JPS6054950A - Fiber for cement reinforcement - Google Patents

Fiber for cement reinforcement

Info

Publication number
JPS6054950A
JPS6054950A JP16194783A JP16194783A JPS6054950A JP S6054950 A JPS6054950 A JP S6054950A JP 16194783 A JP16194783 A JP 16194783A JP 16194783 A JP16194783 A JP 16194783A JP S6054950 A JPS6054950 A JP S6054950A
Authority
JP
Japan
Prior art keywords
fiber
fibers
cement
fine irregularities
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16194783A
Other languages
Japanese (ja)
Other versions
JPS6363504B2 (en
Inventor
渡辺 博佐
忠彦 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP16194783A priority Critical patent/JPS6054950A/en
Publication of JPS6054950A publication Critical patent/JPS6054950A/en
Publication of JPS6363504B2 publication Critical patent/JPS6363504B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は七メンを成型品に用いる補強用繊維に関する0
2%にセメント成型品との接着性の優れた補強用線維に
関する。 従来技術 セメント、石ロウ等の水硬化性原料を用いて天井、壁、
床仕上げを行ったり、コンクリ−ドブ
Industrial Field of Application The present invention relates to reinforcing fibers for use in molded products.
2% relates to reinforcing fibers with excellent adhesion to cement molded products. Conventional technology Ceilings, walls,
Floor finishing and concrete slabs

【コック、セメン
ト瓦、舗道川石などが製造されているが、周知の通りセ
メント成型品は曲げ強度、引張り強度、#撃強度が劣る
ためこれらセメント製品を有効に利用するために繊維等
で補強することが行なわれている。 繊維等の補強材としては石綿が代表的なものであるが、
近年スチールファイバー、ガラス綾維、ポリプロピレン
線維、ポリアミド績維。 ポリビニルアルコール綾維、全芳香族ポリアミド締維が
単独もしくは組合せて用いられている。 石綿を用いる場合、添加率が15〜35チでも補強の効
果は比較的大きいが、石綿は発ガン物質でないかと疑わ
れており衛生上の問題点がある。ガラス繊維はセメント
特有の強アルカリ性に浸蝕されるので耐久性が低い。 ポリプルピレン繊維、ポリアミド線維、ポリビニルアル
コール線維などは、マトリックスであるセメント類との
接着性が充分でないので補強効果が小さい。セメント補
強用繊維にめられる特性19高ヤング率、高強度、マド
ソックスとしてのセメントとの高度な界面結合力である
。従来用いられている補強繊維として全芳香族ポリアミ
ド錯雑もあり、全芳香族ポリアミド繊維は高ヤング率、
高強度を有する繊維であるが、この繊維の場合もセメン
トとの界面結合力が低いためやはりセメント補強効果が
小さい。 発明の目的 本発明は以上述べたごとき事情を背景としてなされたも
のであり、その目的はセメントとの接着性(界面結合力
)を高めたセメント補強用繊維を提供することKある。 発明の構成 すなわち本発明は、 [CI) 繊維表面に微細凹凸を有し、肢微細凹凸−1
= K 金、銅、14M 、ニッケル、コノ2ルト。 バランラム、錫からなる群から選ばれたIυ上の金属か
らなる被覆層を有するセメント補強用繊維 (2) 微細凹凸が主として水利グル形成性無機化合物
からなる特許請求の範囲@ 411項に記載の七メント
補強用錯雑 (31金属がニッケルであイー特許請求の範囲第(1)
項まkは第(2)項に記載のセメン1補強用4J/I維 (41繊維が芳香族ポリアミ1゛である特許請求の範囲
JIBl++項〜第(31項のいずれかに記載のセメン
ト補強用繊維 」 である。 NII維W面に有する微細凹凸はいかなる形態のもので
も。1.い。微細凹凸を繊維表面に形成せしめる方法も
従来公知のいかなる方法を用いてもよい。たとえば薬剤
による処理を繊維に施して線維表面形状を変化せしめる
方法でもよい。あるいは、繊維表面に特定の化合物を付
与したのち固化せしめて、微細凹凸を形成せしめてもよ
い。あるいは金、鋏、m 、 ニッケル?コバルト、パ
ラジウム、錫などと親和性の高い金属あるいは非金属を
不均一に繊維表面に付与してもよい。付与方法としては
蒸着、接着その他公知方法を用いてよい。つぎに繊維表
面に形成せj−めた微細凹凸上に金。 銀9銅、ニッケル、コバルト、パラジウム。 錫からなる群から選ばれた1以上の金属からなる被覆層
を形成せしめる。被覆層を形成せしめる方法としては金
属蒸着法、金属メッキ法、化学メッキ法などの方法を選
ぶことができる。 本発明で用いる繊維は特に限定されないがセメント補強
用として用いられてきた縁組はいずれも用いることがで
きる。  5− たとえば石綿、スチールファイバー、ガラス繊細、ボリ
プpビ1/ンta維、ポリアミド繊維、ポリビニルアル
コール繊維、7ラミド繊維あるいはこれらの組合せから
なる繊維IIどいずれを用いることもできるが、高ヤン
グ率!高強度、耐アルカリ性を兼備した繊維として7ラ
ミド繊維を用いるのが好ましい。%に下記繰返し単位(
1)〜(4)からなる芳香族ポリアミド繊維(6)はア
ラミ1′繊維の中でも特に耐アルカリ性が優わているの
で本発明に用いる繊維として最も好f:【2い。 R,R。 0〇  6− 〔式中、Ar+ l Ar、 + Ar、は同一でも相
異す”)でもよく、結合鎖が共に同軸方向または平行軸
方向に伸びている芳香族性炭素環残基。 最大間隔を表わす環原子によって結合しなければならな
い芳香族性複素環残基およびこれらの組合せを表わす。 Ar4.Ar11は同一でも相異なってもよく、バラフ
ェニレン基。 メタフェニレン基より選ばれる。〕 繰返し単位のモル数の関係が実質的に(1)+!21−
1131−+141= 100モルチとする場合(3)
は0〜90モル’fi++41は5〜50モルチ、好ま
しくは10〜30モルチである重合体からなる#l細で
ある。結合鎖が同軸方向に伸びている芳香族性炭素環残
基とはたとえば1,4−フェニレン、1,4−ナフチレ
ンなどを意味し、結合鎖が平行軸方向に伸びている芳香
族性炭素環残基とはたとえば1,5−ナフチレン、2,
6−ナフチレンなどを意味する。炭素数5以下のアルキ
ル基としては、メチル基、エチル基!フロビル基、ノチ
ル基、ペンチル基なトカ挙げられるが、好ましくけメチ
ル基である。以上の芳香族性炭素環残基および芳香族性
複素環残基には炭素原子に置換基を結合していてもよい
。このような置換基シこは、・・pゲン基(たとえば塩
素、臭素、フッ素)、低級アルキル基(たとえばメチル
、エチル、イソプルピル、ノルマルプロピル基)、低g
アルー1−?シ基(たと身げメトキシ、エトキシ基)、
シアノ基、アセチル基、ニドτノ基などが挙げられ、好
ましくけ塩素基とメチル基である。 発明の効果 以」:、詳細に述ぺたごとく構成せしめた結果、本発明
のセメント補強用1#維で補強したセメント成型品は、
曲げ強度、引張り強度が従来品に比べ格段にすぐれてお
り、特に詳細に説明した特定の全芳香族ポリアミド繊維
(4)を用いるときはさらに耐久性に優れたものとなる
。 実施例 以下、実施例により本発明を具体的に説明する。 実施例1 バラフェニレンジアミン25モルチ、テレフタル酸りp
ライ150モル% 、 3.4’−ジアミノジフェニル
エーテル25壬ルチを共重縮合して得られた共重合体を
通常の方法で湿式紡糸したのち該紡出糸(未延伸糸)を
水化ケイ酸アルミニウムの水分散液に浸漬、ついで乾燥
し、ついで温度500℃、延伸倍率10倍で延伸し、1
500デニール、1000フイラメントの全芳香族ポリ
アミド繊維Qを得に0該繊維囚を従来から広く知られて
いる方法に従って塩化第−スズ10I、塩酸2 o c
c 。 水1O00ccよりなる感応性付与処理液中に常温で5
分間浸漬し、感応性を付与した。これを水洗、乾燥後(
105℃で10分間)塩化パラジウム19.塩酸5 c
c、水1000ccよりなる活性化付与処理液中に常温
で2分間9− 浸漬し、活性化処理を行ない、未反応の塩化パラジウム
を水洗後乾燥しく105℃、10分)、硫酸ニッケ/l
−801! +環化アンモン40!I、酢酸ソーダ】O
g1次亜リン酸ソーダ40g、水10 (l fl c
c J、りなる無電解メンキ処理液中に35℃で3分間
浸漬し、無電解ニッケルメッキを行ない、水洗後、10
5℃で15分間乾燥し虎。得ら第1た全芳香族ポリアミ
ド繊維(A)は非常に均一なニッケル被覆層を有してい
に0 次に強制絞りミキサ〜−を用いてポルトランドセメント
(三菱鉱業セメント四13 ) 200に91に粒径3
關以下の細石材(川砂)−11’10kg及び粒径30
冒−以下の粗骨材[砕石)400ゆを混合後、100に
9の水及び減水剤(+lゾリス物物産創製n、skgを
加え均一攪拌した。 この時l゛ライミキシング約約4梗 を有する全芳香族パ!リアミド紗#(口)(カット長1
2fl)を容積比で2.0%になるまで徐々10− に投入し、均一に混合されるまで練り続げた。 練り上ったコンクリートで曲げ試駆用供試体(角柱10
6B >’ 10 an X 40 (El+ )及び
引張試験用供試体(円柱直径101mX高さ20a)を
作製し、温度20℃、相対湿度s o %RHの雰囲気
中で24時間養生した後、20℃。 65チRHの宴曲気中に7日間放置した。 得られた供試体の曲げ強度及び引張り強度をそれぞれ7
ムスラー曲げ試験機およびインストロン引張り試験機を
用いて測定Lfc。 評価結果を表1に示す。なお比較例は繊維補強がないこ
と以外は本発明と全く同様の条件で実験した場合である
。 表 1 11−
[Cooks, cement tiles, pavement river stones, etc. are manufactured, but as is well known, cement molded products have poor bending strength, tensile strength, and impact strength, so in order to make effective use of these cement products, they must be reinforced with fibers, etc. things are being done. Asbestos is a typical reinforcing material for fibers, etc.
In recent years, steel fiber, glass twill fiber, polypropylene fiber, and polyamide fiber have been developed. Polyvinyl alcohol twill fibers and wholly aromatic polyamide fibers are used alone or in combination. When asbestos is used, the reinforcing effect is relatively large even when the addition rate is 15 to 35 inches, but asbestos is suspected to be a carcinogen and poses a sanitary problem. Glass fiber has low durability because it is corroded by the strong alkalinity characteristic of cement. Polypropylene fibers, polyamide fibers, polyvinyl alcohol fibers, and the like do not have sufficient adhesion to the cement matrix, so their reinforcing effect is small. Characteristics of cement reinforcing fibers: 19 High Young's modulus, high strength, and high interfacial bonding strength with cement as mud socks. Fully aromatic polyamide complexes are conventionally used reinforcing fibers, and fully aromatic polyamide fibers have high Young's modulus,
Although these fibers have high strength, they also have a low cement reinforcing effect due to their low interfacial bonding strength with cement. Purpose of the Invention The present invention was made against the background of the above-mentioned circumstances, and its purpose is to provide fibers for reinforcing cement that have improved adhesiveness (interfacial bonding strength) to cement. The structure of the invention, that is, the present invention has [CI] fine irregularities on the fiber surface, limb fine irregularities-1
= K Gold, Copper, 14M, Nickel, Konolt. Cement reinforcing fiber (2) having a coating layer made of a metal on Iυ selected from the group consisting of balanrum and tin; Claims @ 7 of item 411 in which the fine irregularities consist mainly of an inorganic compound capable of forming water-use glues. Complex for reinforcing metal (31 metal is nickel) Claim No. (1)
4J/I fibers for reinforcing cement 1 as described in item (2) (41 fibers are aromatic polyamide 1) The fine irregularities on the W surface of the NII fibers may be in any form. 1. Any conventionally known method may be used to form fine irregularities on the fiber surface. For example, treatment with chemicals. Alternatively, a specific compound may be applied to the fiber surface and then solidified to form fine irregularities.Alternatively, gold, scissors, m, nickel, or cobalt may be used. Metals or non-metals that have a high affinity with palladium, tin, etc. may be nonuniformly applied to the fiber surface.Vapor deposition, adhesion, and other known methods may be used as the application method.Next, it is formed on the fiber surface. - A coating layer made of one or more metals selected from the group consisting of gold, silver, copper, nickel, cobalt, and tin is formed on the deposited fine irregularities.Metal vapor deposition is a method for forming the coating layer. , metal plating method, chemical plating method, etc. The fibers used in the present invention are not particularly limited, but any fibers that have been used for reinforcing cement can be used. 5- For example, asbestos, steel Fibers made of fibers, glass fibres, polyvinyl alcohol fibers, polyamide fibers, polyvinyl alcohol fibers, 7-lamid fibers, or a combination of these can be used, but they have a high Young's modulus, high strength, and alkali resistance. It is preferable to use 7-lamid fiber as a fiber that has the following repeating units (%).
The aromatic polyamide fibers (6) consisting of 1) to (4) have particularly excellent alkali resistance among the aramid 1' fibers, and therefore are the most preferred fibers for use in the present invention. R,R. 0〇 6- [In the formula, Ar + l Ar, + Ar, may be the same or different”), and is an aromatic carbocyclic residue in which the bonding chains extend in the same or parallel axes. Maximum spacing Represents aromatic heterocyclic residues that must be bonded through ring atoms representing and combinations thereof.Ar4.Ar11 may be the same or different, and are a paraphenylene group.Selected from a metaphenylene group. ] Repeating unit The relationship between the number of moles of is essentially (1)+!21-
When 1131-+141=100 morti (3)
is 0 to 90 molar'fi++41 is a #l fine consisting of a polymer having a content of 5 to 50 molar, preferably 10 to 30 molar. Aromatic carbocyclic residues with bonded chains extending in the coaxial direction mean, for example, 1,4-phenylene, 1,4-naphthylene, etc., and aromatic carbocyclic residues with bonded chains extending in the parallel axis direction Examples of residues include 1,5-naphthylene, 2,
It means 6-naphthylene, etc. Examples of alkyl groups with 5 or less carbon atoms include methyl and ethyl groups! Examples include furoyl group, notyl group, pentyl group, and methyl group is preferred. A substituent may be bonded to the carbon atom of the above aromatic carbocyclic residue and aromatic heterocyclic residue. Such substituents include p-gene groups (e.g. chlorine, bromine, fluorine), lower alkyl groups (e.g. methyl, ethyl, isopropyl, n-propyl groups), low-g
Alu 1-? Shi group (methoxy, ethoxy group),
Examples include a cyano group, an acetyl group, and a nido group, with chlorine and methyl groups being preferred. As a result of the construction as described in detail, the cement molded product reinforced with 1# fiber for cement reinforcement of the present invention has the following effects:
The bending strength and tensile strength are far superior to conventional products, and especially when the specific fully aromatic polyamide fiber (4) described in detail is used, the durability is even more excellent. EXAMPLES Hereinafter, the present invention will be specifically explained using examples. Example 1 25 molt of rose phenylene diamine, terephthalic acid p
A copolymer obtained by copolycondensing 150 mol% of lye and 25 mol% of 3,4'-diaminodiphenyl ether was wet-spun in a conventional manner, and then the spun yarn (undrawn yarn) was mixed with hydrated silicic acid. It was immersed in an aqueous dispersion of aluminum, then dried, and then stretched at a temperature of 500°C and a stretching ratio of 10 times.
To obtain fully aromatic polyamide fibers Q of 500 denier and 1000 filaments, the fibers were mixed with 10 I stannous chloride and 2 o C hydrochloric acid according to a conventionally widely known method.
c. 5 at room temperature in a sensitizing treatment solution consisting of 1000cc of water.
The sample was immersed for 3 minutes to sensitize it. After washing it with water and drying it (
19. Palladium chloride (10 minutes at 105°C) Hydrochloric acid 5c
c. Activation treatment by immersing in an activation treatment solution consisting of 1000 cc of water at room temperature for 2 minutes, washing unreacted palladium chloride with water and drying at 105°C for 10 minutes), nickel sulfate/l
-801! + Cyclized ammonium 40! I, Sodium acetate】O
g1 Sodium hypophosphite 40g, water 10g (l fl c
c J, immersed in Rinaru electroless coating solution at 35℃ for 3 minutes, electroless nickel plating, washed with water, 10
Dry the tiger for 15 min at 5 °C. The first wholly aromatic polyamide fiber (A) obtained had a very uniform nickel coating layer and was then mixed with Portland cement (Mitsubishi Mining Cement 413) 200 to 91 using a forced squeeze mixer. Particle size 3
Fine stone material (river sand) - 11'10kg and particle size 30
After mixing 400 yu of the following coarse aggregate (crushed stone), 100 to 9 water and a water reducing agent (+l Zoris Bussan Sou, skg) were added and stirred uniformly. Fully aromatic PA! Liamide gauze # (mouth) (cut length 1
2 fl) was gradually added to the 10-ml solution until the volume ratio reached 2.0%, and kneading was continued until the mixture was uniformly mixed. Bending test specimen (prismatic 10
6B>' 10 an . I left it in a banquet atmosphere at 65 RH for 7 days. The bending strength and tensile strength of the obtained specimen were each 7
Measured Lfc using a Musler bending tester and an Instron tensile tester. The evaluation results are shown in Table 1. Note that the comparative example is a case where an experiment was conducted under exactly the same conditions as the present invention except that there was no fiber reinforcement. Table 1 11-

Claims (1)

【特許請求の範囲】 +11 繊維表頁に微細凹凸を有し、該微細凹凸上に金
、銀、銅、ニッケル、コバルト、パラジウム、錫からな
る群から選ばれた1以上の金属からなる被覆層を有する
セメント補強用繊維 (2) 微細凹凸が主として水利グル形成性無機化合物
からなる特許請求の範囲第(1)項に記載のセメント補
強用繊維 (3) 金属がニッケルである各令許請求の範囲第(1
1,!Jまたは第2項に記載のセメント補強用繊維 (4) 繊維が芳香族ポリアミドである特許請求の範囲
第(1)項〜第(31項のいずれかに記載のセメント補
強用繊維
[Claims] +11 A fiber surface having fine irregularities, and a coating layer made of one or more metals selected from the group consisting of gold, silver, copper, nickel, cobalt, palladium, and tin on the fine irregularities. (2) A fiber for cement reinforcement according to claim 1, in which the fine irregularities are mainly composed of an inorganic compound capable of forming a water-use glue. Range No. 1
1,! Cement reinforcing fiber (4) according to J or 2. The cement reinforcing fiber according to any one of claims 1 to 31, wherein the fiber is an aromatic polyamide.
JP16194783A 1983-09-05 1983-09-05 Fiber for cement reinforcement Granted JPS6054950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16194783A JPS6054950A (en) 1983-09-05 1983-09-05 Fiber for cement reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16194783A JPS6054950A (en) 1983-09-05 1983-09-05 Fiber for cement reinforcement

Publications (2)

Publication Number Publication Date
JPS6054950A true JPS6054950A (en) 1985-03-29
JPS6363504B2 JPS6363504B2 (en) 1988-12-07

Family

ID=15745067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16194783A Granted JPS6054950A (en) 1983-09-05 1983-09-05 Fiber for cement reinforcement

Country Status (1)

Country Link
JP (1) JPS6054950A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424124A (en) * 1991-07-09 1995-06-13 Showa Denko K.K. Civil engineering and construction grade fibrous reinforcing material, method for production thereof, and civil engineering and construction material containing the reinforcing material
WO2001068550A2 (en) 2000-03-13 2001-09-20 Dow Global Technologies Inc. Reinforcing polymer containing concrete and process to make same
WO2002000566A1 (en) 2000-06-28 2002-01-03 Dow Global Technologies Inc Plastic fibers for improved concrete

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424124A (en) * 1991-07-09 1995-06-13 Showa Denko K.K. Civil engineering and construction grade fibrous reinforcing material, method for production thereof, and civil engineering and construction material containing the reinforcing material
WO2001068550A2 (en) 2000-03-13 2001-09-20 Dow Global Technologies Inc. Reinforcing polymer containing concrete and process to make same
WO2002000566A1 (en) 2000-06-28 2002-01-03 Dow Global Technologies Inc Plastic fibers for improved concrete
US6780367B2 (en) 2000-06-28 2004-08-24 Dow Global Technologies Inc. Method for preparing a concrete article having reinforcing fibers frayed at their ends

Also Published As

Publication number Publication date
JPS6363504B2 (en) 1988-12-07

Similar Documents

Publication Publication Date Title
JPH06280115A (en) Method for holding or increasing mechanical characteristics of aromatic copolyamide fiber when it is stored in alkali medium and molded item containing said fiber
JPS60226462A (en) Inorganic fiber reinforced heat-resistant ceramic composite material
SK241092A3 (en) Formed resistant product reinforced by fibrous
SE430600B (en) WITH POLYVINYL ALCOHOL FIBERS REINFORCED CEMENT-LIKE MATERIALS AND WAY TO MAKE THE MATERIAL
JP2016534243A (en) Novel fibers, their production process and their use in the manufacture of reinforced parts
JPS61111974A (en) Inorganic fiber reinforced heat-resistant ceramic composite material
JPS6054950A (en) Fiber for cement reinforcement
JPWO2019131321A1 (en) Mold formed from curable composition
JP2019116393A (en) Geopolymer molding formed from curable composition
JPS6046951A (en) Glass fiber for reinforcing plastic
WO1981000252A1 (en) Fiber-reinforced composite materials and shaped articles
JPS60260449A (en) Cement molded product
JPS6236056A (en) Additive for extrusion forming
JPS6051645A (en) Fiber for cement reinforcement
JPH0253884A (en) Method of bonding aramid polymer
CN100478298C (en) Inorganic composite structures enhanced by organic compounds
JPS6137308B2 (en)
CA2514205A1 (en) Inorganic composite structures enhanced by organic compounds
JPS6236055A (en) Additive for extrusion forming
JP4114724B2 (en) Method for treating aramid surface to be plated
CN1066091A (en) Once pad formation of strengthened water proof nonwoven cloth and technology
CN117303854B (en) Production process of light SMC composite wallboard
JPS58151363A (en) Fiber reinforced cement product
WO1994026815A1 (en) Composite material comprising a treated reinforcing filler and a polymer matrix formed by polycondensation with aldehyde, and relative production method
JPS61210182A (en) Electroless plating method of hydraulically hardened body