JPH0441570Y2 - - Google Patents

Info

Publication number
JPH0441570Y2
JPH0441570Y2 JP1983076252U JP7625283U JPH0441570Y2 JP H0441570 Y2 JPH0441570 Y2 JP H0441570Y2 JP 1983076252 U JP1983076252 U JP 1983076252U JP 7625283 U JP7625283 U JP 7625283U JP H0441570 Y2 JPH0441570 Y2 JP H0441570Y2
Authority
JP
Japan
Prior art keywords
transition element
lamp according
lamp
infrared
far
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983076252U
Other languages
Japanese (ja)
Other versions
JPS59180364U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7625283U priority Critical patent/JPS59180364U/en
Publication of JPS59180364U publication Critical patent/JPS59180364U/en
Application granted granted Critical
Publication of JPH0441570Y2 publication Critical patent/JPH0441570Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は、加熱により表面から遠赤外線を放射
する遠赤外線放射ランプに関する。
[Detailed Description of the Invention] The present invention relates to a far-infrared radiation lamp that emits far-infrared rays from its surface by heating.

従来から、赤外線ランプが加熱、乾燥、暖房、
医療などの分野に幅広く使用さえてきたが、赤外
線ランプは波長の比較的短かい近赤外又は中間赤
外線した放射しないため、アルミニウムなど反射
板で完全な反射ができず、反射板を加熱したり、
また被乾燥物や皮膚等への透過性に欠け、利用分
野に限度があつた。そこで、省エネルギー及び放
射効果の両面から遠赤外線放射ランプの開発が望
まれてきたが、実用性あるものは得られていなか
つた。
Traditionally, infrared lamps have been used for heating, drying, heating,
Infrared lamps have been widely used in fields such as medicine, but because they do not emit near-infrared or mid-infrared radiation with relatively short wavelengths, they cannot be completely reflected by a reflector such as aluminum, and may heat the reflector. ,
In addition, it lacks permeability to dried materials, skin, etc., which limits its field of use. Therefore, the development of far-infrared radiation lamps has been desired from the viewpoint of both energy saving and radiation efficiency, but no practical lamp has been obtained.

本考案は、通常のコーテイング法によつて容易
に製造できる性能のよい遠赤外線ランプを提供す
る。
The present invention provides a far-infrared lamp with good performance that can be easily manufactured by conventional coating methods.

本考案のランプは、発熱体を内部に有する中空
成形体表面に、耐熱性無機接着剤と、少なくとも
2種の遷移元素酸化物の微粉末混合仮焼物を、
97:3〜20:80の重量比率で含有する塗膜を形成
してなるものである。
The lamp of the present invention includes a heat-resistant inorganic adhesive and a calcined mixture of fine powder of at least two types of transition element oxides on the surface of a hollow molded body having a heating element inside.
It is formed by forming a coating film containing the components in a weight ratio of 97:3 to 20:80.

ここに遷移元素とは番子番号21〜31、39〜49お
よび71〜81の元素を指すものであり、本発明では
これらの酸化物がいずれも使用されるが、特に
MnO2とFe2O3を主成分とするものが好ましく、
これらに更にCoO、CuO及びCr2O3から選ばれる
少なくとも1種の化合物を併含するのがよい。
Here, the transition elements refer to elements with numbers 21 to 31, 39 to 49, and 71 to 81, and all of these oxides are used in the present invention, but in particular
Preferably, the main components are MnO 2 and Fe 2 O 3 .
In addition to these, at least one compound selected from CoO, CuO and Cr 2 O 3 is preferably included.

これらの配合割合は、下記の中から選ばれるの
がよい。
The blending ratio of these is preferably selected from the following.

MnO2 10〜80% Fe2O3 5〜80% CoO 5〜50% CuO 10〜80% Cr2O3 2〜30% 遷移元素酸化物混合物は、700〜1300℃程度の
温度で仮焼して使用され、通常1〜50μの粉末状
で使用される。
MnO 2 10-80% Fe 2 O 3 5-80% CoO 5-50% CuO 10-80% Cr 2 O 3 2-30% The transition element oxide mixture is calcined at a temperature of about 700-1300℃. It is usually used in powder form with a size of 1 to 50μ.

次に、耐熱性無機接着剤としては、市販のシリ
カ・アルミナ系接着剤が使用できるが、耐熱性無
機接着剤と遷移元素酸化物の併用割合は、97:3
〜20:80の範囲であることが大切である。遷移元
素酸化物が3%より少ないと遠赤外線特性を得る
ことができず、逆に80%より、多くなると安定し
た塗膜が得られない。通常、遷移元素酸化物が20
〜50%であるのが好ましく、30%程度のものが特
に有用である。
Next, commercially available silica/alumina adhesives can be used as the heat-resistant inorganic adhesive, but the combined ratio of the heat-resistant inorganic adhesive and the transition element oxide is 97:3.
It is important that the time is within the range of ~20:80. If the transition element oxide content is less than 3%, far infrared properties cannot be obtained, and if it is more than 80%, a stable coating film cannot be obtained. Typically, transition element oxides are 20
~50% is preferred, and around 30% is particularly useful.

なお、本考案のランプでは、使用する遷移元素
酸化物の種類及び遷移元素酸化物と接着剤の配合
割合を適当に選ぶことによつて、放射する赤外線
の波長領域を変化させることができる。例えば遷
移元素酸化物の量が比較的少ない場合(20〜30
%)に、遠赤外線放射が強く認められ、遷移元素
酸化物の量が多くなると、近赤外線の波長が認め
られるようになる。
In addition, in the lamp of the present invention, the wavelength range of the emitted infrared rays can be changed by appropriately selecting the type of transition element oxide used and the blending ratio of the transition element oxide and adhesive. For example, if the amount of transition element oxide is relatively small (20-30
%), far-infrared radiation is strongly observed, and as the amount of transition element oxides increases, near-infrared wavelengths become visible.

本考案のランプは、電球など発熱体を内部に有
する中空成形体の表面に耐熱性無機接着剤と遷移
元素化物の微粉末混合仮焼物からなるコーテイン
グ組成物を刷毛、スプレーなどで塗布し、50〜
250℃程度の温度で乾燥、焼付することによつて、
容易に製造できる。
The lamp of the present invention is produced by applying a coating composition consisting of a heat-resistant inorganic adhesive and a calcined mixture of fine powder of a transition element to the surface of a hollow molded body having a heating element inside, such as a light bulb, using a brush or spray. ~
By drying and baking at a temperature of about 250℃,
Easy to manufacture.

塗膜の厚さは0.1〜0.5mm程度で十分であり、発
熱体を加熱してランプ表面の温度を50〜650℃に
すると、数μ〜数100μの遠赤外線を効果的に放
射する。
A coating thickness of about 0.1 to 0.5 mm is sufficient, and when the heating element is heated to bring the temperature of the lamp surface to 50 to 650°C, far-infrared rays of several microns to several hundred microns are effectively emitted.

本考案において、成形体の材質及び形状は特に
限定されるものではない。
In the present invention, the material and shape of the molded body are not particularly limited.

実施例 市販の100Wの白熱電球1の表面に、シリカ・
アルミナ系接着剤70重量部に、下記の遷移元素酸
化物 MuO2 50% Fe2O3 35% CoO 5% CuO 10% を混合、仮焼(800℃)した微分体30重量部を添
加し、ボールミルにてよく混合して得たコーテイ
ング組成物を塗布し、0.25mmの厚さの塗膜2を得
た(第1図参照)。
Example: Silica was applied to the surface of a commercially available 100W incandescent light bulb 1.
To 70 parts by weight of an alumina adhesive, 30 parts by weight of a differential substance obtained by mixing and calcining (800°C) the following transition element oxide MuO 2 50% Fe 2 O 3 35% CoO 5% CuO 10%, The coating composition obtained by thoroughly mixing in a ball mill was applied to obtain a coating film 2 having a thickness of 0.25 mm (see FIG. 1).

得られた遠赤外線ランプは、通常により、通常
の赤外線ランプ120〜140Wに相当する加熱効果を
有するものであり、7μ以上、特に15μ以上の波長
の遠赤外線を強く放射するため、塗料の乾燥など
においても塗料内部まで浸透しちやすく、厚い塗
装においても全体に速やかに乾燥し、表面の均質
な感動塗膜を得ることができた。
The obtained far-infrared lamp has a heating effect equivalent to a normal infrared lamp of 120 to 140W, and strongly emits far-infrared rays with a wavelength of 7μ or more, especially 15μ or more, so it can be used to dry paint etc. It easily penetrates into the interior of the paint, and dries quickly on the entire surface even in thick paint, resulting in an impressively homogeneous paint film.

また、皮膚への照射においても、皮膚への刺激
がなく、浸透性がよく、治療効果に優れたもので
あつた。
Furthermore, when irradiating the skin, there was no irritation to the skin, good permeability, and excellent therapeutic effects.

上記実施例で得たランプの放射特性をA−3型
赤外分光光度計で測定した結果を第3図に示す。
この結果から、従来の赤外線ランプでは、波長
15μm以上の遠赤外線を最大50〜60%程度の放射
率でしか放射できないのに対して、本願考案のラ
ンプでは、100%近い放射率で放射しうることが
わかる。
The radiation characteristics of the lamp obtained in the above example were measured using an A-3 infrared spectrophotometer, and the results are shown in FIG.
This result shows that conventional infrared lamps have a wavelength of
It can be seen that far infrared rays of 15 μm or more can be emitted with a maximum emissivity of only about 50 to 60%, whereas the lamp of the present invention can emit far infrared rays with an emissivity of nearly 100%.

なお、本考案では第1図、第2図の如く電球1
に塗膜2を設ける場合には、側部に少なくとも1
ケ所非コーテイング部3を設け、そこから光線が
透過するようにするのが好ましく、これによつ
て、光線の有無の確認で、視覚的に通電すなわち
遠赤外線放射の有無を知ることができる。
In addition, in this invention, as shown in Fig. 1 and Fig. 2, the light bulb 1 is
When the coating film 2 is provided on the side part, at least one coating film 2 is provided on the side part.
It is preferable to provide a non-coated portion 3 in which light rays are transmitted.Thereby, by checking the presence or absence of light rays, it is possible to visually determine the presence or absence of energization, that is, the presence or absence of far-infrared radiation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれ本考案の異なる実
施例を示す断面図であり、第3図は実施例で得た
製品の赤外線放射スペクトルを示すチヤートであ
る。 1……電球、2……塗膜、3……非コーテイン
グ部。
1 and 2 are cross-sectional views showing different embodiments of the present invention, and FIG. 3 is a chart showing the infrared radiation spectrum of the product obtained in the embodiment. 1... Bulb, 2... Paint film, 3... Non-coated part.

Claims (1)

【実用新案登録請求の範囲】 (1) 発熱体を内部に有する中空成形体表面に耐熱
性無機接着剤と、少なくとも2種の遷移元素酸
化物の混合物を、700〜1300℃の温度で仮焼後、
粉砕して得た粒径1〜50μの微粉末混合仮焼物
を、97:3〜20:80の重量比率で含有する塗膜
を形成してなることを特徴とする遠赤外線放射
ランプ。 (2) 塗膜の厚さが0.1〜0.5mmであることを特徴と
する実用新案登録請求の範囲第1項記載のラン
プ。 (3) 遷移元素酸化物がMnO2とFe2O3を主成分と
することを特徴とする実用新案登録請求の範囲
第1項記載のランプ。 (4) 遷移元素酸化物が更にCoO、CuO及びCr2O3
から選ばれる少なくとも1種の化合物を含むこ
とを特徴とする実用新案登録請求の範囲第1項
記載のランプ。 (5) 上記成形体が電球であることを特徴とする実
用新案登録請求の範囲第1項〜第4項いずれか
1項記載のランプ。
[Claims for Utility Model Registration] (1) A heat-resistant inorganic adhesive and a mixture of at least two transition element oxides are applied to the surface of a hollow molded body having a heating element inside, and calcined at a temperature of 700 to 1300°C. rear,
A far-infrared radiation lamp characterized by forming a coating film containing a calcined mixture of fine powder with a particle size of 1 to 50 μm obtained by pulverization in a weight ratio of 97:3 to 20:80. (2) The lamp according to claim 1, wherein the coating film has a thickness of 0.1 to 0.5 mm. (3) The lamp according to claim 1, wherein the transition element oxide contains MnO 2 and Fe 2 O 3 as main components. (4) Transition element oxides further contain CoO, CuO and Cr 2 O 3
The lamp according to claim 1, characterized in that it contains at least one compound selected from the following. (5) The lamp according to any one of claims 1 to 4, wherein the molded body is a light bulb.
JP7625283U 1983-05-19 1983-05-19 far infrared radiation lamp Granted JPS59180364U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7625283U JPS59180364U (en) 1983-05-19 1983-05-19 far infrared radiation lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7625283U JPS59180364U (en) 1983-05-19 1983-05-19 far infrared radiation lamp

Publications (2)

Publication Number Publication Date
JPS59180364U JPS59180364U (en) 1984-12-01
JPH0441570Y2 true JPH0441570Y2 (en) 1992-09-30

Family

ID=30206299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7625283U Granted JPS59180364U (en) 1983-05-19 1983-05-19 far infrared radiation lamp

Country Status (1)

Country Link
JP (1) JPS59180364U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50104440A (en) * 1974-01-25 1975-08-18

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50104440A (en) * 1974-01-25 1975-08-18

Also Published As

Publication number Publication date
JPS59180364U (en) 1984-12-01

Similar Documents

Publication Publication Date Title
EP1086630B1 (en) Hair dryer
JPH0441570Y2 (en)
JPS59213771A (en) Coating composition for radiating far infrared ray
KR101401222B1 (en) A reversible changeable coating composition and a method thereof
US1830165A (en) Coated lamp bulb
JPS61179881A (en) Infrared radiator with metallic base material and its production
US5336969A (en) Highly thermally loaded electric lamp with reduced UV light emission, and method of its manufacture
JPS6319542B2 (en)
HU201422B (en) Electric lamp with light-absorbing coating
JPH0243552B2 (en)
JPS59226064A (en) Infrared-radiating coating composition
JP2004043612A (en) Heat dissipating coating material
JPH0442852A (en) Infrared ray-emitting composition
JPS6054888B2 (en) Far-infrared radiating materials and radiators
US2265473A (en) Coating composition
JPS62211888A (en) Far-infrared radiating ceramic unit and manufacture of the same
JPS61232268A (en) Far infrared radiation ceramic
JPS61151986A (en) Ceramic far infrared ray heater
JPH0229638B2 (en)
JPS58184285A (en) Infrared ray radiator
KR860001236B1 (en) Manufacturing method of infrared rays elements
JP2530163Y2 (en) Far-infrared radiation tube
CN102838382A (en) Ceramic material obtained by high-temperature fine firing
JPH02152189A (en) Thermochromism body and heating body with thermochromism property
KR950001745B1 (en) Panel-head of crt