原子炉の原子炉圧力容器に収容される炉心シュラウドの溶接部周囲の概略を説明する図。The figure explaining the outline around the welding part of the core shroud accommodated in the reactor pressure vessel of the boiling water reactor welded by 2nd Embodiment of the welding method of the structure which concerns on this invention. 本発明に係る構造物の溶接方法の第2実施形態により溶接される沸騰水型原子炉の原子炉圧力容器に収容される炉心シュラウドの溶接部周囲の概略を説明する図。The figure explaining the outline around the welding part of the core shroud accommodated in the reactor pressure vessel of the boiling water reactor welded by 2nd Embodiment of the welding method of the structure which concerns on this invention. 本発明に係る構造物の溶接方法の第2実施形態における溶接条件を設定する方法のうち全パス解析の結果の一例を示す図。The figure which shows an example of the result of all the paths analysis among the methods of setting the welding conditions in 2nd Embodiment of the welding method of the structure which concerns on this invention. 本発明に係る構造物の溶接方法の第3実施形態により溶接される配管の溶接部周囲の概略を説明する図。The figure explaining the outline of the welding part periphery of piping welded by 3rd Embodiment of the welding method of the structure which concerns on this invention. 本発明に係る構造物の溶接方法の第3実施形態により溶接される配管の溶接部周囲の概略を説明する断面図。Sectional drawing explaining the outline of the welding part periphery of piping welded by 3rd Embodiment of the welding method of the structure which concerns on this invention. 本発明に係る構造物の溶接方法の第3実施形態における溶接条件を設定する方法のうち全パス解析の結果(残留応力の配管長手軸方向成分)の一例を示す図。The figure which shows an example of the result (pipe longitudinal-axis direction component of a residual stress) of all the paths analysis among the methods of setting the welding conditions in 3rd Embodiment of the welding method of the structure which concerns on this invention. 本発明に係る構造物の溶接方法の第3実施形態における溶接条件を設定する方法のうち全パス解析の結果(残留応力の配管周方向成分)の一例を示す図。The figure which shows an example of the result (pipe circumferential direction component of a residual stress) of all the paths analysis among the methods of setting the welding conditions in 3rd Embodiment of the welding method of the structure which concerns on this invention.

符号の説明Explanation of symbols

1、1A 炉心シュラウド
2 母材
3 開先
4 溶接部
5A、5B、5C、5D、5E、 溶接施工部
6A、6B、6C、6D、6E、 溶接形態
7B、7C、7D、7E 既溶接部
8A、8B、8C、8D、8E 溶接部分
10 最終溶接層
12 配管
1, 1A Core shroud 2 Base material 3 Groove 4 Welded part 5A, 5B, 5C, 5D, 5E, Welded part 6A, 6B, 6C, 6D, 6E, Welding form 7B, 7C, 7D, 7E Existing welded part 8A , 8B, 8C, 8D, 8E Welded part 10 Final weld layer 12 Piping

Claims (9)

腐食環境に暴露される溶接部を有する構造物の溶接方法において、
溶接時の熱影響を模擬した解析条件を設定して前記溶接部近傍の温度分布を求める伝熱解析を行った後、
前記温度分布に基づいて熱弾塑性応力解析を行い前記溶接部近傍の残留応力を求め、
腐食環境に暴露される溶接部近傍の表面の残留応力が圧縮応力になる前記解析条件を特定し、
この特定した前記解析条件を反映した溶接条件を設定して前記構造物を溶接し、
前記解析条件は、溶接時の溶接電流や溶接電圧、溶接速度から計算される単位あたりの溶接入熱と、冷却方法と、予熱方法と、複数の溶接パスを施工する際の溶接順序と、その溶接位置とを備え、これらの条件を所要に設定し組み合わせて前記残留応力を求め、
前記解析条件の設定に際して、溶接時に施工する複数の溶接パスの全数よりも少ない代表溶接パス位置を所要に選択し、
前記代表溶接パス位置の解析条件を所要に設定し組み合わせて前記残留応力を求めることを特徴とする構造物の溶接方法。
In a method for welding a structure having a weld that is exposed to a corrosive environment,
After conducting heat transfer analysis to determine the temperature distribution in the vicinity of the weld by setting analysis conditions that simulate the thermal effect during welding,
Perform thermal elastic-plastic stress analysis based on the temperature distribution to determine the residual stress in the vicinity of the weld,
Identify the analysis conditions where the residual stress on the surface near the weld exposed to the corrosive environment becomes compressive stress,
Welding the structure by setting a welding condition that reflects the specified analysis condition,
The analysis conditions include welding heat input per welding, welding voltage, welding heat input per unit calculated from welding speed, cooling method, preheating method, welding sequence when constructing a plurality of welding passes, A welding position, and set and combine these conditions as required to determine the residual stress,
When setting the analysis conditions, select a representative welding pass position smaller than the total number of the plurality of welding passes to be applied during welding, as required,
The representative weld pass position welding method configured creation you, characterized in that the analysis conditions in combination set the required obtaining the residual stress.
前記解析条件の設定に際して、溶接時に施工する複数の溶接パスの全数よりも少ない代表溶接パス位置を所要に選択し、
前記代表溶接パス位置を模擬する溶接試験体を準備して前記溶接試験体の溶接条件を所要に設定し組み合わせて溶接し、
この溶接により前記溶接試験体に生じる残留応力を測定した後、前記代表溶接パス位置の溶接条件を所要に組み合わせて模擬した前記解析条件を設定して前記残留応力を求めることを特徴とする請求項1に記載の構造物の溶接方法。
When setting the analysis conditions, select a representative welding pass position smaller than the total number of the plurality of welding passes to be applied during welding, as required,
Preparing a welding test specimen that simulates the representative welding pass position, welding the welding test specimen by setting and combining the welding conditions as required,
The residual stress is obtained by measuring the residual stress generated in the weld specimen by this welding and then setting the analysis conditions simulating the welding conditions at the representative welding pass positions in combination as required. 2. A method for welding a structure according to 1 .
前記代表溶接パス位置毎の前記構造物の評価対象位置の残留応力の算出結果について前記解析条件を変数とする数式を準備して、新たな解析条件の設定に際し残留応力におよぼす影響を前記数式から概算して解析条件を設定することを特徴とする請求項またはに記載の構造物の溶接方法。 For the calculation result of the residual stress at the evaluation target position of the structure for each representative welding pass position, prepare a mathematical expression using the analysis condition as a variable, and determine the influence on the residual stress when setting a new analysis condition from the mathematical expression. welding method of the structure according to claim 1 or 2, characterized in that estimated to set the analysis conditions. 前記構造物が配管または容器であって、前記溶接部の開先形状が片側開先であり、全溶接パスのうち最初の溶接パスから所要の溶接パスまでを大気環境下で溶接する際の冷却方法を模擬する第1の解析条件と、前記所要の溶接パスから最終の溶接パスまでを前記最初の溶接パスの裏面を水環境にする際の冷却方法を模擬する第2の解析条件とを設定して前記残留応力を求めることを特徴とする請求項1からのいずれか1項に記載の構造物の溶接方法。 The structure is a pipe or a container, and the groove shape of the welded portion is a one-sided groove, and cooling is performed when welding from the first welding pass to a required welding pass among all the welding passes in an atmospheric environment. A first analysis condition for simulating a method and a second analysis condition for simulating a cooling method when the back surface of the first welding pass is set in a water environment from the required welding pass to the final welding pass are set. welding method of the structure according to any one of claims 1 to 3, characterized in that determining the residual stress and. 前記最初の溶接パスの裏面の水環境は、水の流速が0.01m/sec以上であることを特徴とする請求項に記載の構造物の溶接方法。 The method for welding a structure according to claim 4 , wherein the water environment on the back surface of the first welding pass has a water flow rate of 0.01 m / sec or more. 前記構造物が配管または容器であって、前記溶接部の開先形状が片側開先であり、前記解析条件の設定に際し、前記溶接部に施工する溶接パスのうち溶接線に略直行する方向の最終溶接層の幅を模擬した溶接パス数を所要に設定して前記残留応力を求めることを特徴とする請求項1からのいずれか1項に記載の構造物の溶接方法。 The structure is a pipe or a container, and the groove shape of the welded portion is a one-sided groove, and in the setting of the analysis conditions, the welding path of the welding portion constructed in the welded portion is substantially perpendicular to the welding line. welding method of the structure according to any one of claims 1 to 5, by setting the number of welds paths simulating the width of the final welding layer to the required and obtains the residual stress. 前記溶接線に略直行する方向の最終溶接層の幅を前記溶接線の略中央を中心として50mm以上とすることを特徴とする請求項に記載の構造物の溶接方法。 The structure welding method according to claim 6 , wherein the width of the final weld layer in a direction substantially perpendicular to the weld line is set to 50 mm or more with the approximate center of the weld line as a center. 前記溶接部に施工する溶接パスのうち最初に施工する第1の溶接パスから所要の溶接パスまでの厚みが5mm以上に施工された後は、その後の溶接パスの解析条件のうち溶接入熱を溶接入熱量10kJ/cm以上、30kJ/cm以下とすることを特徴とする請求項1からのいずれか1項に記載の構造物の溶接方法。 After the thickness from the first welding pass to be applied first to the required welding pass among the welding passes to be applied to the welded portion is set to 5 mm or more, the welding heat input is included in the analysis conditions of the subsequent welding pass. The welding method for a structure according to any one of claims 1 to 7 , wherein the welding heat input is 10 kJ / cm or more and 30 kJ / cm or less. 前記構造物はステンレス鋼またはニッケル基合金を材料とする構造物であり、腐食環境に暴露される前記溶接部の表面の溶接境界から10mm以上の範囲の残留応力が圧縮応力になる溶接条件を設定してから構造物を溶接することを特徴とする請求項1からのいずれか1項に記載の構造物の溶接方法。 The structure is a structure made of stainless steel or a nickel base alloy, and welding conditions are set such that a residual stress in a range of 10 mm or more from the weld boundary of the surface of the weld exposed to the corrosive environment becomes a compressive stress. welding method of the structure according to any one of claims 1 to 8, characterized in that welding the structure after.
JP2007128976A 2007-05-15 2007-05-15 Welding method for structures Expired - Fee Related JP5038775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007128976A JP5038775B2 (en) 2007-05-15 2007-05-15 Welding method for structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007128976A JP5038775B2 (en) 2007-05-15 2007-05-15 Welding method for structures

Publications (2)

Publication Number Publication Date
JP2008284556A JP2008284556A (en) 2008-11-27
JP5038775B2 true JP5038775B2 (en) 2012-10-03

Family

ID=40144777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007128976A Expired - Fee Related JP5038775B2 (en) 2007-05-15 2007-05-15 Welding method for structures

Country Status (1)

Country Link
JP (1) JP5038775B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101328698B1 (en) 2012-06-15 2013-11-14 재단법인 포항산업과학연구원 Method for reduction welding residual tensile stress by local heating of weld zone
JP7149552B2 (en) * 2017-09-08 2022-10-07 公立大学法人大阪 Residual stress prediction method and program

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004122222A (en) * 2002-10-07 2004-04-22 Toshiba Corp System and method of optimizing welding
JP2004181462A (en) * 2002-11-29 2004-07-02 Mitsubishi Heavy Ind Ltd Welding system and method using residual stress evaluation
JP4419802B2 (en) * 2004-10-29 2010-02-24 株式会社Ihi Method for analyzing residual stress in welded joints
JP4309830B2 (en) * 2004-11-11 2009-08-05 株式会社日立製作所 Piping welding method and apparatus
JP4528683B2 (en) * 2005-07-14 2010-08-18 日立Geニュークリア・エナジー株式会社 Narrow groove welding method, welded structure, and welding apparatus therefor

Also Published As

Publication number Publication date
JP2008284556A (en) 2008-11-27

Similar Documents

Publication Publication Date Title
Mochizuki Control of welding residual stress for ensuring integrity against fatigue and stress–corrosion cracking
Wan et al. Weld residual stresses in a thick plate considering back chipping: Neutron diffraction, contour method and finite element simulation study
Deng et al. Predicting welding residual stresses in a dissimilar metal girth welded pipe using 3D finite element model with a simplified heat source
Ogawa et al. Investigations on welding residual stresses in penetration nozzles by means of 3D thermal elastic plastic FEM and experiment
Rathbun et al. NRC welding residual stress validation program international round robin program and findings
Brust et al. Weld residual stresses and primary water stress corrosion cracking in bimetal nuclear pipe welds
Chiocca et al. Evaluation of residual stresses in a pipe-to-plate welded joint by means of uncoupled thermal-structural simulation and experimental tests
Ogata et al. Damage assessment method of P91 steel welded tube under internal pressure creep based on void growth simulation
Katsuyama et al. Evaluation of weld residual stress near the cladding and J-weld in reactor pressure vessel head for the assessment of PWSCC behavior
Tan et al. Effect of welding residual stress on operating stress of nuclear turbine low pressure rotor
Zondi Factors that affect welding-induced residual stress and distortions in pressure vessel steels and their mitigation techniques: a review
James et al. Residual stresses in condition monitoring and repair of thermal power generation components
JP5038775B2 (en) Welding method for structures
Qiao et al. Modeling of weld residual plastic strain and stress in dissimilar metal butt weld in nuclear reactors
Lee et al. Techniques for intergranular crack formation and assessment in alloy 600 base and alloy 182 weld metals
Wang et al. Prediction of residual stress distributions in welded sections of P92 pipes with small diameter and thick wall based on 3D finite element simulation
Hilson et al. Spatial variation of residual stresses in a welded pipe for high temperature applications
Iordachescu et al. Specific properties of ferritic/austenitic dissimilar metals welded joints
Lee et al. Assessment of possibility of primary water stress corrosion cracking occurrence based on residual stress analysis in pressurizer safety nozzle of nuclear power plant
Ogata et al. Modelling of creep damage in high temperature component life assessment
Murakami et al. New analytical approach to predict creep void growth in heat-affected zone of high Cr steel weldments
Mcdonald et al. A strategy for accommodating residual stresses in the assessment of repair weldments based upon measurement of near surface stresses
George et al. Evaluation of through wall residual stresses in stainless steel weld repairs
Brust et al. Modeling crack growth in weld residual stress fields using the finite element alternating method
Sanyal et al. Assessment of axial cracking of a steam generator tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091005

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees