JPS6054252B2 - Low expansion sealing composition - Google Patents

Low expansion sealing composition

Info

Publication number
JPS6054252B2
JPS6054252B2 JP11631878A JP11631878A JPS6054252B2 JP S6054252 B2 JPS6054252 B2 JP S6054252B2 JP 11631878 A JP11631878 A JP 11631878A JP 11631878 A JP11631878 A JP 11631878A JP S6054252 B2 JPS6054252 B2 JP S6054252B2
Authority
JP
Japan
Prior art keywords
glass
eucryptite
thermal expansion
linear thermal
sealing composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11631878A
Other languages
Japanese (ja)
Other versions
JPS5542277A (en
Inventor
昭雄 高見
和夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP11631878A priority Critical patent/JPS6054252B2/en
Priority to US06/077,810 priority patent/US4310598A/en
Publication of JPS5542277A publication Critical patent/JPS5542277A/en
Priority to US06/301,860 priority patent/US4352889A/en
Priority to US06/386,811 priority patent/US4374942A/en
Publication of JPS6054252B2 publication Critical patent/JPS6054252B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • C03C8/245Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders containing more than 50% lead oxide, by weight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】 この発明は低膨脹で低融点の、主にICパッケージ等
の封着に用いる封着用組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sealing composition that has low expansion and a low melting point and is mainly used for sealing IC packages and the like.

従来ICパッケージ、表示管の封着やブラウン管のフ
アーネスシールに使用される封着用ガラスは金属部材と
してコバール等の低膨脹金属と、N。
The sealing glass conventionally used for sealing IC packages, display tubes, and furnace seals for cathode ray tubes is made of low-expansion metals such as Kovar and N.

O。を主成分とするセラミック基板を封着する必要から
、A12O。の線熱膨脹係数よりも少さくコバールの線
熱膨脹係数よりも大きな線熱膨脹係数をもち400℃以
下の転移点をもち、電気絶縁性も良好なことが必要であ
つた。然るに従来この用途に用いる低融点ガラスは何れ
も線熱膨脹係数が大きいという欠点があるため、この線
熱膨脹係数を小さくする目的で下記の様な種々のフィラ
ーを添加していな。その一例であるジルコンは耐酸性は
良好であるが、線熱膨脹係数が約45×10−″/℃で
あるため必要な線熱膨脹係数に下げるために添加量を多
くする必要があり、必然的に溶融温度が高くなる難点が
あつた。 別の一例であるチタン酸鉛は線熱膨脹係数は
一60×10−″/℃と負の膨脹を示し、又ガラスの流
動性も良好となるが誘電率が高くなる欠点があつた。
O. A12O is used because it is necessary to seal a ceramic substrate whose main component is A12O. It was necessary to have a coefficient of linear thermal expansion smaller than that of Kovar and larger than that of Kovar, a transition point of 400° C. or less, and good electrical insulation properties. However, all the low melting point glasses conventionally used for this purpose have the disadvantage of having a large coefficient of linear thermal expansion, and therefore various fillers such as those described below have not been added in order to reduce the coefficient of linear thermal expansion. One example is zircon, which has good acid resistance, but has a linear thermal expansion coefficient of approximately 45 x 10-''/°C, so it is necessary to add a large amount to reduce the linear thermal expansion coefficient to the required value. Another example, lead titanate, has a linear thermal expansion coefficient of -60 x 10-''/°C, which is a negative expansion, and although the fluidity of the glass is good, the dielectric constant The disadvantage was that it was expensive.

更に別の一例であるβ−ユークリプタイトは線熱膨脹係
数−120×10−’/℃と最も小さく、このため僅か
な添加量で線熱膨脹係数を小さくする効果があり且つ誘
電率も低いがガラスに添加した場合ガラス中に溶け込み
ガラスの流動性を害し他にβ−ユークリプタイトに含ま
れるLi20がガラスの電気絶縁性を害する難があつた
。 本発明はこれらの欠点を解決するためになされたも
のて厚さ0.8μ以下の酸化錫の表面皮膜を有するβ−
ユークリプタイト粒子3喧量%(以下重量を省く)以下
と残部70%以上が転移点250〜400℃で且つ30
〜2500Cの間の線熱膨脹係数が80〜130×10
−″/℃の低融点ガラスである低膨脹封着用組成物で、
該低融点ガラスがPbOI■、B、0。
β-Eucryptite, which is another example, has the smallest linear thermal expansion coefficient of -120×10-'/°C, so it has the effect of reducing the linear thermal expansion coefficient with a small amount of addition, and has a low dielectric constant, but it has a low dielectric constant, but it has the lowest linear thermal expansion coefficient of -120 x 10-'/℃. When added to the glass, Li20 dissolves in the glass and impairs the fluidity of the glass, and Li20 contained in β-eucryptite impairs the electrical insulation properties of the glass. The present invention has been made to solve these drawbacks, and is intended to solve these problems.
The eucryptite particles have a transition point of 250 to 400°C and 30% or less (weight is omitted below) and the remaining 70% or more.
The linear thermal expansion coefficient between ~2500C is 80~130×10
A low expansion sealing composition which is a low melting point glass of −″/°C,
The low melting point glass is PbOI■, B, 0.

の含量で70%以上を含む低膨脹封着用組成物を提供す
るものでガラスに添加するβ−ユークリプタイト粉末粒
子の表面を酸化錫て被覆することによりβ−ユークリプ
タイト粉末粒子はガラスとの接触が防げられ、従つてガ
ラスに溶解することなく、流動性を害さずにガラスの膨
脹率を低下させ、且つ絶縁性を劣化することも避けられ
る。この場合酸化錫皮膜はガラスの中で安定である。又
β−ユークリプタイト粉末の表面皮製に酸化錫を選んだ
理由はガラス及びβ−ユークリプタイトと反応し難く融
点112rcで本発明の低膨脹封着用組成物の使用温度
より十分に高く、又β−ユークリプタイトの表面に容易
に薄膜を形成する等の諸性質をもつためである。以下実
施例により詳細に説明する。
By coating the surface of β-eucryptite powder particles added to glass with tin oxide, the β-eucryptite powder particles can be added to glass. Therefore, it is possible to avoid melting into the glass, reducing the expansion rate of the glass without impairing its fluidity, and also avoiding deterioration of its insulation properties. In this case, the tin oxide film is stable within the glass. Moreover, the reason why tin oxide was selected for the surface skin of the β-eucryptite powder is that it hardly reacts with glass and β-eucryptite, has a melting point of 112rc, which is sufficiently higher than the operating temperature of the low expansion sealing composition of the present invention, This is also because it has various properties such as easily forming a thin film on the surface of β-eucryptite. This will be explained in detail below using examples.

実施例1 L1203,A1203,及びSiO2の各原料をLi
2O:Al2O3:SiO2の分子比が1:1:2にな
るように配合しアルミナるつぼにて1400′Cの温度
にて3時間保ち溶融したのち冷却しフリットにして90
0℃の温度に5時間再度熱処理し、結晶化させてβーユ
ークリプタイト結晶化物を作成した。
Example 1 Each raw material of L1203, A1203, and SiO2 was
2O:Al2O3:SiO2 was blended so that the molecular ratio was 1:1:2, kept in an alumina crucible at a temperature of 1400'C for 3 hours, melted, cooled, and made into a frit.
It was heat-treated again at a temperature of 0° C. for 5 hours and crystallized to create a β-eucryptite crystallized product.

これをボールミルで粉砕し平均粒径約20μのβ−ユー
クリプタイト粉末とした。次に上記β−ユークリプタイ
ト粉末とオクチル酸錫とを混合した後20(代)/時間
で昇温し600Cで3紛間熱処理することによりβ−ユ
ークリプタイト粉末表面に酸化錫膜を生成させた。その
厚さを第1表に示す。次にこれらの酸化錫の表面皮膜を
有するβ−ユークリプタイト粉末をPbO78%とB2
Oml6%との合量が?%で残部がSlO2で3%とA
]203で3%の低融点ガラス(転移点305℃,線熱
膨脹係数113×10−7/℃)に20%混合して流動
性をもつに至る迄加熱して冷却后線熱膨脹係数,流動性
,電気絶縁性,耐熱衝撃性を測定し第1表に示す。
This was ground in a ball mill to obtain β-eucryptite powder with an average particle size of about 20 μm. Next, after mixing the above β-eucryptite powder and tin octylate, the temperature was raised at 20 (generations)/hour and heat treated at 600C for 3 times to form a tin oxide film on the surface of the β-eucryptite powder. I let it happen. The thickness is shown in Table 1. Next, these β-eucryptite powders having a surface film of tin oxide were mixed with 78% PbO and B2.
What is the total amount with Oml6%? % and the remainder is SlO2 and 3% and A
] 203 with 3% low melting point glass (transition point 305°C, coefficient of linear thermal expansion 113 x 10-7/°C), heated until it has fluidity, and after cooling, the coefficient of linear thermal expansion, fluidity , electrical insulation properties, and thermal shock resistance were measured and are shown in Table 1.

注 ※1走査型電子顕微鏡にて観察測定した。Note *1 Observation and measurement using a scanning electron microscope.

※2測定法は直径12TgL高さ7.7mの円柱プ
レス品を作り焼成温度500℃中に6紛間 保持
して冷却後流動直径を測定した。※3サーデイツプのリ
ード間抵抗は第1図 のリード3A,3Bの間に1
00Vの直流 電圧を印加して1分経過后のリード
間抵 抗を超絶縁計 にて測定。
*2 The measurement method is a cylindrical plate with a diameter of 12TgL and a height of 7.7m.
A molded product was made, and 6 pieces of powder were kept at a firing temperature of 500°C, and the flow diameter was measured after cooling. *3 The resistance between the leads of the 3rd dip is 1 between leads 3A and 3B in Figure 1.
After 1 minute of applying 00V DC voltage, measure the resistance between the leads using a super megohmmeter.

※4 リードを錫メッキ后温度65℃、湿度95%の雰
囲気でリード間に10Vの直流電圧! を印加して2
0C@間経過后のリード間抵 抗を測定した。
*4 After tin plating the leads, a DC voltage of 10V is applied between the leads in an atmosphere with a temperature of 65°C and humidity of 95%! Apply 2
The resistance between the leads was measured after 0C@.

第1表の他にサーデイツプ封着後の拡大鏡観察でNO.
2〜NO.4は異常なかつたが酸化錫皮膜をもたないN
O.l及び酸化錫の被膜の厚さが0.8μを超えzる比
較品NO.5はガラスフローが悪くなつた。
In addition to Table 1, there were NO.
2~NO. 4 is an abnormal N but does not have a tin oxide film.
O. Comparative product No. 1 in which the thickness of the tin oxide film exceeds 0.8μ. 5, the glass flow deteriorated.

第1表から判る様にβ−ユークリプタイト上に酸化錫の
皮膜を設けることにより線熱膨脹係数は低下し、流動性
もよくなり高温高湿にも絶縁抵抗の劣化を起さず耐熱衝
撃性も満足なものであつた。然し比較品NO.l,NO
.5は同じ実験で使用に耐えないことが判つた。実施例
2 実施例1と同じ方法にて平均粒径6μのβ−ユークリプ
タイト粉末を作製した。
As can be seen from Table 1, by providing a tin oxide film on β-eucryptite, the coefficient of linear thermal expansion is reduced, fluidity is improved, insulation resistance does not deteriorate even under high temperature and high humidity, and thermal shock resistance is achieved. It was also satisfying. However, comparison product NO. l, NO
.. 5 was found to be unusable in the same experiment. Example 2 β-eucryptite powder with an average particle size of 6 μm was produced in the same manner as in Example 1.

次に上記β−ユークリプタイト粉末を攪拌しながら2塩
化ジメチル錫を気中600′Cで熱分解させたガスに3
紛間接触させてβ−ユークリプタイト粉末表面に酸化錫
膜を生成させた。次にこれら酸化錫の表面皮膜を有する
β−ユークリプタイト粉末をPbO77%,B2O3l
2%,ZnO7%,Al2O33%,SiO2l%の組
成の低融点ガラス(転移点28σC,線熱膨脹係数11
0×10−7℃−リに20%混合して流動性をもつに至
る迄、加熱して冷却後、線熱膨脹係数、流動性、電気絶
縁性、耐熱衝撃性を測定して第2表に示す。
Next, while stirring the β-eucryptite powder, dimethyltin dichloride was pyrolyzed at 600'C in the air and the gas was added to the gas.
A tin oxide film was formed on the surface of the β-eucryptite powder by intermittent contact. Next, these β-eucryptite powders having a surface film of tin oxide were mixed with 77% PbO and B2O3L.
2%, ZnO7%, Al2O33%, SiO21% low melting point glass (transition point 28σC, linear thermal expansion coefficient 11
Mix 20% of the mixture at 0 x 10-7°C and heat until it has fluidity. After cooling, the coefficient of linear thermal expansion, fluidity, electrical insulation, and thermal shock resistance were measured and shown in Table 2. show.

測定方法は実施例1と同一方法である。第2表の他に実
施例1と同様、サーデイツプ封着後の拡大鏡観察でNO
.7〜NO.9は異常なく、NO.lOではガラス表面
にクラックが認められた。
The measurement method was the same as in Example 1. In addition to Table 2, similar to Example 1, NO.
.. 7~NO. 9 has no abnormality, NO. In IO, cracks were observed on the glass surface.

β−ユークリプタイト上に酸化錫の皮膜を設けた試料N
O.7〜NO.9は実施例1と同様線熱膨脹係数は低下
し、流動性もよく、高温高湿においても絶縁抵抗の劣化
を起さず、耐熱衝撃性も満足なものであつた。
Sample N with tin oxide film on β-eucryptite
O. 7~NO. Sample No. 9 had a lower linear thermal expansion coefficient as in Example 1, had good fluidity, did not cause deterioration of insulation resistance even at high temperature and high humidity, and had satisfactory thermal shock resistance.

然し酸化錫の皮膜をもたないNO.6及び酸化錫の皮膜
の厚さが0.8μを超える比較品NOlOではガラスの
フローボタン径が悪くなつた。
However, NO. does not have a tin oxide film. 6 and the comparison product NOIO in which the thickness of the tin oxide film exceeded 0.8μ had poor glass flow button diameters.

又β−ユークリプタイトの添加量は30%以上では封着
性が悪くなり、高温シールが必要となり、信頼性に欠け
ることがわかつた。
It has also been found that if the amount of β-eucryptite added is 30% or more, the sealing properties deteriorate, high-temperature sealing is required, and reliability is lacking.

以上の如く本発明は電子工業部品に使用される封着用低
融点ガラスとして要求される諸特性を具備し、品質の向
上に貢献するものである。
As described above, the present invention has various properties required as a low melting point glass for sealing used in electronic industrial parts, and contributes to improvement in quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はサーデイツプのリード間抵抗を測定した試料の
斜視図。 1・・・・・・セラミック基板、2・・・・・・低融点
ガラス、3A,3B・・・・・・金属リード。
FIG. 1 is a perspective view of a sample in which the resistance between the leads of the Surdip was measured. 1...Ceramic substrate, 2...Low melting point glass, 3A, 3B...Metal lead.

Claims (1)

【特許請求の範囲】 1 厚さ0.8μ以下の酸化錫の表面皮膜を有するβ−
ユークリプタイト粒子30%以下と残部70%以上が転
移点250〜400℃で且つ30〜250℃の間の線熱
膨脹係数が80〜130×10^−^7/℃の低融点ガ
ラスである低膨脹封着用組成物。 2 特許請求範囲第1項に於て低融点ガラスがPbOと
B_2O_3の合量で70%以上を含むガラスである低
膨脹封着用組成物。
[Claims] 1 β- having a surface film of tin oxide with a thickness of 0.8μ or less
Low melting point glass in which 30% or less of the eucryptite particles and the remaining 70% or more have a transition point of 250 to 400°C and a linear thermal expansion coefficient of 80 to 130 x 10^-^7/°C between 30 and 250°C. Expandable sealing composition. 2. A low expansion sealing composition according to claim 1, wherein the low melting point glass is a glass containing 70% or more of PbO and B_2O_3 in total.
JP11631878A 1978-09-21 1978-09-21 Low expansion sealing composition Expired JPS6054252B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP11631878A JPS6054252B2 (en) 1978-09-21 1978-09-21 Low expansion sealing composition
US06/077,810 US4310598A (en) 1978-09-21 1979-09-21 Coated glass powder having a negative coefficient of linear thermal expansion and a composition containing the same
US06/301,860 US4352889A (en) 1978-09-21 1981-09-14 Tin oxide, titanium oxide and/or zirconium oxide coated β-eucryptite particles having a negative coefficient of linear thermal expansion and sealing compositions containing said particles
US06/386,811 US4374942A (en) 1978-09-21 1982-06-09 Powder having a negative coefficient of linear thermal expansion and a composition containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11631878A JPS6054252B2 (en) 1978-09-21 1978-09-21 Low expansion sealing composition

Publications (2)

Publication Number Publication Date
JPS5542277A JPS5542277A (en) 1980-03-25
JPS6054252B2 true JPS6054252B2 (en) 1985-11-29

Family

ID=14684012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11631878A Expired JPS6054252B2 (en) 1978-09-21 1978-09-21 Low expansion sealing composition

Country Status (1)

Country Link
JP (1) JPS6054252B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58213682A (en) * 1982-06-03 1983-12-12 岩城硝子株式会社 Low temperature sealing composition
JPS5973449A (en) * 1982-10-18 1984-04-25 オ−エンス−イリノイ・インコ−ポレ−テツド Low temperature sealable glass

Also Published As

Publication number Publication date
JPS5542277A (en) 1980-03-25

Similar Documents

Publication Publication Date Title
US6171987B1 (en) Cadmium-free and lead-free glass compositions, thick film formulations containing them and uses thereof
WO2019225335A1 (en) Glass composition and sealing material
JP2016135733A (en) Lead-free glass and sealing material
JP7090838B2 (en) Glass composition and sealing material
WO2020071095A1 (en) Glass composition and sealing material
CN1283575C (en) Glass composition and glass forming material comprising said composition
US3277020A (en) Glass composition and electrical resistance material made therefrom
JP2743332B2 (en) Sealing material
JPS6054252B2 (en) Low expansion sealing composition
WO2020235284A1 (en) Glass composition and sealing material
JPH11116275A (en) Composition for low temperature sealing
CN112262112B (en) Sealing material
WO2021199625A1 (en) Semiconductor element coating glass and semiconductor element coating material using same
JP2021004164A (en) Glass composition and sealing material
WO2022054526A1 (en) Glass composition and sealing material
JPH0419176B2 (en)
JP3125971B2 (en) Low temperature sealing composition
JPS6150890B2 (en)
WO2020262109A1 (en) Glass composition and sealing material
EP4393893A1 (en) Glass composition and sealing material
WO2021166568A1 (en) Glass composition and sealing material
US3700606A (en) Electroconductive glaze and method for preparation
JP2957087B2 (en) Low temperature sealing composition
JP3157695B2 (en) Low temperature sealing composition
JP2021130602A (en) Glass composition and sealing material