JPS6054287A - Electron beam welding method - Google Patents

Electron beam welding method

Info

Publication number
JPS6054287A
JPS6054287A JP16364783A JP16364783A JPS6054287A JP S6054287 A JPS6054287 A JP S6054287A JP 16364783 A JP16364783 A JP 16364783A JP 16364783 A JP16364783 A JP 16364783A JP S6054287 A JPS6054287 A JP S6054287A
Authority
JP
Japan
Prior art keywords
electron beam
weld metal
beam welding
toughness
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16364783A
Other languages
Japanese (ja)
Inventor
Koji Arita
幸司 有田
Atsushi Numata
淳 沼田
Yasuo Murai
康生 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP16364783A priority Critical patent/JPS6054287A/en
Publication of JPS6054287A publication Critical patent/JPS6054287A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

PURPOSE:To form a weld metal exhibiting high toughness as welded by disposing filler metals consisting principally of Ni in the butt parts of thick-walled steel plates in such a way that the density distribution of Ni become higher as nearing to the surface side of the plate thickness and subjecting said parts to electron beam welding. CONSTITUTION:Grooves 6 for inserting filler metals are formed in the different positions in the thickness direction of the butt surfaces of base metals 1, 1 which are thick-walled steel plates in the stage of subjecting the butt parts of said materials to partial penetration electron beam welding with deep penetration. Plural pieces of filler metals 5 consisting principally of Ni are inserted approximately parallel with the surface of the thickness and are disposed in such a way that the weighted mean density distribution of Ni in the metals 5 viewed in the thickness direction becomes higher as nearing to the surface side of the thickness. The butt parts are subjected to electron beam welding in this state, by which the decrease in the toughness on the front side where the cooling rate of the weld metal is low is prevented and the weld metal having high toughness is obtd. in the as- welded state.

Description

【発明の詳細な説明】 本発明は厚内鋼板の電子ビーム溶接方法に関し、詳細に
は、厚内鋼板の部分溶込み電子ビーム溶接(以下EBW
という)に詔いて、溶接のままでも高靭性を示す溶接金
属を得ることのできる方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for electron beam welding of thick steel plates, and more particularly, to a method of electron beam welding of thick steel plates, and more particularly, to partial penetration electron beam welding (hereinafter referred to as EBW) of thick steel plates.
This relates to a method for obtaining weld metal that exhibits high toughness even after welding.

EBW法は他の溶接法に比べて深い溶込みが得られると
いう特徴を有しており、通常の厚肉鋼板であっても特別
の開先加工をしないで単に突き合わせるだけで溶加材を
使用しないで溶接することができる。ところで母材だけ
が溶融・凝固してできたE B W溶接金属は、溶接の
ままの状態における靭性が良好とは言えず溶接後熱処理
を施すことによって比較的良好な靭性を確保しているの
が実情であり、特に厚板EBWの溶接ではE B Wと
いえども相当の溶接入熱が加わるので溶接のままでは高
度の靭性を期待することができない。
The EBW method has the characteristic that it can achieve deeper penetration than other welding methods, and it can remove filler metal by simply butting together ordinary thick steel plates without special beveling. Can be welded without use. By the way, E B W weld metal, which is made by melting and solidifying only the base metal, cannot be said to have good toughness in the as-welded state, but relatively good toughness is achieved by heat treatment after welding. This is the actual situation, and especially when welding thick EBW plates, a considerable amount of welding heat input is applied even if the plate is EBW, so a high degree of toughness cannot be expected from welding as is.

ところでEBWでは溶加材を使用しないで溶接を行なう
のが普通であるが、まれには溶加材を使用することがあ
り、例えば次の様な方法が知られている。即ちその一つ
は第1図に示す様なフィラーワイヤ法であり、母材1の
表面近傍の電子ビーム2或は溶融プール8内へフィラー
ワイヤ4を連続的に供給しなからEBWを行なう方法で
ある。
Incidentally, in EBW, welding is normally performed without using a filler metal, but in rare cases, a filler metal may be used. For example, the following method is known. That is, one of them is the filler wire method as shown in FIG. 1, in which EBW is performed without continuously supplying the filler wire 4 into the electron beam 2 or into the molten pool 8 near the surface of the base material 1. It is.

しかしこの方法では、フィラーワイヤ4中の各種元素が
溶込み先端部(即ち板厚方向の深部)まで十分に拡散さ
れ難い欠点があるので、通常は母材とほぼ同成分のフィ
ラーワイヤを用い、■開先のギャップ変動による余盛り
不足を補う目的で使用される程度であり、EBW溶接金
属の靭性向上を期待することはできない。溶加材を使用
する他のEBW法としては第2図に示す様なイン−リー
トメタル法があり、例えば特公昭51−11052号や
特開昭49−24858号等に開示されている如く、母
材1の突合せ面に金属箔(又は金属薄板)状の溶加材5
を挿入してEBWを行ない、該溶加材5から合金元素を
添加することによって溶接金属の化学成分を調整し靭性
等の物性を改善しようとするものである。このインサー
トメタル法は、作業性の点で前記フィラーワイヤ法より
も若干複雑であるが、所定の合金元素を溶接金属中へ均
一に添加させ得る点で優れた方法と言える。しかしなが
らこのインサートメタル法が靭性改善という面において
その効果を有効に発揮するのは、第8図に示す様な貫通
EBW或は第4図に示す様な溶込み深さの浅い部分漬込
みEBWに適用し7た場合であり、本発明で意図する様
な溶込み深さの深い部分漬込みEBW(第5図参照)で
は後記実馳例にも示す如く殆んど効果を示さない。
However, this method has the disadvantage that the various elements in the filler wire 4 are difficult to sufficiently diffuse to the penetration tip (i.e., deep in the thickness direction), so usually a filler wire with almost the same composition as the base material is used. ■It is only used for the purpose of compensating for the lack of excess material due to groove gap fluctuations, and it cannot be expected to improve the toughness of EBW weld metal. Another EBW method using filler metal is the in-reet metal method as shown in Fig. 2, as disclosed in Japanese Patent Publication No. 51-11052, Japanese Patent Application Laid-open No. 49-24858, etc. A filler material 5 in the form of metal foil (or thin metal plate) is placed on the butt surface of the base material 1.
EBW is performed by inserting the filler metal 5, and alloying elements are added from the filler metal 5 to adjust the chemical composition of the weld metal and improve physical properties such as toughness. Although this insert metal method is slightly more complicated than the filler wire method in terms of workability, it can be said to be an excellent method in that it allows a predetermined alloying element to be uniformly added to the weld metal. However, this insert metal method is effective in terms of improving toughness when it is applied to penetrating EBW as shown in Figure 8 or partial immersion EBW with shallow penetration depth as shown in Figure 4. In this case, partially immersed EBW with a deep penetration depth as intended in the present invention (see FIG. 5) shows almost no effect as shown in the example described later.

そこで本発明者等は、深溶込みの部分漬込みEBWに見
られる上記問題を解消し、溶接のままでも高靭性を示す
溶接金属を得ることのできる技術を確立すべく、まず前
記インサートメタル法では高靭性が得られないという理
由を追求した。その結果、溶込みの深い部分漬込みEB
Wでは、例えば第1表に示す様に溶接金属の溶込み深さ
方向各位置における冷却速度が著しく異なっており、特
に冷却速度の遅い表面側の靭性が悪くなる為に溶接金属
全体の靭性が乏しくなることをつきとめた。
Therefore, the present inventors aimed to solve the above-mentioned problems observed in deep penetration partially immersed EBW and to establish a technology that can obtain weld metal that exhibits high toughness even as welded. We investigated the reason why high toughness could not be obtained. As a result, deep penetration part EB
With W, for example, as shown in Table 1, the cooling rate at each position in the weld metal penetration depth direction is significantly different, and the toughness of the surface side, where the cooling rate is slow, deteriorates, so the toughness of the entire weld metal deteriorates. I found out that it becomes scarce.

第1表 溶接部各位置の冷却時間 そして溶接金属全体の靭性を高めるという目的からすれ
ば、溶接金属全体の合金元素量を均一・にすることは必
ずしも適当とは言えず、溶接金属の冷却速度も考慮して
靭性向上元素の含有率を溶込み深さ方向位置で調整すべ
きであるという結論に到達した。
Table 1 Cooling time for each position of the weld and from the viewpoint of increasing the toughness of the entire weld metal, it is not necessarily appropriate to make the amount of alloying elements uniform throughout the weld metal, and the cooling rate of the weld metal The conclusion was reached that the content of toughness-improving elements should be adjusted depending on the position in the penetration depth direction.

本発明はこうした知見を基に更に研究の結果完成された
ものであって、その構成は、厚内鋼板の突き合わせ部に
深溶込みの部分漬込み電子ビーム溶接法を適用するに当
たり、突き合わせ面の板厚方向の異なった位置に、Ni
を主成分とする溶加材を板厚表面と略平行に複数本挿入
してお(と共に、該溶加材の配置に当たっては、板厚方
向に見た溶加材中Niの加重平均密度分布が板厚表面側
はど高くなる様に配置して溶接することを要旨とするも
のである。
The present invention was completed as a result of further research based on these findings, and its configuration is such that when applying a deep penetration partial immersion electron beam welding method to the butt part of thick steel plates, the plate of the butt surface is Ni at different positions in the thickness direction
A plurality of filler metals whose main component is The main idea is to weld the parts so that they are placed higher on the thicker surface side of the plate.

本発明では、第1表に示[7た如く深溶込みの部分漬込
みEBWによる溶接金属の溶込み深さ方向の冷却速度が
著しく異なってカリ、特に表面側の冷却速度が遅い為に
該表面側の靭性が乏しくなるという確認結果を基に、溶
込み深部から表面側へ行くにつれて、靭性向上元素であ
るN iの含有率が順次高くなる様な濃度勾配が得られ
る様に溶加材を挿入し、冷却速度の違いによる靭性のば
らつきをNi添加示の増減によって調整し、溶接金J’
1全体の靭性を高めたものである。
In the present invention, as shown in Table 1 [7], the cooling rate in the direction of the penetration depth of the weld metal due to deep penetration partial immersion EBW is significantly different. Based on the confirmation result that the toughness of the side becomes poor, the filler metal was used to obtain a concentration gradient in which the content of Ni, which is an element that improves toughness, gradually increases from the deep penetration toward the surface. The weld metal J'
1 has improved overall toughness.

即ち第6図は、従来の部分漬込みEBW(溶加材なし)
で得た溶接金属の溶込み深さ方向のNj含有率及びシャ
ルピー衝撃強度(−55°Cにおける測定値)を示した
もので、供試母材の化学成分は第2表に、溶接条件は第
8表に、又試験片の採取位置は第7図の鎖線で夫々示し
た通りである。
That is, Fig. 6 shows the conventional partially soaked EBW (no filler metal).
Table 2 shows the Nj content and Charpy impact strength (measured at -55°C) of the weld metal obtained in the penetration depth direction.The chemical composition of the test base metal is shown in Table 2, and the welding conditions are Table 8 shows the sampling positions of the test pieces as indicated by the chain lines in FIG.

第6図からも明らかな様に、溶加材を使用しない場合溶
接金属中のNl量は一定であるが、表面側になる程冷却
速度が遅くなる為衝撃値は急激に低Fしている。
As is clear from Figure 6, when no filler metal is used, the amount of Nl in the weld metal is constant, but the impact value rapidly decreases toward the surface because the cooling rate slows down. .

・−力筒8図は、第9図に示す如く厚さ0.1 mry
又は0.2πmのNi箔5と開先表面部に挿入し、上記
と同様にして溶込み深さ方向のN1皿及びシャルピー衝
v値を調べた結果を示したものである。こ。
・-The thickness of the cylinder in Figure 8 is 0.1 mry as shown in Figure 9.
Or, the Ni foil 5 with a thickness of 0.2πm was inserted into the groove surface, and the N1 plate and Charpy impact v value in the penetration depth direction were investigated in the same manner as above. child.

の図からも明らかな様にNi量が多いほど高い衝撃値を
有すると言う訳ではなく、溶接金属の冷却速度に応じた
最適Niff1が存在すると考えられる。
As is clear from the figure, it does not necessarily mean that the higher the Ni content, the higher the impact value, but it is thought that there is an optimum Niff1 depending on the cooling rate of the weld metal.

また第1θ図は、Ni箔に代えてNiワイヤを溶加材と
して開先面へ挿入し、上記と同様にして溶接金属中のN
l量を略一定にしたときのシャルピー衝撃値試験結果を
示したもの(Niワイヤの寸法及び挿入位置は第10図
に併記した通り)である。この図からも、単に溶接金属
中のN1fiを増やしただけで靭性が画一的に向上する
ものでないことを確認することができる。そして冷却速
度の早い深部側ではNiff1が少ない方が高靭性を示
し、冷却速度の遅い表面側ではNiff1の多い方が高
靭性を示すという傾向がうかがわれる。但し表面側とい
えどもNiff1が多すぎた場合は高靭性を得ることが
できず、溶接金属の冷却速度に応じて最適のNiff1
が存在することも明らかである。
In addition, Fig. 1θ shows that Ni wire is inserted into the groove surface as a filler metal instead of Ni foil, and the N in the weld metal is removed in the same manner as above.
This figure shows the results of a Charpy impact test when the amount of 1 was kept approximately constant (the dimensions and insertion position of the Ni wire are as shown in FIG. 10). This figure also confirms that simply increasing N1fi in the weld metal does not uniformly improve toughness. There is a tendency that the lower the Niff1 is on the deep side where the cooling rate is faster, the higher the toughness is, and the higher the Niff1 is on the surface side where the cooling rate is slower, the higher the toughness is. However, if Niff1 is too large even on the surface side, high toughness cannot be obtained, and the optimum Niff1 is determined depending on the cooling rate of the weld metal.
It is also clear that there are

ちなみに第11図は、前記と同じ溶接条件及び供試母材
を使用し、継手の表面側に1.4mmφのNiワイヤを
、又深部側に1.2朋φのNiワイヤを夫夫挿入し、表
面側から深部へ行くに従ってNiの加重平均密度を次第
に小さくした場合のシャルピー衝撃試験結果を示したも
のであり、溶接金属の溶込み深さ方向各部におけるNi
濃度が冷却速度に応じた適正な値となっている為、全体
的に高レベルの衝撃値が得られている。そしてこれらの
実験結果を含めた総括的結論として、溶込み深さの各部
分における適正なNiff1は表面部で約2.5%、中
央部で約2%、底部で約1.5%であることが確認され
た。− この様に本発明では、溶接金属の冷却速度を考慮して表
面側はどNiの加重平均密度が犬きくなる様に開先充填
材のNi含有n1挿入ピンチ及び太さ等を調整してE 
B Viを行なうが、具体的には例えば下記の様な方法
で実施される。即ち第12図は突合せ面への溶加材の挿
入例を示す一部破所見取り図であり、母材1.1の突合
せ面に溶加材挿入用の溝6を形成し、これに円形断面(
或は正方形断面、長方形断面、帯状等であっても勿論か
まオ〕ない)の溶加材5を溶接線に沿って母材表面と略
乎行に複数本挿入し、該溶加材5は表面側のものほど横
断面の大きいものを使用することによって表面側はどN
1添加量が多くなる様に調呉する。或は横断面の等しい
溶加材5を複数本使用17、表面側になる程各溶加材5
の挿入間隔を狭くしたり、更には表面側にはNi含aの
高い溶加材を使用し、深部側にはNi含Rの低い溶加材
を挿入することによってNiの加重平均密度に勾配を持
たせることも可能である。
Incidentally, Fig. 11 shows a welding process using the same welding conditions and sample base material as above, and inserting a 1.4mmφ Ni wire into the surface side of the joint and a 1.2mmφ Ni wire into the deep side. , which shows the Charpy impact test results when the weighted average density of Ni was gradually decreased from the surface side to the deeper part, and the Ni
Since the concentration is an appropriate value according to the cooling rate, a high level of impact value is obtained overall. The overall conclusion, including these experimental results, is that the appropriate Niff1 for each part of the penetration depth is approximately 2.5% at the surface, approximately 2% at the center, and approximately 1.5% at the bottom. This was confirmed. - In this way, in the present invention, the Ni-containing n1 insertion pinch and thickness of the groove filler are adjusted so that the weighted average density of Ni on the surface side becomes higher in consideration of the cooling rate of the weld metal. E
BVi is carried out, and specifically, for example, it is carried out in the following manner. That is, FIG. 12 is a partially broken diagram showing an example of inserting filler metal into the abutting surfaces, in which a groove 6 for inserting the filler metal is formed in the abutting surface of the base material 1.1, and a groove 6 with a circular cross section is formed in this groove. (
Alternatively, a plurality of filler metals 5 having a square cross section, a rectangular cross section, a band shape, etc. (of course it does not matter) are inserted along the welding line approximately parallel to the base metal surface, and the filler metal 5 is By using a material with a larger cross section for the surface side, it is possible to
1 Adjust so that the amount added is large. Alternatively, use a plurality of filler metals 5 with the same cross section 17, each filler metal 5 closer to the surface side.
The weighted average density of Ni can be made gradient by narrowing the insertion interval, or by using a filler metal with high Ni content on the surface side and inserting a filler metal with low Ni content and R on the deep side. It is also possible to have

本発明は概略以上の様に構成されるが、要は深漬込みの
部分漬込みEBWにおいて、冷却速度の遅い溶接金属表
面側のNi′a度が高くなる様な濃度勾配を設けること
によって深部から表面側に亘る溶接金属全体の靭性を高
め、溶接のままでも十分な物性を示すEBW溶接金属を
確保し得ることになった。
The present invention is roughly constructed as described above, but the point is that in deep immersion partial immersion EBW, by providing a concentration gradient such that the Ni'a concentration is higher on the weld metal surface side where the cooling rate is slow, it is possible to reduce the concentration from the deep part to the surface. It has become possible to improve the toughness of the entire weld metal over the sides, and to secure an EBW weld metal that exhibits sufficient physical properties even as welded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1.2図は従来のEBW例を示すもので、第1図はフ
ィラーワイヤ法、第2図はインサートメタル法を示す概
略断面図、第8図は貫通EBW継手、第4図は浅溶込み
EBW継手、第5図は深漬込みEBW継手の各断面略図
、第6図は溶加材熱、シ、で得たEBW継手の板表面か
らの距離とシャルピー衝撃強さ及びN i量の関係を示
すグラフ、第7図は供試材の試験片採取位置を示す説明
図、第8.10図は対照実験結果を示すグラフ、第9図
は対照実験における溶加材の挿入法を示す断面略図、第
11図は本発明で得た溶接金属の試験結果を示すグラフ
、第12図は溶加材の挿入例を示す要部破断見取り図で
ある。 1・・・母材、 2・・・電子ビーム、3・・・溶融プ
ーノペ 4・・・フィラーワイヤ、5・・・溶加材、 
6・・・溝。 第1図 第314 第41ソ1 こ :: 第5図 −′ 第2図 ′1 1 ■ st I ・″ぺ9′−3−・:5.; 99−;、1(/L、)
 、+、1\
Figure 1.2 shows conventional EBW examples, Figure 1 is a filler wire method, Figure 2 is a schematic cross-sectional view showing the insert metal method, Figure 8 is a through-hole EBW joint, and Figure 4 is a shallow welding method. Fig. 5 is a schematic cross-sectional view of a deep-immersion EBW joint, and Fig. 6 shows the relationship between the distance from the plate surface of the EBW joint obtained by heating the filler metal, Charpy impact strength, and Ni content. Figure 7 is an explanatory diagram showing the location of sample collection of the test material, Figures 8 and 10 are graphs showing the results of a control experiment, and Figure 9 is a cross section showing the insertion method of filler metal in the control experiment. FIG. 11 is a graph showing the test results of the weld metal obtained by the present invention, and FIG. 12 is a broken sketch of the main part showing an example of insertion of filler metal. DESCRIPTION OF SYMBOLS 1... Base material, 2... Electron beam, 3... Melting Poonope 4... Filler wire, 5... Melting metal,
6...Groove. Fig. 1 Fig. 314 No. 41 So1 Ko:: Fig. 5 -' Fig. 2'1 1 ■ st I ・″Pe9′-3-・:5.; 99-;, 1 (/L,)
,+,1\

Claims (1)

【特許請求の範囲】[Claims] 厚肉鋼板の突き合わせ部に深溶込みの部分溶込み電子ビ
ーム溶接法を適用するに当たり、突き合わせ面の板厚方
向の異なった位置に、Niを主成分とする溶加材を板厚
表面と略平行に複数本挿入しておくと共に、該溶加材の
配置に当たっては、板厚方向に見た溶加材中Niの加重
平均密度分布が板厚表面側はど高くなる様に配置して溶
接することを特徴とする厚内銅板の部分溶込み電子ビー
ム溶接方法。
When applying the deep-penetration partial penetration electron beam welding method to the butt joints of thick steel plates, filler metal mainly composed of Ni is applied to the butt surfaces at different positions in the thickness direction of the plates. In addition to inserting multiple pieces in parallel, the filler metal is placed so that the weighted average density distribution of Ni in the filler metal as seen in the plate thickness direction is higher on the plate thickness surface side. A partial penetration electron beam welding method for thick copper plates.
JP16364783A 1983-09-05 1983-09-05 Electron beam welding method Pending JPS6054287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16364783A JPS6054287A (en) 1983-09-05 1983-09-05 Electron beam welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16364783A JPS6054287A (en) 1983-09-05 1983-09-05 Electron beam welding method

Publications (1)

Publication Number Publication Date
JPS6054287A true JPS6054287A (en) 1985-03-28

Family

ID=15777916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16364783A Pending JPS6054287A (en) 1983-09-05 1983-09-05 Electron beam welding method

Country Status (1)

Country Link
JP (1) JPS6054287A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8114528B2 (en) * 2006-10-02 2012-02-14 Nippon Steel Corporation Electron beam welded joint excellent in brittle fracture resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8114528B2 (en) * 2006-10-02 2012-02-14 Nippon Steel Corporation Electron beam welded joint excellent in brittle fracture resistance

Similar Documents

Publication Publication Date Title
CA2540955A1 (en) High carbon welding electrode and method of welding with high carbon welding electrode
JPS62289389A (en) Butt welding method of two different metallic article, particularly, two article of intermediate or high carbon content steel, by laser beam
RU2404887C1 (en) Method of welding materials
JP7277834B2 (en) SOLID WIRE FOR WELDING ALUMINUM PLATED STEEL STEEL AND METHOD FOR MANUFACTURING WELD JOINT
JPS6054287A (en) Electron beam welding method
US20070251934A1 (en) High Carbon Welding Electrode and Method of Welding with High Carbon Welding Electrode
KR101242688B1 (en) Laser welding method of silicon steel
JP6065989B2 (en) Steel plate butt welding method and steel plate butt weld joint manufacturing method
WO2019049792A1 (en) Welding method and joining member
JP2002239722A (en) Lap fillet welding method for steel sheet excellent in fatigue strength of weld zone
Amuda et al. Influences of energy input and metal powder addition on carbide precipitation in AISI 430 ferritic stainless steel welds
JP2005048271A (en) Method for welding high-carbon steel material
WO1999008830A1 (en) Method of laser welding of thin sheet metallic components
JP3073629B2 (en) How to strengthen steel
JP2003291030A (en) Electrode wire for wire electrical discharge machining
JP2005319507A (en) Multiple electrodes one side submerged arc welding method
JP3789059B2 (en) Flux-cored wire for TIG welding
JPS6120676A (en) Butt welding method
JPS617090A (en) Composite wire for hard facing welding
JP3884355B2 (en) Laser welded joint of steel
JP3091060B2 (en) How to strengthen steel
WO1981000820A1 (en) Cast iron welding materials
JPH06106381A (en) Filler metal for welding sintered material
KR900004207B1 (en) Manufacturing method of a stainless clad steel
Gurevitch et al. Metallurgical and technological features of titanium alloy welding when using fluxes