JPS6055018B2 - Correction device for air pressure detection errors in aircraft, etc. - Google Patents

Correction device for air pressure detection errors in aircraft, etc.

Info

Publication number
JPS6055018B2
JPS6055018B2 JP2412877A JP2412877A JPS6055018B2 JP S6055018 B2 JPS6055018 B2 JP S6055018B2 JP 2412877 A JP2412877 A JP 2412877A JP 2412877 A JP2412877 A JP 2412877A JP S6055018 B2 JPS6055018 B2 JP S6055018B2
Authority
JP
Japan
Prior art keywords
static pressure
signal
apparent
correct
pressure signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2412877A
Other languages
Japanese (ja)
Other versions
JPS53109399A (en
Inventor
功 岩崎
博 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2412877A priority Critical patent/JPS6055018B2/en
Publication of JPS53109399A publication Critical patent/JPS53109399A/en
Publication of JPS6055018B2 publication Critical patent/JPS6055018B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Description

【発明の詳細な説明】 この発明は、航空機等においてエアデータ処理機器か
ら正しい各種出力が得られるようにするために、空圧の
検出誤差を補正する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for correcting air pressure detection errors in order to obtain correct various outputs from air data processing equipment in an aircraft or the like.

演算を行なうに当り、信号源として検出器ヒト−システ
ムまたはピトー管とフラッシュポート (静圧孔)とを
併用した検出器からの全圧および見掛けの静圧を用いる
。見掛けの静圧は、航空機等の飛行状態により検出部に
発生する誤差を含む静圧を意味するが、従来ヒト−シス
テムによる信号源のみは、マツハ関数として補正が可能
でありそのように実施している。しカルながらフラッシ
ュポート検出器による信号源に含まれる静圧検出誤差は
、従来の方式では補正ができないのが実態である。 こ
の発明は、フラッシュポート検出器からの見掛けの静圧
に含まれている検出誤差を補正し、エアデータ処理機器
から正しい各種出力を得ることができるようにする航空
機等の空圧の検出誤差の補正装置を提供しようとしてな
されたものである。
The calculations use the total pressure and apparent static pressure from the detector human system or the detector combined with a pitot tube and flush port as the signal source. Apparent static pressure refers to static pressure that includes errors that occur in the detection unit due to flight conditions of aircraft, etc., but conventional human system signal sources can be corrected as Matsuha functions and have not been implemented in this way. ing. However, the reality is that static pressure detection errors included in the signal source from the flash port detector cannot be corrected using conventional methods. This invention corrects the detection error included in the apparent static pressure from the flash port detector, and corrects the detection error of air pressure in aircraft, etc., so that correct various outputs can be obtained from the air data processing equipment. This was done in an attempt to provide a correction device.

即ちこの発明に係る空圧の検出誤差の補正装置は、検出
器フラッシュポートからの信号を見掛けの静圧信号PS
Iと見掛けの校正速度(C、A、S)’または見掛けの
迎え角信号との2つに分ける手段と、見掛けの校正速度
または見掛けの迎え角信号から静圧補正量ΔPsを算出
しその静圧補正量ΔPsに比例した電圧として出力する
関数変換器と、この関数変換器からの出力を用いて前記
見掛けの静圧信号Psiを正しい静圧信号Psに変換し
もしくは正しい静圧信号Psを演算する手段とを備えて
なり、エアデータ処理機器から正しい各種出力が得られ
るようにしたことを特徴とする。この発明の第1の実施
例では信号源の空気圧そのものを補正し、以後の演算に
供するものでエアデータ処理機器には正しい信号が供給
され、出力には静圧誤差の影響が含まれない。第1図は
実施例1の系統図であり、第2図は同じく実施例1の原
理図である。これら両図によつて実施例1を説明するに
ついて図中使用した各記号とそれらの相関関係は次おそ
おりである。Psi・・・・・・見掛けの静圧、Ps・
・・・・・正しい静圧、Pt・・・・・・全圧、ΔPs
・・・・・・静圧検出誤差、Psi/Pt・・・・・・
見掛けのマツハ関数、Ps/Pt・・・・・・正しいマ
ツハ関数実施例1ては検出器より入る全圧信号Ptは直
接エアデータ処理機器に入れてよいが、静圧に関しては
見掛けの静圧信号Psiと見掛けの校正速度または見掛
けの迎え角信号との二つに分け、前者Psiは空気圧変
換器A,Cに受入れ、これによつて補正された静圧信号
Psとして出力し、後者は関数変換器によつて静圧に加
えるべき補正量すなわち静圧検出誤差ΔPsに比例した
電圧として出力し、一方前記空気圧変換器A,Cより取
出した補正された静圧アSと、エア,データ処理機器に
内蔵した気圧センサによつて静圧Psに比例した電圧に
変換し、これとインバータIによつて符号を逆転して演
算増巾器A2の(−)側に入れ、上のΔPsに比例した
電圧を増巾器A2の(十)側に入れて演算を行ない、を
出力として取出す。
That is, the pneumatic pressure detection error correction device according to the present invention corrects the apparent static pressure signal PS of the signal from the detector flash port.
I and the apparent calibration speed (C, A, S)' or the apparent angle of attack signal, and the static pressure correction amount ΔPs is calculated from the apparent calibration speed or the apparent angle of attack signal and the static pressure correction amount ΔPs is calculated from the apparent calibration speed or the apparent angle of attack signal. A function converter that outputs a voltage proportional to the pressure correction amount ΔPs, and the output from this function converter is used to convert the apparent static pressure signal Psi into a correct static pressure signal Ps or calculate the correct static pressure signal Ps. The air data processing device is characterized in that it includes a means for doing so, so that correct various outputs can be obtained from the air data processing device. In the first embodiment of the present invention, the air pressure itself of the signal source is corrected and used for subsequent calculations, so that a correct signal is supplied to the air data processing equipment, and the output does not include the influence of static pressure errors. FIG. 1 is a system diagram of the first embodiment, and FIG. 2 is a principle diagram of the first embodiment. In explaining the first embodiment using these two figures, the symbols used in the figures and their correlations are as follows. Psi... Apparent static pressure, Ps.
...Correct static pressure, Pt...Total pressure, ΔPs
...Static pressure detection error, Psi/Pt...
Apparent Matsuha function, Ps/Pt...Example 1 of correct Matsuha function: The total pressure signal Pt input from the detector can be directly input into the air data processing equipment, but regarding static pressure, the apparent static pressure The signal Psi is divided into two signals, the apparent calibration speed or the apparent angle of attack signal, and the former Psi is received by the pneumatic pressure converters A and C and outputted as a static pressure signal Ps corrected thereby, and the latter is a function The converter outputs a voltage proportional to the amount of correction to be added to the static pressure, that is, the static pressure detection error ΔPs, and the corrected static pressure A S taken out from the pneumatic pressure converters A and C, air, and data processing. The pressure sensor built into the device converts it into a voltage proportional to the static pressure Ps, which is reversed in sign by the inverter I and input to the (-) side of the operational amplifier A2, which is proportional to the above ΔPs. The resulting voltage is input to the (10) side of the amplifier A2, and the calculation is performed, and the resultant voltage is taken out as an output.

更に次の割算器即のX側に静圧に加えるべき補正量ΔP
sに比例した電圧を入れ、Y側に上で得たPsiを投入
して割算演算を行なわせz=Φの結果としてΔPS/P
Siを出力信号として取出す。このΔPS/Psiは支
点位置設定信号としてサーボアンプA1の(−)側に送
られ、空気圧変換器A,Cにフィードバック信号として
移動形支点Sの位置を設定する。
Furthermore, the correction amount ΔP to be added to the static pressure on the X side of the next divider
Insert a voltage proportional to s, input the Psi obtained above to the Y side, perform a division operation, and get ΔPS/P as the result of z=Φ.
Take out Si as an output signal. This ΔPS/Psi is sent to the (-) side of the servo amplifier A1 as a fulcrum position setting signal, and sets the position of the movable fulcrum S as a feedback signal to the pneumatic converters A and C.

次に空気圧変換器A,Cの構造と作用を説明するこれは
密閉された箱型容器で圧力差検出ダイヤフラムDへ吸気
口がつながり見かけの静圧Psiが導入され、又排気孔
からは補正された静圧Psが出力として排出される。
Next, we will explain the structure and function of the air pressure transducers A and C. These are sealed box-shaped containers with an air intake port connected to a pressure difference detection diaphragm D, into which an apparent static pressure Psi is introduced, and a corrected static pressure Psi is introduced from the exhaust port. The static pressure Ps is discharged as an output.

また容器中央部側方より加圧用空気源と減圧用真空源に
それぞれつながるコントロールバルブC,Vがあり、コ
ントロールバルブC,■の内側壁は図のように平衡ビー
ムフBBに一体の弁開閉板V,Pで構成されている。中
央の平衡ビームBBは支点Sの周りに回転出来るように
支持されており、平衡ビームBBの上側の面を真空ベロ
ーズBおよびこれと間隔Lを保つて圧力差検出部ダイヤ
フラムDのそれぞれの接点7が接触して下方に押下げる
作用をし、一方下側の面は、支点位置検出用可変抵抗器
R7の移動形支点Sが接触し、上方よりの圧力を支える
支点となる。さてサーボアンプA1の(−)側への支点
位置設定信号ΔPS/Psiにより、サーボモータMを
ノ駆動し、ギヤトレーンGTの作動によつて移動形支点
Sを指定位置に移送する。これに伴ない支点位置検出用
可変抵抗器R、,上を移動支点Sの接点が走行し支点位
置を検出する。以上のように支点Sの位置が決まると真
空ベローズBならびにダイヤフラムDの両刃点との間に
次の関係が成立する。ここでLは真空ベローズBの接点
と、圧力差検出部ダイヤフラムDの接点との間隔で一定
である。
In addition, there are control valves C and V connected to the pressurizing air source and the depressurizing vacuum source from the sides of the center of the container, respectively, and the inner walls of the control valves C and ■ are the valve opening/closing plates V integrated into the balance beam BB as shown in the figure. , P. The central balance beam BB is supported so as to be able to rotate around a fulcrum S, and the upper surface of the balance beam BB is connected to a vacuum bellows B and the contact points 7 of the pressure difference detector diaphragm D at a distance L from the vacuum bellows B. The movable fulcrum S of the variable resistor R7 for fulcrum position detection comes into contact with the lower surface and serves as a fulcrum that supports pressure from above. Now, the servo motor M is driven by the fulcrum position setting signal ΔPS/Psi to the (-) side of the servo amplifier A1, and the movable fulcrum S is moved to a designated position by the operation of the gear train GT. Accordingly, the contact point of the moving fulcrum S runs on the variable resistor R for fulcrum position detection, and detects the fulcrum position. When the position of the fulcrum S is determined as described above, the following relationship is established between the vacuum bellows B and the double edge points of the diaphragm D. Here, L is the distance between the contact point of the vacuum bellows B and the contact point of the pressure difference detection section diaphragm D, and is constant.

lは真空ベローズBの接点を零起点とした支点Sまでの
間隔で方向を含めた値である。今、例えば圧力差検出部
ダイヤフラムDの吸気側に入つた見掛けの静EEPsi
が反対側の圧力より大きい場合、Dの接点の押下げ力に
より平衡ビーム船は右下りとなり、右端の弁開閉板は下
降し加圧源につながる弁を開く。
1 is the distance from the zero starting point to the fulcrum S at the contact point of the vacuum bellows B, including the direction. Now, for example, the apparent static EEPsi that has entered the intake side of the pressure difference detection part diaphragm D
When is larger than the pressure on the opposite side, the balance beam ship moves downward to the right due to the pressing force of the contact point D, and the valve opening/closing plate at the right end descends to open the valve connected to the pressure source.

これによつて容器内の空気圧が上り、Psiとバランス
する所で平衡ビームBBは平衡位置に戻り、弁開閉板■
,Pも加圧弁を閉じる。この結果容器内の空圧は補正さ
れた静圧Psとなつて出力として外部に導びかれる。逆
にPsiが内圧より小さい場合は、逆に減圧側の弁を開
き空圧が平衡するまて作動する。かようにして補正され
た静圧はエアデータ処理機器に供給され正しい出力とな
つて供給される。次に発明の第2の実施例について説明
する。
As a result, the air pressure inside the container rises, and when it balances with Psi, the equilibrium beam BB returns to the equilibrium position, and the valve opening/closing plate ■
, P also closes the pressurizing valve. As a result, the air pressure inside the container becomes the corrected static pressure Ps and is led to the outside as an output. Conversely, if Psi is smaller than the internal pressure, the valve on the pressure reducing side is opened and the operation is continued until the air pressure is balanced. The static pressure corrected in this way is supplied to the air data processing equipment and is supplied as a correct output. Next, a second embodiment of the invention will be described.

実施例2ではエアーデータ処理機器に直接各種入力信号
を投入し、それぞれの系に必要な補正量を演算し、機器
内で補正演算を実施し、正しい結果を供給しようとする
ものである。第3図は実施例2の系統図、第4図は同じ
く実施例2の原理図である。
In the second embodiment, various input signals are directly input to the air data processing equipment, the amount of correction necessary for each system is calculated, and the correction calculation is performed within the equipment to supply correct results. FIG. 3 is a system diagram of the second embodiment, and FIG. 4 is a principle diagram of the second embodiment.

第3および第4図の説明上使用する各記号とそれらの相
関関係は実施例1の場合と全く同じである。即ち(1)
式がこの場合も適用される。先ず検知器ピトー管より全
圧信号Ptがエアデータ処理機器内の速度センサに入り
、また検出器フラッシュボートより入る見かけの静圧信
号Psiは2つに分けて、1つは上の速度センサーに入
り見 Psiかけのマッハ関数(一)とな
つて取出されて、 Pt〜加算のために
演算増巾器〜の(+)側に入力信号として入る。
The symbols used in the explanation of FIGS. 3 and 4 and their correlations are exactly the same as in the first embodiment. That is (1)
The formula also applies in this case. First, the total pressure signal Pt from the detector pitot tube enters the speed sensor in the air data processing equipment, and the apparent static pressure signal Psi from the detector flash boat is divided into two parts, one of which is sent to the upper speed sensor. It is taken out as a Mach function (1) multiplied by Psi and input as an input signal to the (+) side of the operational amplifier for Pt for addition.

なおPSiの残りの信号は静圧センサに入つてPsiの
空圧信号に比例した電圧信号Psiとして取出され、2
分されて1つは割算器1MD1のX側に入り、他の1つ
は演算増巾器入の(+)側に投入される。
Note that the remaining signal of PSi enters the static pressure sensor and is taken out as a voltage signal Psi proportional to the pneumatic signal of Psi.
One of the divided signals is input to the X side of the divider 1MD1, and the other input is input to the (+) side of the operational amplifier input.

次に検出器フラッシュボートより入る見かけの校正速度
または見かけの迎え角信号は、関数変換器によつて静圧
検出誤差に比例した電圧ΔPsに変換され、この電圧Δ
Psが2分されて1つは割算器2MD2のX側に入れら
れ、他は演算増巾器A4の(−)側に導かれる。なお割
算器1r01のY側には速度センサより出た
Psi見かけのマツハ関数に比例し
た電圧(百)が投 X入され、出
力信号としてz=Y=Ptが得られ、こ
xれを割算器2MD2のY側に
入れると、Z=Y=ΔPs一となつて出て来る。
Next, the apparent calibration velocity or apparent angle of attack signal input from the detector flash boat is converted by a function converter into a voltage ΔPs proportional to the static pressure detection error, and this voltage ΔPs is proportional to the static pressure detection error.
Ps is divided into two parts and one part is put into the X side of the divider 2MD2, and the other part is led to the (-) side of the operational amplifier A4. Furthermore, on the Y side of the divider 1r01, there is a signal that comes out from the speed sensor.
A voltage (100) proportional to Psi's apparent Matsuha function is inputted, and z=Y=Pt is obtained as the output signal, which is
When x is input to the Y side of the divider 2MD2, it comes out as Z=Y=ΔPs-.

この信号電圧を演算増PsO一巾器んの(−)側に導入
すると(1)式の通りの演 PsiΔP
sPs算が行なわれる。
When this signal voltage is introduced into the (-) side of the operation intensifier PsO, the operation PsiΔP is as shown in equation (1).
sPs calculation is performed.

即ちーーーニーとなつて正 0PtPtPtし
いマツハ関数が得られる。
In other words, a new Matsuha function with a positive 0PtPtPt is obtained.

なお演算増巾器A4の(+)及(−)側に入つた信号電
圧は正しい静圧信号Psとして取出される。以上により
正しいマツハ関数?と正しい静圧関数Psが得られるわ
けである。次に第4図で破線で囲んだ部分は第5図の原
理図に置換えることが出来る。第5図は見かけの静圧信
号が高度に比例する信号で与えられるときの正しい静圧
信号を得るための原理図である。なお、静圧検出誤差Δ
PSl言い換えれば静圧補正量を発生する実施例を述べ
る。これは既述した実施例1および2に共通して使用で
きるものであるが、例えばポテンショメーターの特性を
利用して、第6図のように横軸に見かけの迎え角または
見かけの校正速度の関数に比例したポテンショメーター
の軸の回転角度θをとり、縦軸に静圧3補正量として気
圧に比例した電圧ΔPsをとると、航空機の形式ごとに
与えられる関数が例えばT曲線で得られる。第7図は静
圧補正量のポテンショメーターによる発生原理図である
。基準電圧をかけたポテンショメーターに、見掛けの迎
え角または見かけの校正速度の関数に比例した軸回転゛
角度θをセットすると、静圧補正量ΔPsが電圧の形で
得られる。こ)で用いたポテンショメーターの代りに圧
電素子を用いてもよい。以上2つの実施例を挙げて説明
した様に見かけの校正速度または見かけの迎え角による
補正を行・なうことにより、フラッシュボートからの信
号に正しい補正を加えた正しい静圧信号を得ることがで
き、正しいマツハ関数と共に正しい出力を得ることがで
きるのである。
Note that the signal voltages input to the (+) and (-) sides of the operational amplifier A4 are taken out as the correct static pressure signal Ps. Is the Matsuha function correct based on the above? Thus, the correct static pressure function Ps can be obtained. Next, the portion surrounded by a broken line in FIG. 4 can be replaced with the principle diagram in FIG. 5. FIG. 5 is a principle diagram for obtaining a correct static pressure signal when the apparent static pressure signal is given as a highly proportional signal. In addition, static pressure detection error Δ
An embodiment will be described in which PSl, in other words, a static pressure correction amount is generated. This can be used in common with Embodiments 1 and 2 described above, but for example, by utilizing the characteristics of the potentiometer, the function of the apparent angle of attack or the apparent calibration speed is plotted on the horizontal axis as shown in FIG. If we take the rotation angle θ of the potentiometer shaft that is proportional to , and take the voltage ΔPs that is proportional to the atmospheric pressure as the static pressure 3 correction amount on the vertical axis, we can obtain a function given for each type of aircraft, for example, in the form of a T curve. FIG. 7 is a diagram showing the principle of generation of the static pressure correction amount by a potentiometer. When a shaft rotation angle θ proportional to a function of the apparent angle of attack or apparent calibration speed is set to a potentiometer to which a reference voltage is applied, the static pressure correction amount ΔPs is obtained in the form of a voltage. A piezoelectric element may be used instead of the potentiometer used in this). As explained above using the two embodiments, by correcting the apparent calibration speed or apparent angle of attack, it is possible to obtain a correct static pressure signal by adding the correct correction to the signal from the flash boat. This allows us to obtain the correct output along with the correct Matsuha function.

【図面の簡単な説明】[Brief explanation of the drawing]

ノ 第1図 この発明の実施例1の系統図、第2図この
発明の実施例1の原理図、第3図 この発明の実施例2
の系統図、第4図 この発明の実施例2の原理図、第5
図 高度に比例する信号で与えられる正しい静圧信号発
生原理図、第6図 ポ・テンシヨメーター軸回転角度と
静圧補正量線図、第7図 静圧補正量のポテンショメー
ターによる発生原理図。 図面の中に使用した各記号はそれぞれ附記の部分を示す
Fig. 1 System diagram of Embodiment 1 of this invention, Fig. 2 Principle diagram of Embodiment 1 of this invention, Fig. 3 Embodiment 2 of this invention
Systematic diagram, Fig. 4 Principle diagram of Embodiment 2 of this invention, Fig. 5
Figure 6: Diagram of the correct static pressure signal generation given by a signal proportional to altitude; Figure 6: Potentiometer axis rotation angle and static pressure correction amount diagram; Figure 7: Generation principle of static pressure compensation using a potentiometer. Each symbol used in the drawings indicates a supplementary part.

Claims (1)

【特許請求の範囲】 1 検出器フラッシュポートからの信号を見掛けの静圧
信号Psiと見掛けの校正速度または見掛けの迎え角信
号との2つに分ける手段と、見掛けの校正速度または見
掛けの迎え角信号から静圧補正量ΔPsを算出しその静
圧補正量ΔPsに比例した電圧として出力する関数変換
器と、この関数変換器からの出力を用いて前記見掛けの
静圧信号Psiを正しい静圧信号Psに変換しもしくは
正しい静圧信号Psを演算する手段とを備えてなり、エ
アデータ処理機器から正しい各種出力が得られるように
した航空機等の空圧の検出誤差の補正装置。 2 見掛けの静圧信号Psiを変換した後の正しい静圧
信号Psをエアデータ処理機器へ導入するようにした特
許請求の範囲第1項記載の航空機等の空圧の検出誤差の
補正装置。 3 見掛けの静圧信号Psiをエアデータ処理機器へ導
入し、正しい静圧信号Psを演算するようにした特許請
求の範囲第1項記載の航空機等の空圧の検出誤差の補正
装置。
[Claims] 1. Means for dividing the signal from the detector flush port into two: an apparent static pressure signal Psi and an apparent calibration speed or apparent angle of attack signal; A function converter that calculates a static pressure correction amount ΔPs from the signal and outputs it as a voltage proportional to the static pressure correction amount ΔPs, and converts the apparent static pressure signal Psi into a correct static pressure signal using the output from this function converter. A correction device for air pressure detection error in an aircraft, etc., comprising means for converting the static pressure signal Ps into a correct static pressure signal Ps or calculating a correct static pressure signal Ps, so that correct various outputs can be obtained from an air data processing device. 2. A correction device for a detection error in air pressure of an aircraft, etc. as claimed in claim 1, wherein a correct static pressure signal Ps after converting an apparent static pressure signal Psi is introduced into an air data processing device. 3. A correction device for a detection error in air pressure of an aircraft, etc. as claimed in claim 1, wherein an apparent static pressure signal Psi is introduced into an air data processing device to calculate a correct static pressure signal Ps.
JP2412877A 1977-03-03 1977-03-03 Correction device for air pressure detection errors in aircraft, etc. Expired JPS6055018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2412877A JPS6055018B2 (en) 1977-03-03 1977-03-03 Correction device for air pressure detection errors in aircraft, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2412877A JPS6055018B2 (en) 1977-03-03 1977-03-03 Correction device for air pressure detection errors in aircraft, etc.

Publications (2)

Publication Number Publication Date
JPS53109399A JPS53109399A (en) 1978-09-25
JPS6055018B2 true JPS6055018B2 (en) 1985-12-03

Family

ID=12129663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2412877A Expired JPS6055018B2 (en) 1977-03-03 1977-03-03 Correction device for air pressure detection errors in aircraft, etc.

Country Status (1)

Country Link
JP (1) JPS6055018B2 (en)

Also Published As

Publication number Publication date
JPS53109399A (en) 1978-09-25

Similar Documents

Publication Publication Date Title
US4457179A (en) Differential pressure measuring system
WO1996021845A1 (en) Apparatus using a feedback network to measure fluid pressures
US3862644A (en) Flow control
US4001813A (en) Precision capacitance to digital conversion system
JPS6055018B2 (en) Correction device for air pressure detection errors in aircraft, etc.
US3094868A (en) Air data computer system
US2574656A (en) True airspeed indicator
JPS6333722A (en) Three-dimensional display device
US3108183A (en) Air data computing apparatus
CN103345149A (en) Dynamically tuned gyroscope servo control loop
US3009358A (en) Aircraft instrument-remote control-fail safe
US3282110A (en) Pressure responsive device
GB2166891A (en) Velocity control system
US3453883A (en) Pressure actuated mach/airspeed instrument for producing a linearized,electrical mach output
JPH01153935A (en) Device for generating wind speed following vehicle speed
US3446948A (en) Aircraft instrument correction
SU1180853A1 (en) Pressure control device
JPH01156637A (en) Instrument for measuring gas concentration
JPH0447267B2 (en)
US3266320A (en) Vector balanced pressure ratio transducer
SU1383118A1 (en) Pressure transducer
SU565231A1 (en) Automatic density meter
JPH08136305A (en) Transmitter
US3009357A (en) Aircraft instrument-remote control-fail safe
Schuster 0n the Use of Resonant Diaphragms as FM Pressure Transducers