JPS6054888B2 - Far-infrared radiating materials and radiators - Google Patents

Far-infrared radiating materials and radiators

Info

Publication number
JPS6054888B2
JPS6054888B2 JP56180974A JP18097481A JPS6054888B2 JP S6054888 B2 JPS6054888 B2 JP S6054888B2 JP 56180974 A JP56180974 A JP 56180974A JP 18097481 A JP18097481 A JP 18097481A JP S6054888 B2 JPS6054888 B2 JP S6054888B2
Authority
JP
Japan
Prior art keywords
far
infrared
solid solution
powder
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56180974A
Other languages
Japanese (ja)
Other versions
JPS5884121A (en
Inventor
満夫 高畠
音次郎 木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP56180974A priority Critical patent/JPS6054888B2/en
Publication of JPS5884121A publication Critical patent/JPS5884121A/en
Publication of JPS6054888B2 publication Critical patent/JPS6054888B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 本発明は遠赤外線を高い放射率で放射する遠赤外線放
射材及び遠赤外線放射体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a far-infrared radiator and a far-infrared radiator that emit far-infrared rays at high emissivity.

赤外線は可視光線より波長が長く、マイクロ波より短
い約0.75μ〜1Wg!lの波長範囲の電磁波である
Infrared rays have a longer wavelength than visible light, but shorter than microwaves, about 0.75 μ to 1 Wg! It is an electromagnetic wave in the wavelength range of l.

また、一般に約2.5μ以下のものを近赤外線と、2.
5〜25μ位のものを普通の赤外線と、約25μ以上の
ものを遠赤外線と称している。更に、遠赤外線を近赤外
線に対抗する語として、普通の赤外線も含めて約2.5
μ以上の波長のものを称することもある。本発明におい
て遠赤外線と称するものは後者の意味である。また、加
熱された物体から放射される、輻射エネルギーの大きな
輻射線には特に長波長の遠赤外線は少なく、輻射エネル
ギーとして論せられる遠赤外線の波長は概ね25μ以下
である。 赤外線は強い熱作用を有し、空間をとび超え
て低温の物体に直接到達して加熱するものてあり、古く
より乾燥、加熱、治療等に多く使用されている。
In general, near-infrared light is about 2.5μ or less, and 2.
Infrared rays of about 5 to 25μ are called ordinary infrared rays, and those of about 25μ or more are called far infrared rays. Furthermore, far-infrared rays are used as opposed to near-infrared rays, and the total number of infrared rays, including ordinary infrared rays, is about 2.5
Sometimes referred to as wavelengths greater than μ. In the present invention, what is referred to as far infrared rays has the latter meaning. Further, in the radiation with large radiant energy emitted from a heated object, there is particularly little far-infrared rays with long wavelengths, and the wavelength of far-infrared rays that can be discussed as radiant energy is generally 25μ or less. Infrared rays have a strong thermal effect and can travel through space to directly reach and heat low-temperature objects, and have been widely used for drying, heating, treatment, etc. since ancient times.

今迄利用されてきた赤外線は近赤外線を主とするもので
あるが、近赤外線に較べて遠赤外線の方が熱効率が優れ
ている等の理由で、最近、遠赤外線に関する研究が盛ん
りなり、遠赤外線を利用したヒータ等が多く提案されて
いる。例えば、10μm以上の波長の遠赤外線を人体に
放射すると発汗作用や血液の循環を促進して、医療健康
面に効果があるといわれる。また、遠赤外線による加熱
又は乾燥では、熱効率がよく、被加熱物の色によるむら
がなく、物体の内部まで加熱し得る等多くの特徴を有す
る。あらゆる物体は高温になると、低温では長波長の赤
外線の割合が多く温度が上昇するにつれて短波長の赤外
線が豊富になり、遂には可視光線も含まれるようになる
The infrared rays that have been used up until now have mainly been near-infrared, but research on far-infrared has recently become active due to the fact that far-infrared rays have better thermal efficiency than near-infrared rays. Many heaters and the like that utilize far infrared rays have been proposed. For example, when far infrared rays with a wavelength of 10 μm or more are radiated to the human body, it promotes sweating and blood circulation, which is said to have medical and health benefits. Further, heating or drying using far infrared rays has many features such as high thermal efficiency, no unevenness depending on the color of the heated object, and the ability to heat the inside of the object. When any object becomes hot, at low temperatures the proportion of long-wavelength infrared rays increases, and as the temperature rises, short-wavelength infrared rays become abundant, and eventually visible light is also included.

遠赤外線を利用する場合は、勿論これらの物体が遠赤外
線に富んだ輻射線を発散することが必要である。この温
度は一般に7〜800℃以下である。高い温度では遠赤
外線も多くなるが、近赤外線及び可視光線の割合が多く
なりエネルギー効率が悪くなる。また、高温とされて輻
射線を放射する物体が完全黒体の場合は、各温度におけ
る波長毎の輻射エネルギーは理論的に算出することがで
き、最大の値を示す。
When using far infrared rays, it is of course necessary that these objects emit radiation rich in far infrared rays. This temperature is generally below 7-800°C. At high temperatures, the amount of far infrared rays increases, but the ratio of near infrared rays and visible rays increases, resulting in poor energy efficiency. Furthermore, if the object that is heated to a high temperature and emits radiation is a perfect black body, the radiant energy for each wavelength at each temperature can be calculated theoretically and shows the maximum value.

しかしながら実在物体は完全黒体である黒度(放射率)
を有し、その輻射エネルギー値は黒体より低くなる。各
種物質の放射率は多くの文献に表示されているが、この
殆んどは、放射率が波長に対して一定とした(灰色体と
した。)場合の放射率である。遠赤外線放射体としては
、遠赤外線領域では放射率が高く、低波長領域では放射
率が低いことが望ましい。
However, real objects are completely black bodies.Blackness (emissivity)
, and its radiant energy value is lower than that of a black body. The emissivity of various substances is shown in many documents, but most of these are the emissivity when the emissivity is constant with respect to wavelength (gray body). It is desirable that the far-infrared radiator has high emissivity in the far-infrared region and low emissivity in the low wavelength region.

本発明者等は先に遠赤外線放射体として好適な物質を発
明したが、それによる物質はY2O3、L32O3、C
eO2等の希土類元素成分を固溶させたZrO2である
。該物質の遠赤外線の放射率は、波長がほぼ6μm以下
では40%以下で、8μm以上では70%以上である。
本発明の目的は、遠赤外線の放射率の高い材料及び該材
料により形成される遠赤外線放射体を提供するにある。
The present inventors have previously invented a material suitable as a far-infrared radiator, and these materials include Y2O3, L32O3, C
It is ZrO2 in which a rare earth element component such as eO2 is dissolved. The emissivity of far infrared rays of the substance is 40% or less when the wavelength is approximately 6 μm or less, and is 70% or more when the wavelength is 8 μm or more.
An object of the present invention is to provide a material with high far-infrared emissivity and a far-infrared radiator formed from the material.

本発明による遠赤外線放射材は、酸化ジルコニウム、又
は酸化ジルコニウム10鍾量部に酸化マ,グネシウム、
酸化カルシウム若しくは酸化マグネシウム及び酸化カル
シウムを4〜8重量部添加し、完全に若しくは少なくと
も3分の2以上を固溶化して得られた酸化ジルコニウム
固溶体の粉末よりなり、該粉末の比表面積が10d/g
以下であ・ることを特徴とする遠赤外線放射材である。
また、本発明による遠赤外線放射体は前記の遠赤外線放
射材100重量部に、けい酸ナトリウム、シリカゾル、
シリカゲルエマルジョン等のシリカ系結合剤をSlO2
として2〜5重量部加えて混練し、塗布又は形成してな
ることを特徴とする遠赤外線放射体である。本発明によ
る遠赤外線放射材及び放射体の好ましい態様においては
、前記粉末の比表面積が5〜0.01さらには5〜0.
1イ/gである。
The far-infrared radiating material according to the present invention includes zirconium oxide, or 10 parts of zirconium oxide, magnesium oxide, magnesium oxide,
It consists of a powder of a zirconium oxide solid solution obtained by adding 4 to 8 parts by weight of calcium oxide or magnesium oxide and calcium oxide to completely or at least two-thirds or more of the solid solution, and the powder has a specific surface area of 10 d/ g
This is a far-infrared radiating material characterized by the following characteristics.
Further, the far-infrared radiator according to the present invention includes sodium silicate, silica sol,
Silica-based binder such as silica gel emulsion is
This far-infrared radiator is characterized in that it is made by adding 2 to 5 parts by weight of the above ingredients, kneading, coating or forming the mixture. In a preferred embodiment of the far-infrared radiating material and radiator according to the present invention, the powder has a specific surface area of 5 to 0.01, more preferably 5 to 0.01.
1 i/g.

セラミック材料は長波長領域での放射率の高いものが多
いが、材料によつて波長特性が異なる。ジルコニア系、
ジルコン等は遠赤外線放射材料とノして好適であると云
われているが、約10μm以上の遠赤外線領域で充分高
い放射率を有し、5μm以下の波長領域で充分低い放射
率を示すものは見られなかつた。前述の如く、本発明者
等はジルコニア系のセラ・ミツクについて研究を重ねた
結果、優れた遠赤外線放射体を見出した。
Many ceramic materials have high emissivity in the long wavelength region, but wavelength characteristics vary depending on the material. Zirconia series,
Zircon and the like are said to be suitable as far-infrared emitting materials, but materials that have a sufficiently high emissivity in the far-infrared region of approximately 10 μm or more and a sufficiently low emissivity in the wavelength region of 5 μm or less. was not seen. As mentioned above, the inventors of the present invention have repeatedly researched zirconia-based ceramics and have discovered an excellent far-infrared radiator.

本発明者等が更に研究を重ねた結果、酸化ジルコニウム
(ZrO2)は一般に10μm以上の遠赤外線領域では
放射率力吠きく、それ以下では小さいが、この放射率は
ZrO2の粒度・に著しく影響されることを見出し、本
発明を完成した。即ち、ZrO2粉末の所要の粒度範囲
は、比表面積で10〜0.01d/g1好ましくは5〜
0.1イ/gである。放射体の粒度と放射特性との関係
は今迄殆んど検討されていなく、本発明者の研究によつ
てはじめて優れた放射特性を示す粒度範囲のZrO2粉
末が見出された。ZrO2粉末の純度は高い方が望まし
いが、殆んど100%である必要はなく、不可避的に混
在、又は除去し難い約1%以下のFe2O3、TiO2
等の混在は差支えない。また、ZrO2は1000〜1
100℃で変態を起し、この温度で膨張収縮を行うので
、その温度以上で使用するときは、予めZrO2に他の
金属酸化物を加えてこれとの固溶体として安定化してお
くことが行なわれている。本発明の目的の遠赤外線放射
体とする場合、ZrO2に酸化マグネシウム(MgO)
又は/及び酸化カルシウム(CaO)を4〜8%添加し
、3分の2以上を固溶化しても同等の放射率を得ること
ができる。ZrO2はCaO,.MgO,.Y2O2等
を固溶すると、単斜晶系から立方晶系に転移し、熱膨張
係数も〜7×10−6/℃から11×10−6/℃と大
きくなる。従つて熱膨張率が小さい方が望ましく、10
00℃以上に加熱されない場合は、固溶化しない方がよ
い。熱膨張率が大きい方がよいか、大きくてもよい用途
に使用する場合、例えば金属基板上に途布するような場
合は、固溶化し熱膨張率を大とすると共に安定化してお
くと、基板との熱膨張差が小さくなり、ヒートサイクル
にも強くなる。しかしながら、ZrO2をCaO又は/
及びMgOと完全に固溶させることは簡単でなく、電融
すれば完全に固溶化し立方晶系のZrO2の単一相にな
るが、焼成温度が低い、例えば1600℃以下の場合に
は、完全に固溶化せずに立方晶系のZrO2と共に単斜
晶系のZrO2とCaO又は/及びMgOとの3相とな
り半安定化状態となる。
As a result of further research by the present inventors, we found that zirconium oxide (ZrO2) generally has a high emissivity in the far infrared region of 10 μm or more, and is small below that, but this emissivity is significantly affected by the particle size of ZrO2. The present invention was completed based on this discovery. That is, the required particle size range of ZrO2 powder is 10 to 0.01 d/g1, preferably 5 to 0.01 d/g in specific surface area.
It is 0.1 i/g. Until now, the relationship between the particle size of a radiator and its radiation characteristics has hardly been studied, and it was through research by the present inventors that for the first time a ZrO2 powder having a particle size range that exhibits excellent radiation characteristics was discovered. It is desirable that the purity of the ZrO2 powder is high, but it does not need to be almost 100%, and Fe2O3, TiO2 of about 1% or less that is unavoidably mixed or difficult to remove.
There is no problem with the mixture of the following. In addition, ZrO2 is 1000 to 1
Transformation occurs at 100°C and expansion and contraction occurs at this temperature, so when using it above that temperature, it is necessary to add other metal oxides to ZrO2 in advance to stabilize it as a solid solution with it. ing. In the case of a far-infrared radiator for the purpose of the present invention, magnesium oxide (MgO) is added to ZrO2.
Alternatively, the same emissivity can be obtained by adding 4 to 8% of calcium oxide (CaO) and converting two-thirds or more into a solid solution. ZrO2 is CaO, . MgO,. When Y2O2 or the like is dissolved as a solid solution, the monoclinic system changes to the cubic system, and the coefficient of thermal expansion increases from ~7x10-6/°C to 11x10-6/°C. Therefore, it is desirable that the coefficient of thermal expansion is small, and 10
If it is not heated to 00°C or higher, it is better not to form a solid solution. When used in applications where a large coefficient of thermal expansion is better or even acceptable, for example when dispersing on a metal substrate, it is best to make it into a solid solution to increase the coefficient of thermal expansion and stabilize it. The difference in thermal expansion with the substrate is reduced, making it resistant to heat cycles. However, ZrO2 is replaced by CaO or/
It is not easy to form a complete solid solution with ZrO and MgO, and if it is electrically melted, it will completely become a solid solution and become a single phase of cubic ZrO2, but if the firing temperature is low, for example 1600 ° C or less, It does not completely become a solid solution, but becomes a semi-stable state in which it forms three phases consisting of cubic ZrO2, monoclinic ZrO2, and CaO or/and MgO.

また、CaO又は/及びぬρの量が完全固溶させるに必
要な量の約半分の3%以下の場合は、単斜晶系と立方晶
系のZrO2が共存する部分安定化状態となる。この状
態は、熱衝撃に強いZrO2焼結体を作る場合など、最
初から意識的に行なわれる。このような複数の相が存在
するときは遠赤外放射特性を悪くするので、CaO.M
gOとの固溶体の遠赤外線放射材とするときは完全固溶
させることが望ましく、少くとも213は固溶化してい
なければならない。
Further, when the amount of CaO and/or ρ is 3% or less, which is about half of the amount required for complete solid solution, a partially stabilized state is created in which monoclinic and cubic ZrO2 coexist. This state is intentionally maintained from the beginning, such as when creating a ZrO2 sintered body that is resistant to thermal shock. When such multiple phases exist, the far-infrared radiation characteristics deteriorate, so CaO. M
When forming a far-infrared ray emitting material in a solid solution with gO, it is desirable to form a complete solid solution, and at least 213 must be in a solid solution.

固溶化の状態は、X線によるCaO又は/及びMgOの
分析値及び立方晶系ZrO2と単斜晶系ZrO2の量比
により判定することができる。以上のようにして製造さ
れた本発明の遠赤外線放射材の放射率は、5μm以下の
波長領域で40%以下、10pm以上Cri9O%以上
である。
The state of solid solution formation can be determined based on the analysis value of CaO and/or MgO by X-rays and the quantitative ratio of cubic ZrO2 and monoclinic ZrO2. The emissivity of the far-infrared radiation material of the present invention produced as described above is 40% or less in the wavelength region of 5 μm or less, and Cri9O% or more in the wavelength region of 10 pm or more.

次に、本発明による遠赤外線放射材の実施例を示す。第
1表の成分、比表面積及び固溶率のZrO2又はZrO
2固溶体粉末について、放射率スペクトルを測定させる
結果を第1図及び第2図に示す。
Next, examples of far-infrared radiating materials according to the present invention will be shown. ZrO2 or ZrO with the components, specific surface area and solid solution rate in Table 1
FIGS. 1 and 2 show the results of measuring the emissivity spectrum of the two solid solution powders.

第2表に示す比表面積10d/g以上のもの及び固溶率
が3分の2以下のものの比較例を併せて第1図及び第2
図に示す。放射率スペクトルは、日立赤外分光計260
−30により完全黒体及び試料の放射エネルギーを各波
長毎に測定し、放射率を演算表示したものである。
Comparative examples of those with a specific surface area of 10 d/g or more and those with a solid solution rate of two-thirds or less shown in Table 2 are also shown in Figures 1 and 2.
As shown in the figure. The emissivity spectrum was obtained using a Hitachi infrared spectrometer 260.
-30, the radiant energy of the perfect black body and the sample was measured for each wavelength, and the emissivity was calculated and displayed.

測定温度は500℃であつた。尚普通350〜650℃
で測定されるが、この温度領域では材料の温度による放
射エネルギースペクトルの変化は小さい。本発明による
遠赤外線放射体は、前記の赤外線放射材をシリカ系結合
剤と共に混練し、塗布2は成形してなるものである。
The measurement temperature was 500°C. Normally 350~650℃
However, in this temperature range, the change in the radiant energy spectrum due to material temperature is small. The far-infrared radiator according to the present invention is obtained by kneading the above-mentioned infrared ray radiating material with a silica-based binder, and forming the coating 2.

結合剤にりん酸塩系のもの用いては良好な結果が得られ
ない。結合剤としては、水ガラス(けい酸ナトリウム)
、シリカゾル、シリカゲルエマルジョン、エチルシリケ
ー卜等のシリカ系結合剤をSiO2として、赤外線放射
材に対しては2〜5%使用する。一実施例においては、 ZrO2粉末(99%品) 100g
水ガラス(4号) 15C.C(10〜
201).Cの範囲で可。
Good results cannot be obtained if a phosphate-based binder is used. As a binder, water glass (sodium silicate)
A silica-based binder such as silica sol, silica gel emulsion, or ethyl silicate is used as SiO2 in an amount of 2 to 5% for the infrared radiation material. In one example, 100g of ZrO2 powder (99% product)
Water glass (No. 4) 15C. C (10~
201). Possible within the range of C.

)水 40C.Cカ
ルボオキシメチルセルローズ 1gをポットミ
ルで2時間混合、途料化して、はけ塗り、ディップ、ス
プレー等で、セラミックス及び金属基体に、0.1Tn
の厚さで塗布乾燥後、400℃×2時間の熱処理を行つ
た。800℃の急熱空冷試験の繰返しを10回行つたと
ころセラミックスに塗布したものは何ら剥離、亀裂を生
じなかつたが、金属基体に塗布したものは若干の亀裂を
生じた。
) Water 40C. Mix 1 g of C carboxymethyl cellulose in a pot mill for 2 hours, dry it, and apply 0.1Tn onto ceramics and metal substrates by brushing, dipping, spraying, etc.
After coating and drying the film to a thickness of 100° C., heat treatment was performed at 400° C. for 2 hours. When the rapid heating and air cooling test at 800° C. was repeated 10 times, the coating applied to ceramics did not cause any peeling or cracking, but the coating applied to the metal substrate showed some cracking.

本発明による遠赤外線放射体は基体に塗布して形成する
ほかに、所要の型枠を組み、これに遠赤外線放射材と結
合剤との混練物を流し込んて成形、乾燥、焼成して作成
してもよい。本発明による遠赤外線放射体の放射率スペ
クトルを測定したところ、遠赤外線放射材の場合とほぼ
同様のスペクトルが得られた。
The far-infrared radiator according to the present invention can be formed by coating it on a substrate, or by constructing a required mold, pouring a mixture of far-infrared radiating material and a binder into the mold, molding, drying, and baking. You can. When the emissivity spectrum of the far-infrared radiator according to the present invention was measured, a spectrum substantially similar to that of the far-infrared radiator was obtained.

以上の如く、本発明による遠赤外線放射材及び放射体は
遠赤外線の10pm以上の波長の長い領域での放射率が
大で、5μm以下の波長の短い領域での放射率が小であ
るので、優れた効率で輻射エネルギーを放射することが
でき、しかもその輻射エネルギーを長波長の遠赤外線に
富んだものとすることができる。
As described above, the far-infrared radiating material and radiator according to the present invention have a large emissivity in the long wavelength region of far infrared rays of 10 pm or more, and a small emissivity in the short wavelength region of 5 μm or less. Radiant energy can be radiated with excellent efficiency, and the radiant energy can be enriched in long-wavelength far-infrared rays.

従つてその輻射エネルギーを乾燥、加熱、治療等に効率
よく使用することができる。
Therefore, the radiant energy can be efficiently used for drying, heating, treatment, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれ本発明の実施例及び比較例
の遠赤外線放射材の放射率スペクトル図である。
FIG. 1 and FIG. 2 are emissivity spectra of far-infrared radiating materials of Examples and Comparative Examples of the present invention, respectively.

Claims (1)

【特許請求の範囲】 1 酸化ジルコニウム、又は酸化ジルコニウム100重
量部に酸化マグネシウム、酸化カルシウム若しくは酸化
マグネシウム及び酸化カルシウムを4〜8重量部添加し
、完全に若しくは少なくとも3分の2以上を固溶化して
得られた酸化ジルコニウム固溶体の粉末よりなり、該粉
末の比表面積が10m^2/g以下であることを特徴と
する遠赤外線放射材。 2 前記粉末の比表面積が10〜0.01m^2/gで
ある特許請求の範囲第1項の遠赤外線放射材。 3 前記粉末の比表面積が5〜0.1m^2/gである
特許請求の範囲第1項の遠赤外線放射材。 4 酸化ジルコニウム、又は酸化ジルコニウム100重
量部に酸化マグネシウム、酸化カルシウム若しくは酸化
マグネシウム及び酸化カルシウムを4〜8重量部添加し
、完全に若しくは少なくとも3分の2以上を固溶化して
得られた酸化ジルコニウム固溶体の粉末で、該粉末の比
表面積が10〜0.01m^2/gである遠赤外線放射
材100重量部に、けい酸ナトリウム、シリカゾル、シ
リカゲルエマルジョン等のシリカ系結合剤をSiO_2
として2〜5重量部加えて混練し、塗布又は形成してな
ることを特徴とする遠赤外線放射体。 5 前記粉末の比表面積が5〜0.1m^2/gである
特許請求の範囲第3項の遠赤外線放射体。
[Scope of Claims] 1. Zirconium oxide, or 4 to 8 parts by weight of magnesium oxide, calcium oxide, or magnesium oxide and calcium oxide are added to 100 parts by weight of zirconium oxide, and completely or at least two-thirds or more of it is made into a solid solution. 1. A far-infrared radiating material comprising a powder of a zirconium oxide solid solution obtained by the above-mentioned method, wherein the powder has a specific surface area of 10 m^2/g or less. 2. The far-infrared radiating material according to claim 1, wherein the powder has a specific surface area of 10 to 0.01 m^2/g. 3. The far-infrared radiating material according to claim 1, wherein the powder has a specific surface area of 5 to 0.1 m^2/g. 4. Zirconium oxide, or zirconium oxide obtained by adding 4 to 8 parts by weight of magnesium oxide, calcium oxide, or magnesium oxide and calcium oxide to 100 parts by weight of zirconium oxide, and completely or at least two-thirds or more of it as a solid solution. A silica-based binder such as sodium silicate, silica sol, or silica gel emulsion is added to 100 parts by weight of a far-infrared radiation material that is a solid solution powder and has a specific surface area of 10 to 0.01 m^2/g.
A far-infrared radiator characterized in that it is formed by adding 2 to 5 parts by weight of 2 to 5 parts by weight, kneading, coating or forming. 5. The far-infrared radiator according to claim 3, wherein the powder has a specific surface area of 5 to 0.1 m^2/g.
JP56180974A 1981-11-13 1981-11-13 Far-infrared radiating materials and radiators Expired JPS6054888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56180974A JPS6054888B2 (en) 1981-11-13 1981-11-13 Far-infrared radiating materials and radiators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56180974A JPS6054888B2 (en) 1981-11-13 1981-11-13 Far-infrared radiating materials and radiators

Publications (2)

Publication Number Publication Date
JPS5884121A JPS5884121A (en) 1983-05-20
JPS6054888B2 true JPS6054888B2 (en) 1985-12-02

Family

ID=16092529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56180974A Expired JPS6054888B2 (en) 1981-11-13 1981-11-13 Far-infrared radiating materials and radiators

Country Status (1)

Country Link
JP (1) JPS6054888B2 (en)

Also Published As

Publication number Publication date
JPS5884121A (en) 1983-05-20

Similar Documents

Publication Publication Date Title
AU2003281476A1 (en) Sealing of ceramic substances by means of electromagnetic centimetre waves, and receptacle for carrying out the inventive method
JPS58125662A (en) Manufacture of low expansible cordierite ceramics
KR20020022453A (en) compositions of ceramics for extreme infrared radiation
JPS6054888B2 (en) Far-infrared radiating materials and radiators
JP2002509513A (en) Infrared emitting ceramic material
JPH0362798B2 (en)
JPS6354031B2 (en)
KR900001730B1 (en) Composition of ceramic-coating materials
JPH0321501B2 (en)
JPH0151463B2 (en)
JPS61232268A (en) Far infrared radiation ceramic
KR20010085151A (en) The far infra red ray emissive heater and method for its preparation
JPH01235550A (en) Baking of food
JPS6052552B2 (en) Manufacturing method of far-infrared radiation element
JPS556401A (en) Far infrared ray radiator
JPS62211888A (en) Far-infrared radiating ceramic unit and manufacture of the same
KR970010301B1 (en) Process for the preparation of far-infrared radiator
JPH0441570Y2 (en)
JPH02152189A (en) Thermochromism body and heating body with thermochromism property
JPS5864257A (en) Manufacture of ceramic infrared ray radiator of sno2-sb2o5 as resistor
JPH0374471B2 (en)
JP2593095B2 (en) Far infrared radiator
JPH0229638B2 (en)
JPS6046971A (en) Far infrared radiator
KR930009664B1 (en) Process for preparing ceramic ware