JPS6055023B2 - automatic balancing instrument - Google Patents

automatic balancing instrument

Info

Publication number
JPS6055023B2
JPS6055023B2 JP9388178A JP9388178A JPS6055023B2 JP S6055023 B2 JPS6055023 B2 JP S6055023B2 JP 9388178 A JP9388178 A JP 9388178A JP 9388178 A JP9388178 A JP 9388178A JP S6055023 B2 JPS6055023 B2 JP S6055023B2
Authority
JP
Japan
Prior art keywords
wire
movable part
signal
pointer
ultrasonic signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9388178A
Other languages
Japanese (ja)
Other versions
JPS5523419A (en
Inventor
敏嗣 植田
聖基 羅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP9388178A priority Critical patent/JPS6055023B2/en
Publication of JPS5523419A publication Critical patent/JPS5523419A/en
Publication of JPS6055023B2 publication Critical patent/JPS6055023B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

【発明の詳細な説明】 本発明は新規な位置帰還手段を利用した自動平衡計器に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a self-balancing instrument utilizing a novel position feedback means.

従来公知の自動平衡計器における位置帰還手段としては
摺動抵抗器を使用したポテンショメータが広く用いられ
ている。
Potentiometers using sliding resistors are widely used as position feedback means in conventionally known self-balancing instruments.

しカルながら、摺動抵抗器は機械的な接触部分を有する
ため長期間の使用に対して、耐摩耗、耐塵埃、耐環境雰
囲気特性等種々の問題があつた。
However, since sliding resistors have mechanical contact parts, there are various problems with long-term use, such as wear resistance, dust resistance, and environmental resistance.

本発明はこれらの問題点を一挙に解決し、信頼性の高い
自動平衡計器を実現しようとするものである。
The present invention aims to solve these problems all at once and realize a highly reliable self-balancing instrument.

第1図は本発明の一実施例を示す構成ブロック図である
FIG. 1 is a block diagram showing an embodiment of the present invention.

図において、1は可動部たる指針、2はこの指針1を移
動させるためのワイヤで、本発明においては特にこのワ
イヤに例えばNi一SPANC)ニッケル等の磁歪線を
用いている。この磁歪線で構成したワイヤ2の指針1へ
の取付部は、磁歪線1内に発生した超音波信号がこの部
分で反射するように処理されている。31、32、33
はワイヤ2のプーリで、ワイヤ2内を伝播する超音波信
号がこの部分で反射しないようにワイヤを県架している
In the figure, 1 is a pointer which is a movable part, and 2 is a wire for moving this pointer 1. In the present invention, a magnetostrictive wire, such as Ni-SPANC) nickel, is particularly used for this wire. The attachment portion of the wire 2 made of this magnetostrictive wire to the pointer 1 is treated so that the ultrasonic signal generated within the magnetostrictive wire 1 is reflected at this portion. 31, 32, 33
is a pulley for the wire 2, and the wire is suspended so that the ultrasonic signal propagating within the wire 2 is not reflected at this part.

41、42は指針1の両側であつて、プーリ31、32
付近において磁歪線で構成したワイヤ2に結合し、磁歪
線内に超音波信号を発生する励振手段、51、52は指
針1の両側であつて、プーリ31、32付近においてワ
イヤ2に結合し、指針1の取付部で反射してくる反射超
音波信号を受信する受信手段である。
41 and 42 are on both sides of the pointer 1, and pulleys 31 and 32
Excitation means 51, 52 are coupled to the wire 2 made of magnetostrictive wires in the vicinity and generate ultrasonic signals in the magnetostrictive wires; This is a receiving means for receiving the reflected ultrasonic signal reflected from the attachment part of the pointer 1.

励振手段41、42と受信手段51、52とは1つの手
段で兼用するようにしてもよい。05は励振パルス発生
器で、その出力パルスPEは励振手段41、42に印加
されるとともに後述するフリップフロップ回路FFI、
FF2のセット端子Sに印加されている。
The excitation means 41 and 42 and the reception means 51 and 52 may be used as one means. 05 is an excitation pulse generator, and its output pulse PE is applied to excitation means 41 and 42 as well as a flip-flop circuit FFI, which will be described later.
It is applied to the set terminal S of FF2.

0P1,0P2はいずれも比較増幅器で、指針1の取付
部で反射してく反射超音波信号によるパルス信号を識別
し、これを増幅して、フリップフロップ回路FFl,F
F2のリセット端子Rに印加する。
0P1 and 0P2 are both comparator amplifiers that identify the pulse signal caused by the reflected ultrasonic signal reflected from the attachment part of the pointer 1, amplify it, and send it to flip-flop circuits FFl and F.
Apply to reset terminal R of F2.

CKはフリップフロップ回路FFl,FF2から得られ
る時間幅信号PWl,PW2を入力とする演算回路であ
る。この演算回路CKの出力信号E,は、可動部たる指
針1の位置帰還信号となり、入力信号Eiとつき合され
、Ei=Erとなるように平衡電動機BMが駆動される
。平衡電動機BMの回転軸はプーリ33に連結され、ワ
イヤ2を介して指針1を矢印方向に移動させる。このよ
うに構成した装置の動作を次に第2図を参照しながら説
明する。
CK is an arithmetic circuit that receives time width signals PWl and PW2 obtained from flip-flop circuits FFl and FF2. The output signal E of the arithmetic circuit CK becomes a position feedback signal for the pointer 1, which is a movable part, and is matched with the input signal Ei to drive the balance motor BM so that Ei=Er. The rotating shaft of the balance motor BM is connected to a pulley 33, and moves the pointer 1 in the direction of the arrow via the wire 2. The operation of the apparatus constructed in this way will now be explained with reference to FIG.

まず、はじめに励振パルス発生器0Sから、第2図イに
示すように励振パルスPEを励振手段41,42に同時
に印加する。励振手段41,42に励振パルスが印加さ
れると、所謂ジュール(JOule)効果によつて磁歪
線で構成したワイヤ2の内部に超音波信号が発生し、こ
れが指針1側とプーリ側とに向けて伝播する。指針1側
に伝播する超音波信号は、指針1への取付部で反射しこ
の反射超音波信号は第1の受信手段51および第2の受
信手段52でそれぞれ第2図口およびハに示すように検
出される。プーリ側に伝播する超音波信号は、プーリの
部分で減衰する。いま、励振パルスPOを励振手段41
,42に印加すると同時にワイヤ2内に超音波信号が発
生するものとすれは、励振手段から発生した超音波.信
号が指針1の取付部で反射し、受信手段でこれが検出さ
れるまでの時間ち,T2は(1)式および(2)式で表
わすことができる。
First, an excitation pulse PE is simultaneously applied from the excitation pulse generator OS to the excitation means 41 and 42 as shown in FIG. 2A. When an excitation pulse is applied to the excitation means 41 and 42, an ultrasonic signal is generated inside the wire 2 made of magnetostrictive wire due to the so-called Joule effect, which is directed toward the pointer 1 side and the pulley side. and propagate. The ultrasonic signal propagating toward the pointer 1 side is reflected at the attachment part to the pointer 1, and the reflected ultrasonic signal is transmitted to the first receiving means 51 and the second receiving means 52, as shown in Figure 2 and C, respectively. detected. The ultrasonic signal propagating toward the pulley is attenuated at the pulley. Now, the excitation pulse PO is applied to the excitation means 41.
, 42, an ultrasonic signal is generated within the wire 2 at the same time as the ultrasonic wave generated from the excitation means. The time T2 from when the signal is reflected at the attachment part of the pointer 1 until it is detected by the receiving means can be expressed by equations (1) and (2).

ただし、Vs:ワイヤ2内を超音波信号が伝播
する速度 d:励振手段と受信手段との距離(一 定値) e1:受信手段51と指針1の取付部 との距離(指針1の位置に対応し て可
変) E2:受信手段52と指針1の取付部
との距離(指針1の位置に対応し て可変
)励振パルスPEは、励振手段41,42に印加される
と同時にフリップフロップ回路FFl,FF2のセット
端子sにそれぞれ印加されており、各フリップフロップ
回路FFl,FF2を第2図二,ホに示すようにセット
状態にする。
However, Vs: Ultrasonic signal propagates within wire 2
d: Distance between the excitation means and the receiving means (constant value) e1: Distance between the receiving means 51 and the attachment part of the pointer 1 (variable depending on the position of the pointer 1) E2: Distance between the receiving means 52 and the pointer 1 Mounting part
The excitation pulse PE (variable depending on the position of the pointer 1) is applied to the excitation means 41 and 42 and simultaneously applied to the set terminals s of the flip-flop circuits FFl and FF2. The circuits FFl and FF2 are set to the set state as shown in FIG. 2 2 and E.

また、励振パルスPEを与えてから、Tl,t2後に第
1受信手段51、j第2受信手段52から得られたパル
ス状の信号El,e2(第2図口,ハ参照)は、フリッ
プフロップ回路FFl,FF2のリセット端子Rにそれ
ぞれ印加され、これらを第2図二,ホに示すようにリセ
ット状態にする。したがつて、フリップフロップ回路F
Fl,FF2の出力端から、第2図二,ホに示すように
El,e2に比例する時間幅Tl,t2をもつた時間幅
信号PWl,PW2が得られる。演算回路CKは、各フ
リップフロップ回路FFl,FF2からの時間幅Tl,
t2を検出して(3)式の演算を行なうことにより指針
1の変位位置xに関連した位置帰還信号Efを得る。
Further, after Tl, t2 after applying the excitation pulse PE, pulsed signals El and e2 obtained from the first receiving means 51 and the second receiving means 52 (see Figure 2, Figure 2) are sent to the flip-flop. The voltage is applied to the reset terminals R of the circuits FFl and FF2, respectively, to put them in the reset state as shown in FIG. Therefore, the flip-flop circuit F
From the output terminals of Fl and FF2, time width signals PWl and PW2 having time widths Tl and t2 proportional to El and e2 are obtained as shown in FIG. 2, 2 and E, respectively. The arithmetic circuit CK has a time width Tl from each flip-flop circuit FFl, FF2,
By detecting t2 and calculating equation (3), a position feedback signal Ef related to the displacement position x of the hand 1 is obtained.

ただしX=′1−E2 (3)式において、d+e1+E2は指針1の変位位置
xにかかわらず一定な値であるから、帰還信号E,は変
位位置xに正確に比例したものとなる。
However, since X='1-E2 (3), d+e1+E2 is a constant value regardless of the displacement position x of the pointer 1, the feedback signal E is exactly proportional to the displacement position x.

このようにして得られた可動部たる指針1の変位位置に
関連する帰還信号E,は、超音波信号の伝播速度Vsの
影響を受けず、また機械的接触部を介さずして得られる
という特長をもつている。
The feedback signal E, related to the displacement position of the pointer 1, which is the movable part, obtained in this way is not affected by the propagation velocity Vs of the ultrasonic signal and can be obtained without using any mechanical contact part. It has characteristics.

また、可動部と電気回路との間をリード線等で接続する
必要がないという特長をもつている。この帰還信号E,
は、入力信号e[と比較され、平衡電動機BMはEi=
E,となるように指針1を移動し、そこで自動平衡する
。したがつて、指針1を入力信号E,に正確に追従させ
ることができ、指針1の変位位置から入力信号elの大
きさを知ることができる。なお、演算回路CKにおいて
、(4)式のような演算を行なうようにしてもよい。
Another feature is that there is no need to connect the movable part and the electric circuit with lead wires or the like. This feedback signal E,
is compared with the input signal e[, and the balanced motor BM has Ei=
Move the pointer 1 so that it becomes E, and automatically equilibrate there. Therefore, the pointer 1 can be made to accurately follow the input signal E, and the magnitude of the input signal el can be determined from the displacement position of the pointer 1. Note that the arithmetic circuit CK may perform an arithmetic operation as shown in equation (4).

この場合、帰還信号E,、超音波信号の伝播速度Vsの
影響を受けるので、ワイヤ2に温度などにより伝播速度
Vsがあまり変化しない材料、例えばNi−SPANC
を用いることが望ましい。▼S なお、上記の実施例では励振手段と受信手段とを指針1
の両側に配置させ、指針1の位置に関連した2種の時間
幅信号を得て、これを演算するようにしたものであるが
、指針1の片側に励振手段と受信手段を配置し、e1ま
たはE2に関連する一つの時間幅信号を得るようにして
もよい。
In this case, since the feedback signal E, is affected by the propagation velocity Vs of the ultrasonic signal, the wire 2 is made of a material whose propagation velocity Vs does not change much due to temperature etc., such as Ni-SPANC.
It is desirable to use ▼S In the above embodiment, the excitation means and the reception means are set according to the guideline 1.
e1 is placed on both sides of the pointer 1 to obtain two types of time width signals related to the position of the pointer 1, and these are calculated. Alternatively, one time width signal related to E2 may be obtained.

また、フリップフロップ回路は励振パルス発生器Gから
の励振パルスPEによつてセットされるようにしたもの
であるが、指針1に向かつて伝播する超音波信号を受信
手段51によつて検出し、この信号によつてセットする
ようにしてもよい。この場合、時間幅ちはダ〕之なる。
Vs 以上説明したように、本発明によれば全体を機械的接触
部のない構成とすることができ、また可動部と電気回路
とをリード線等で接続する必要がないので、従来装置に
おける問題点を一挙に解決した信頼性の高い自動平衡計
器が実現できる。
Further, although the flip-flop circuit is set by the excitation pulse PE from the excitation pulse generator G, the ultrasonic signal propagating toward the pointer 1 is detected by the receiving means 51, It may also be set using this signal. In this case, the time width is .
Vs As explained above, according to the present invention, the entire structure can be made without any mechanical contact parts, and there is no need to connect the movable part and the electric circuit with lead wires, etc., so that problems with conventional devices can be avoided. A highly reliable self-balancing instrument that solves all problems at once can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成ブロック図、第2
図は第1図装置の動作波形図である。 1・・・指針(可動部)、2・・・ワイヤ、31〜33
:・・・プーリ、41,42・・・励振手段、51,5
2・・・受信手段、G・・・励振パルス発生器、FFl
,FF2・・・フリップフロップ回路、CK・・・演算
回路、BM・・・平衡電動機。
FIG. 1 is a configuration block diagram showing one embodiment of the present invention, and FIG.
The figure is an operational waveform diagram of the apparatus shown in FIG. 1... Pointer (movable part), 2... Wire, 31-33
:...Pulley, 41, 42...Excitation means, 51, 5
2...Receiving means, G...Excitation pulse generator, FFL
, FF2...Flip-flop circuit, CK...Arithmetic circuit, BM...Balanced motor.

Claims (1)

【特許請求の範囲】 1 可動部、磁歪材料で構成された前記可動部への取付
部において超音波信号が反射するように処理されたワイ
ヤ、このワイヤを介して前記指針を駆動する平衡電動機
、前記ワイヤに結合しワイヤ内に超音波信号を発生させ
る励振手段、前記ワイヤに結合し前記可動部の取付部に
おいて反射した反射超音波信号を受信する受信手段、前
記ワイヤ内に発生した超音波信号が前記受信手段と可動
部への取付部との間を往復するに要する時間に関連する
信号を利用して前記可動部の動きに対応する信号を得る
回路手段を具備し、前記平衡電動機は入力信号と前記可
動部の位置に対応する信号とが等しくなるように前記可
動部を駆動する自動平衡計器。 2 可動部の両側にワイヤに結合する励振手段と受信手
段とを設け、前記ワイヤ内に発生した超音波信号受信手
段と可動部への取付部との間を往復するに要する時間に
関連する2種の信号を得、この2種の信号を演算するこ
とによつて可動部の動きに対応する信号を得るようにし
た特許請求の範囲第1項記載の自動平衡計器。
[Scope of Claims] 1. A movable part, a wire treated so that an ultrasonic signal is reflected at an attachment part to the movable part made of a magnetostrictive material, and a balanced electric motor that drives the pointer via this wire; an excitation means coupled to the wire and generating an ultrasonic signal within the wire; a receiving means coupled to the wire and receiving a reflected ultrasonic signal reflected at a mounting portion of the movable part; and an ultrasonic signal generated within the wire. circuit means for obtaining a signal corresponding to the movement of the movable part using a signal related to the time required for the motor to travel back and forth between the receiving means and the attachment to the movable part; An automatic balancing instrument that drives the movable part so that a signal and a signal corresponding to the position of the movable part are equal. 2. An excitation means and a receiving means coupled to the wire are provided on both sides of the movable part, and 2 2. The automatic balancing instrument according to claim 1, wherein a signal corresponding to the movement of the movable part is obtained by obtaining two types of signals and calculating these two types of signals.
JP9388178A 1978-08-01 1978-08-01 automatic balancing instrument Expired JPS6055023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9388178A JPS6055023B2 (en) 1978-08-01 1978-08-01 automatic balancing instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9388178A JPS6055023B2 (en) 1978-08-01 1978-08-01 automatic balancing instrument

Publications (2)

Publication Number Publication Date
JPS5523419A JPS5523419A (en) 1980-02-19
JPS6055023B2 true JPS6055023B2 (en) 1985-12-03

Family

ID=14094811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9388178A Expired JPS6055023B2 (en) 1978-08-01 1978-08-01 automatic balancing instrument

Country Status (1)

Country Link
JP (1) JPS6055023B2 (en)

Also Published As

Publication number Publication date
JPS5523419A (en) 1980-02-19

Similar Documents

Publication Publication Date Title
US4238844A (en) Displaced position detecting device
US4118977A (en) Electric signal transmitter for vibrating-wire sensor
JPS6055023B2 (en) automatic balancing instrument
US3186226A (en) Apparatus for determining the temperature of travelling strip
US3300630A (en) Electromechanical analog multiplier which includes a semiconductor bridge circuit
JPS6055020B2 (en) automatic balancing instrument
USRE31416E (en) Electric signal transmitter for vibrating-wire sensor
US2999965A (en) Electrical measuring servosystem
US2941146A (en) Electrical measuring apparatus
SU775637A1 (en) Temperature measuring device
JPS6055021B2 (en) automatic balancing instrument
JPS5856088B2 (en) Displacement position detection device
SU736317A1 (en) Device for damping oscillations in electric drive with flexible coupling between motor and mechanism
JPS5827845B2 (en) Strange thing
JPS5918642B2 (en) Strange thing
JPS5856412B2 (en) displacement detection device
JPS5856413B2 (en) Displacement position detection device
SU551806A1 (en) Magnetostrictive displacement sensor
JPS5856411B2 (en) Displacement position detection device
SU649987A1 (en) Viscosimeter
Haskell A substitution method for the absolute calibration of vibration pick-ups
SU714166A1 (en) Linear displacement measuring device
SU993016A2 (en) Device for ultrasonic measuring of linear displacements
SU1053017A1 (en) Device for measuring resistance of one of resistors connected in ''dead'' star
KR20060127888A (en) Method for determining a position of a displaceable element as well as a wave motor