JPS6055009B2 - Radiation thermometer for wire rod - Google Patents

Radiation thermometer for wire rod

Info

Publication number
JPS6055009B2
JPS6055009B2 JP11959478A JP11959478A JPS6055009B2 JP S6055009 B2 JPS6055009 B2 JP S6055009B2 JP 11959478 A JP11959478 A JP 11959478A JP 11959478 A JP11959478 A JP 11959478A JP S6055009 B2 JPS6055009 B2 JP S6055009B2
Authority
JP
Japan
Prior art keywords
wire
receiving element
sensitivity
radiation thermometer
shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11959478A
Other languages
Japanese (ja)
Other versions
JPS5544981A (en
Inventor
善己 福高
久夫 渡辺
則治 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Tokyo Seiko Co Ltd
Original Assignee
Tokyo Seiko Co Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seiko Co Ltd, Kawasaki Steel Corp filed Critical Tokyo Seiko Co Ltd
Priority to JP11959478A priority Critical patent/JPS6055009B2/en
Publication of JPS5544981A publication Critical patent/JPS5544981A/en
Publication of JPS6055009B2 publication Critical patent/JPS6055009B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0022Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation of moving bodies

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 本発明は、線材用放射温度計に係り、特に、被測定物
である線材の軸方向及び測定光軸と垂直な方向に感度む
らを有する受光素子を用い、該受光素子と線材間に配置
された矩形ターゲットにより形成される視野を介して線
材の温度を測定する線径補正方式の線材用放射温度計の
改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radiation thermometer for wire rods, and in particular, uses a light receiving element having sensitivity unevenness in the axial direction of the wire rod as an object to be measured and in the direction perpendicular to the measurement optical axis. The present invention relates to an improvement in a radiation thermometer for wires using a wire diameter correction method that measures the temperature of the wire through a field of view formed by a rectangular target placed between an element and the wire.

近年、線材の品質管理向上の為に温度管理が重視される
ようになつている。これらの温度計測は、その測定対象
の直径が5.5〜19wg&と小さい為、特殊な測定方
式が用いられている。その1つに、第1図に示す如く、
受光素子10と線材12間にレンズ13及び矩形ターゲ
ットを形成する矩形マスク14を配置し、線材12が通
過する位置において該矩形マスク14で形成される一定
面積の矩形ターゲット視野で測定する所謂線径補正方式
がある。この線径補正方式に於いては、線材12の線径
が変化すれば、線材12で占められる面積比が変化する
為、これを全視野が同一温度の線材で占められた場合の
出力に換算する、線径補正器16が使用されている。こ
の線径補正方式の放射温度計によれば、線材の最小径よ
りも小さい測定径の視野でスキャニングを行なう所謂ス
キャニング方式に比べ、スキャニングをする為の可動部
分が不要で、且つ、線材12の半周の平均温度を測定す
る為測定値に代表性があるという特徴を有する。しかし
、この線径補正方式の放射温度計に於いては、線材12
からの放射エネルギーが受光素子10の表面に集束する
位置は、線材12の測定視野内の位置によつて決まる。
即ち、第1図及び第2図に示す如く、第1図に於ける線
材の軸方向と垂直な方向の位置がA位置の場合、受光素
子表面に於いてはB位置に結像する。これに対して、光
軸に垂直な方向の位置がA″位置になると、受光素子1
0表面に於いてはB″位置に結像することとなる。従つ
て、受光素子10に於ける位置B,B゛に於ける感度が
同一であれば、感度による測定値のばらつきは生じない
はずであるが、現実には均質な感度を得ることは、受光
素子10の製造プロセス上不可能である為、線材12の
軸方向と垂直な方向の位置変動によつて測定値がばらつ
くという問題点を有した。受光素子10をシリコンとし
、測定距離600T!nに於いて一辺が28TfgRの
正方形の視野を有する600〜1100℃の測定範囲の
線材用放射温度計を使用して、線径8T1r!!t1温
度900℃の線材を測定した場合の線材位置と測定値の
関係を第3図に示す。
In recent years, temperature control has become more important in order to improve the quality control of wire rods. In these temperature measurements, a special measurement method is used because the diameter of the object to be measured is as small as 5.5 to 19 wg. One of them, as shown in Figure 1, is
A lens 13 and a rectangular mask 14 forming a rectangular target are arranged between the light receiving element 10 and the wire 12, and the so-called wire diameter is measured in a rectangular target field of a fixed area formed by the rectangular mask 14 at a position where the wire 12 passes. There is a correction method. In this wire diameter correction method, if the wire diameter of the wire 12 changes, the area ratio occupied by the wire 12 changes, so this is converted to the output when the entire field of view is occupied by wires of the same temperature. A wire diameter corrector 16 is used. According to this wire diameter correction type radiation thermometer, compared to the so-called scanning method in which scanning is performed in a field of view with a measurement diameter smaller than the minimum diameter of the wire, a movable part for scanning is not required, and the wire 12 is It has the characteristic that the measured value is representative because it measures the average temperature of half the circumference. However, in this wire diameter correction type radiation thermometer, the wire 12
The position at which the radiant energy is focused on the surface of the light receiving element 10 is determined by the position of the wire 12 within the measurement field of view.
That is, as shown in FIGS. 1 and 2, when the position perpendicular to the axial direction of the wire in FIG. 1 is at position A, the image is formed at position B on the surface of the light receiving element. On the other hand, when the position perpendicular to the optical axis is at the A'' position, the light receiving element 1
0 surface, the image will be formed at position B''. Therefore, if the sensitivities at positions B and B'' on the light receiving element 10 are the same, there will be no variation in measured values due to sensitivity. However, in reality, it is impossible to obtain uniform sensitivity due to the manufacturing process of the light receiving element 10, so there is a problem that the measured values vary due to positional fluctuations in the direction perpendicular to the axial direction of the wire 12. The light-receiving element 10 was made of silicon, and at a measurement distance of 600T!n, a wire radiation thermometer with a square field of view of 28TfgR on a side and a measurement range of 600 to 1100°C was used.The wire diameter was 8T1r. !!FIG. 3 shows the relationship between the wire position and the measured value when measuring a wire with a t1 temperature of 900°C.

第3図は、視野が正方形である為、線材をx方向とY方
向の2方向に於いて5段階に位置変化させ、各々の位置
の測定値が視野内の中心である〜に対してどのような関
係であるかを示したものである。この実測値からも明ら
かなように、線径補正方式の線材用放射温度計に於いて
は、受光素子表面の感度むらによる測定値のばらつきを
軽減させなければ測定精度を向上させることが困難であ
ることが明らかである。
In Figure 3, since the field of view is square, the position of the wire is changed in five steps in two directions, the x direction and the Y direction, and the measured value at each position is This shows whether there is such a relationship. As is clear from these measured values, it is difficult to improve the measurement accuracy of wire radiation thermometers using the wire diameter correction method unless the variation in measured values due to uneven sensitivity on the surface of the light receiving element is reduced. One thing is clear.

本発明は、前記従来の欠点を解消するべくなされたもの
で、被測定物である線材の軸方向及び測定光軸と垂直な
方向に感度むらを有する受光素子を用いた場合でも、測
定値が線材の軸方向及び測定光軸と垂直な方向の位置変
動によつてはらつくことのない線材用放射温度計を提供
することを目的とする。
The present invention has been made in order to eliminate the above-mentioned conventional drawbacks, and even when using a light receiving element that has sensitivity unevenness in the axial direction of the wire being measured and in the direction perpendicular to the measurement optical axis, the measured value remains unchanged. It is an object of the present invention to provide a radiation thermometer for wire rods that does not fluctuate due to positional fluctuations in the axial direction of the wire rod and in the direction perpendicular to the measurement optical axis.

本発明は、被測定物てある線材の軸方向及び測定光軸と
垂直な方向に感度むらを有する受光素子を用い、該受光
素子と線材間に配置された矩形マスクにより形成される
矩形ターゲット視野を介して線材の温度を測定する線径
補正方式の線材用放射温度計に於いて、前記矩形ターゲ
ット視野の一部を遮へいし、受光素子の少なくとも線材
軸方向及び測定光軸と垂直な方向の感度むらを補正する
遮へい手段を配設するようにして、前記目的を達成した
ものである。
The present invention uses a light-receiving element having sensitivity unevenness in the axial direction of a wire rod as an object to be measured and in a direction perpendicular to the measurement optical axis, and a rectangular target field of view formed by a rectangular mask placed between the light-receiving element and the wire rod. In a radiation thermometer for wire rods using a wire diameter correction method that measures the temperature of the wire rod through the wire, a part of the field of view of the rectangular target is shielded, and at least the wire axis direction of the light receiving element and the direction perpendicular to the measurement optical axis are The above object is achieved by providing a shielding means for correcting sensitivity unevenness.

以下図面を参照して、本発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

本発明の第1実施例は、第4図及び第5図に示す如く、
矩形マスク14の端部側壁14aに、一端面が略逆L字
形状のステー部分20aとされたりん青銅製の遮へい板
20を止めねじ22により固定し、その止めねじ22の
反対側に矩形マスク14の端部側壁14aに螺合された
調整ねじ24を設け、該調整ねじ24の挿入深さを変更
することにより、遮へい板20の矩形ターゲット視野に
対する遮へい位置、遮へい量が変更可能となるようにさ
れたものである。本実施例に於ける遮へい板20による
受光素子10表面の遮へい量は次のようにして決定され
る。
The first embodiment of the present invention, as shown in FIGS. 4 and 5,
A phosphor bronze shielding plate 20 whose one end surface is a stay portion 20a having a substantially inverted L shape is fixed to the end side wall 14a of the rectangular mask 14 with a set screw 22, and a rectangular mask is attached to the opposite side of the set screw 22. An adjustment screw 24 screwed into the end side wall 14a of the shield plate 20 is provided, and by changing the insertion depth of the adjustment screw 24, the shielding position and shielding amount of the shielding plate 20 with respect to the rectangular target field of view can be changed. It was made by The amount of shielding of the surface of the light receiving element 10 by the shielding plate 20 in this embodiment is determined as follows.

即ち、今、前記第3図のようにして求めた、線材位置と
受光素子10表面の感度の関係が、第6図に示すような
分布を示したものとする。第6図に於いて、数字は感度
の相対値を示し、数字が大である程感度が大である。第
6図に示すような表面感度分布を有する受光素子に於い
て、線材軸方向及び測定光軸と垂直な方向であるx方向
の位置変化に対して測定値を一定にする為には、各位置
に於けるY方向の感度が同一である必要である。今Y5
のみを遮へいすることによつて、Y方向の感度を同一に
する場合を考えると、X1列に於けるY1からY4迄の
感度の和は50,.X2列に於けるY1からY毛乞の感
度の和は5AX3列に於けるYlからη迄の感度の和は
5へX4列に於けるY1からη迄の感度の和は3へX5
fiilに於けるY1からY4迄の感の和は30である
から、感度の低いX4列とX5は遮へいせず、X1〜島
列までをX4列及びx互のY1からY5迄の感度の和5
7に等しくなるように遮へいする必要がある。この遮へ
い量は、次式の如く算出される。上記の計算結果から、
x方向の各位置に於けるY5の部分を、第7図に示す斜
線部Cのように遮へいずればx方向の各位置に於ける感
度が同一になる。
That is, it is now assumed that the relationship between the wire position and the sensitivity of the surface of the light-receiving element 10, determined as shown in FIG. 3, shows a distribution as shown in FIG. 6. In FIG. 6, the numbers indicate relative values of sensitivity, and the larger the number, the greater the sensitivity. In a light receiving element having a surface sensitivity distribution as shown in Fig. 6, in order to keep the measured value constant against positional changes in the wire axis direction and the x direction, which is a direction perpendicular to the measurement optical axis, it is necessary to It is necessary that the sensitivity in the Y direction at the position is the same. Now Y5
Considering the case where the sensitivity in the Y direction is made the same by shielding only the Y direction, the sum of the sensitivities from Y1 to Y4 in the X1 column is 50, . The sum of the sensitivities from Y1 to Y in the X2 column is 5.The sum of the sensitivities from Yl to η in the AX3 column is 5.The sum of the sensitivities from Y1 to η in the X4 column is 3.X5
Since the sum of the sensitivities from Y1 to Y4 in fiil is 30, the X4 row and X5, which have low sensitivity, are not shielded, and the sum of the sensitivities from Y1 to Y5 from X1 to the island group is 5
It is necessary to shield it so that it is equal to 7. This amount of shielding is calculated as shown in the following equation. From the above calculation results,
If the portion Y5 at each position in the x direction is shielded as shown by the shaded area C shown in FIG. 7, the sensitivity at each position in the x direction becomes the same.

本実施例に於いては、遮へい手段として直線上の端面を
有する遮へい板20を用いているので、実際の遮へい位
置は、第7図に斜線部Dで示“すものとする。このよう
な遮へい板で遮へいした場合に於ける、第6図に対応す
る受光素子10の各部感度は第8図に示す如くとなる。
この実施例に於いては、X1列の感度が50、X2列の
感度が60.島列の感度が62、X4の感度が46sX
5y!1の感度が52となり、x方向に於ける各列の感
度の比は1.1:1.3:1.3:1:1:1.1とな
る。これに対して、遮へい前に於けるx方向の各列に於
ける感度の比は81:86:81:57:57=1.6
:1.7:1.6:1:1であり、かなり改善されてい
ることが明らかである。本発明の第2実施例を第9図及
び第10図に示す本実施例は、遮へい手段をX方向に並
置された多数の遮へい棒30とし、それぞれの遮へい量
を相互に独立して調整可能とした点で前記第1実施例と
異なる。
In this embodiment, since the shielding plate 20 having a linear end face is used as the shielding means, the actual shielding position is shown by the shaded area D in FIG. In the case of shielding with a shielding plate, the sensitivity of each part of the light receiving element 10 corresponding to FIG. 6 is as shown in FIG. 8.
In this example, the sensitivity of the X1 column is 50, and the sensitivity of the X2 column is 60. Sensitivity of island chain is 62, sensitivity of X4 is 46sX
5y! The sensitivity of 1 is 52, and the sensitivity ratio of each column in the x direction is 1.1:1.3:1.3:1:1:1.1. On the other hand, the sensitivity ratio in each row in the x direction before shielding is 81:86:81:57:57=1.6
:1.7:1.6:1:1, which clearly shows a considerable improvement. A second embodiment of the present invention is shown in FIGS. 9 and 10. In this embodiment, the shielding means is a large number of shielding rods 30 arranged in parallel in the X direction, and the amount of shielding of each can be adjusted independently of each other. The second embodiment differs from the first embodiment in this respect.

他の点については前記第1実施例と同様であるので説明
は省略する。本実施例に於いては、前記第1実施例のよ
うに端面が直線となる遮へい板を用いた場合と異なり、
受光素子の表面感度分布から算出された必要遮へい量に
応じたきめ細かな遮へいが可能である為、x方向に於け
る感度分布のばらつきを更に均一化可能である。
The other points are the same as those of the first embodiment, so the explanation will be omitted. In this embodiment, unlike the case where a shielding plate with straight end faces is used as in the first embodiment,
Since detailed shielding can be performed according to the required shielding amount calculated from the surface sensitivity distribution of the light-receiving element, variations in the sensitivity distribution in the x direction can be made more uniform.

尚前記実施例に於いては、いずれも、受光素子10と線
材12間に配設される遮へい手段のみにより受光素子の
感度を均一化していたが、第11図に示す如く、受光素
子10を線材の軸方向及び測定光軸と垂直な方向に多数
に分割し、分割された各受光素子10a〜10nのそれ
ぞれに可変抵抗器32a〜32nを接続し、該可変抵抗
器による減衰量を表面感度分布に応じて変更するように
して、受光素子10の出力側でも感度むらを減少するよ
うにし、感度のむらを更に解消することも可能である。
In each of the above embodiments, the sensitivity of the light receiving element was made uniform only by the shielding means disposed between the light receiving element 10 and the wire 12, but as shown in FIG. The wire is divided into a large number of parts in the axial direction and the direction perpendicular to the measurement optical axis, and variable resistors 32a to 32n are connected to each of the divided light receiving elements 10a to 10n, and the amount of attenuation by the variable resistors is calculated as the surface sensitivity. It is also possible to reduce the sensitivity unevenness on the output side of the light receiving element 10 by changing it according to the distribution, thereby further eliminating the sensitivity unevenness.

以上説明した通り、本発明は、被測定物である.線材の
軸方向及び測定光軸と垂直な方向に感度むらを有する受
光素子を用い、該受光素子と線材間に配置された矩形マ
スクにより形成される矩形ターゲット視野を介して線材
の温度を測定する線径補正方式の線材用放射温度計に於
いて、前記矩形.ターゲット視野の一部を遮へいし、受
光素子の少なくとも線材軸方向及び測定光軸と垂直な方
向の感度むらを補正する遮へい手段を配設し、線材の軸
方向及び測定光軸と垂直な方向の位置変動によつて生じ
る測定誤差を軽減するようにしたので、放射温度計の測
温精度が従来のものに比ベー段と向上する。従つて、線
材の温度管理が従来より厳しくすることが可能となり、
線材の品質が大幅に向上するという優れた効果を有する
。発明者の実験によると、遮へい手段を用いない従来の
放射温度計においては、測定温度のばらつきが5℃程度
あつたのに対し、第1実施例に示すような遮へい板を用
いた線材用放射温度計によれば、このばらつきを2℃程
度に軽減できた。
As explained above, the present invention is an object to be measured. Using a light-receiving element that has sensitivity unevenness in the axial direction of the wire and in the direction perpendicular to the measurement optical axis, the temperature of the wire is measured through a rectangular target field of view formed by a rectangular mask placed between the light-receiving element and the wire. In the radiation thermometer for wire rods using the wire diameter correction method, the rectangular shape described above. A shielding means for shielding a part of the target field of view and correcting sensitivity unevenness of the light receiving element in at least the axial direction of the wire and in the direction perpendicular to the measurement optical axis is provided, and Since measurement errors caused by positional fluctuations are reduced, the temperature measurement accuracy of the radiation thermometer is significantly improved compared to conventional ones. Therefore, it is now possible to control the temperature of the wire more strictly than before.
It has the excellent effect of significantly improving the quality of the wire rod. According to the inventor's experiments, in a conventional radiation thermometer that does not use a shielding means, the variation in measured temperature was about 5 degrees Celsius, whereas the radiation thermometer for wire rods using a shielding plate as shown in the first embodiment According to the thermometer, this variation could be reduced to about 2°C.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の線径補正方式の線材用放射温度計の構
成を示す路線図、第2図は同じく受光素子と線材位置の
関係を示す路線図、第3図は、前記従来の線材用放射温
度計に於ける線材位置と測温誤差の関係を示す線図、第
4図は、本発明に係る線材用放射温度計の第1実施例の
矩形ターゲット周辺を示す正面図、第5図は、同じく側
面図、第6図は、受光素子に於ける表面感度分布の一例
を示す線図、第7図は、第6図に示すような受光素子を
遮へい板で遮へいした状態を示す線図、第8図は、第7
図に示すように遮へいされた受光素子に於ける感度分布
を示す線図、第9図は、本発明に係る線材用放射温度計
の第2実施例の矩形ターゲット周辺を示す正面図、第1
0図は、同じく側面図、第11図は、受光素子の出力側
でも感度分布を調整する場合の応用例を示す線図である
。 10・・・・・・受光素子、12・・・・・・線材、1
4・・・・・・矩形マスク、20・・・・・・遮へい板
、30・・・・・・遮へい棒。
FIG. 1 is a route diagram showing the configuration of a conventional radiation thermometer for wire rods using the wire diameter correction method, FIG. 2 is a route diagram showing the relationship between the light-receiving element and the wire rod position, and FIG. FIG. 4 is a diagram showing the relationship between wire position and temperature measurement error in a radiation thermometer for wire rods, and FIG. The figure is also a side view, Figure 6 is a line diagram showing an example of the surface sensitivity distribution of the light receiving element, and Figure 7 shows the state in which the light receiving element as shown in Figure 6 is shielded with a shielding plate. Diagram, Figure 8 is the 7th
As shown in the figure, FIG. 9 is a diagram showing the sensitivity distribution in the shielded light-receiving element.
0 is a side view, and FIG. 11 is a diagram showing an example of application in which the sensitivity distribution is adjusted also on the output side of the light receiving element. 10... Light receiving element, 12... Wire rod, 1
4... Rectangular mask, 20... Shielding plate, 30... Shielding rod.

Claims (1)

【特許請求の範囲】[Claims] 1 被測定物である線材の軸方向及び測定光軸と垂直な
方向に感度むらを有する受光素子を用い、該受光素子と
線材間に配置された矩形マスクにより形成される矩形タ
ーゲット視野を介して線材の温度を測定する線径補正方
式の線材用放射温度計に於いて、前記矩形ターゲット視
野の一部を遮へいし、受光素子の少なくとも線材軸方向
及び測定光軸と垂直な方向の感度むらを補正する遮へい
手段を配設し、線材の軸方向及び測定光軸と垂直な方向
の位置変動によつて生じる測定誤差を軽減するようにし
たことを特徴とする線材用放射温度計。
1 Using a light-receiving element that has sensitivity unevenness in the axial direction of the wire to be measured and in the direction perpendicular to the measurement optical axis, through a rectangular target field of view formed by a rectangular mask placed between the light-receiving element and the wire. In a wire radiation thermometer using a wire diameter correction method that measures the temperature of a wire, a part of the rectangular target field of view is shielded to reduce sensitivity unevenness of the light receiving element at least in the wire axis direction and in the direction perpendicular to the measurement optical axis. A radiation thermometer for wire rods, characterized in that a correction shielding means is provided to reduce measurement errors caused by positional fluctuations in the axial direction of the wire rod and in the direction perpendicular to the measurement optical axis.
JP11959478A 1978-09-27 1978-09-27 Radiation thermometer for wire rod Expired JPS6055009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11959478A JPS6055009B2 (en) 1978-09-27 1978-09-27 Radiation thermometer for wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11959478A JPS6055009B2 (en) 1978-09-27 1978-09-27 Radiation thermometer for wire rod

Publications (2)

Publication Number Publication Date
JPS5544981A JPS5544981A (en) 1980-03-29
JPS6055009B2 true JPS6055009B2 (en) 1985-12-03

Family

ID=14765239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11959478A Expired JPS6055009B2 (en) 1978-09-27 1978-09-27 Radiation thermometer for wire rod

Country Status (1)

Country Link
JP (1) JPS6055009B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56153740A (en) * 1981-04-09 1981-11-27 Fujitsu Ltd Calibrating method for mask
JPS57166111U (en) * 1981-04-13 1982-10-20

Also Published As

Publication number Publication date
JPS5544981A (en) 1980-03-29

Similar Documents

Publication Publication Date Title
CN111272290B (en) Temperature measurement thermal infrared imager calibration method and device based on deep neural network
US4790023A (en) Method for measuring dimensions of fine pattern
CN111256835B (en) Temperature measurement thermal infrared imager calibration method and device of hyper-parameter polynomial physical model
CN110926617B (en) Vacuum temperature field measuring device and method
CN106679817A (en) Method for calibrating thermal infrared imager
CN107976255B (en) Method and device for correcting non-uniformity correction coefficient of infrared detector
CN111649823A (en) Long-distance infrared temperature measurement batch calibration method and device
WO2016173382A1 (en) Method for measuring focal length and rotating angle using fabry-perot etalon
CN112393808A (en) Temperature compensation method and system for thermal camera
JP4417713B2 (en) Focal plane array calibration system
KR100290870B1 (en) resistive bolometer sensor
JPS6055009B2 (en) Radiation thermometer for wire rod
RU2507494C2 (en) Target for tuning and determination of parameters of optical-electronic systems with matrix photodetecting devices and method of its usage
JPH03501163A (en) Method for measuring the diameter of a wire, profile or circular part by diffraction of light rays and an apparatus for carrying out this method
CN113608231A (en) Laser triangular displacement measuring device and method with angle drift detection function
Kirschman et al. Flat-field calibration of CCD detector for Long Trace Profiler
KR20190069362A (en) Displacement measuring device, measuring system and displacement measuring method
KR0133637B1 (en) Calibration method for light measuring device and radiation
CN215932147U (en) Laser triangular displacement measuring device with angle drift detection function
CN106197738B (en) A kind of object lens interior temperature distribution and strain measurement system and its measurement method
CN213021952U (en) Long-distance infrared temperature measurement batch calibration device
CN104677270B (en) A kind of silicon chip alignment compensation device and method based on Bragg grating
RU216337U1 (en) STRAIGHTNESS METER
JP2001318160A (en) Calibrating method for radiation instrumentation system
JPS597240A (en) Mtf measuring machine