JPS6054251A - Production of stainless steel round billet for making pipe - Google Patents

Production of stainless steel round billet for making pipe

Info

Publication number
JPS6054251A
JPS6054251A JP15986483A JP15986483A JPS6054251A JP S6054251 A JPS6054251 A JP S6054251A JP 15986483 A JP15986483 A JP 15986483A JP 15986483 A JP15986483 A JP 15986483A JP S6054251 A JPS6054251 A JP S6054251A
Authority
JP
Japan
Prior art keywords
billet
stainless steel
steel
molten steel
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15986483A
Other languages
Japanese (ja)
Inventor
Takeshi Nakai
中井 健
Yasuo Sugitani
杉谷 泰夫
Sumio Kobayashi
純夫 小林
Yoshiharu Fukushima
福島 佳春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP15986483A priority Critical patent/JPS6054251A/en
Publication of JPS6054251A publication Critical patent/JPS6054251A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/122Accessories for subsequent treating or working cast stock in situ using magnetic fields

Abstract

PURPOSE:To obtain a billet which is free from thickness deviation when made into a pipe by hot extrusion straightly after external machining in the stage of producing the titled billet by a horizontal continuous casting method by stirring electromagnetically the unsolidified molten steel of the billet having the specific liquid phase rate in the stage of solidification. CONSTITUTION:The unsolidified molten steel is stirred at >=5cm/sec stirring flow rate for the molten steel by an electromagnetic stirrer disposed in the position where the liquid phase rate of the stainless steel round billet which is manufactured by a horizontal continuous casting method and is in the stage of solidification. The generation of the deviated columnar crystalline part of the billet is thus prevented and the direction where the columnar crystal grows is made axis- symmetrical approximately uniformly over the entire circumference of the cross section of the billet. The titled billet having a good characteristic is thus obtd. without requiring hot working such as blooming and rolling.

Description

【発明の詳細な説明】 この発明灯、分塊噛圧延等の熱間加工工程を要すること
なく、ステンレス鋼溶鋼から直接、g管用丸ビレットを
製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a method for producing round billets for G-tubes directly from molten stainless steel without requiring hot working steps such as blooming and rolling.

一般に、軟鋼等に比べて熱間加工性に劣るステンレス鋼
の継目無鋼管は、鋼塊或いはブルーム連続鋳造材全分塊
・圧延することによ夕得られるとレツ)を素材とし、ユ
ジーンセジュルネ方式の熱間押出しによって製造される
のが普通であった。
In general, stainless steel seamless pipes, which have inferior hot workability compared to mild steel, are made from steel ingots or bloom continuous castings (obtained by fully blooming and rolling), and are made from Eugene Séjourne. It was commonly manufactured by hot extrusion.

このように、従来採用されていた製管用ステンレス鋼丸
ビレットは、分塊慢圧延或いは鍛造等の熱間加工工程を
経て製造されたものであったので、その内部組織は、再
結晶によって凝固組織の破壊されたものとなってお巾、
従って製管条件さえ正しく選べば、ユジーンセジュルネ
方式の熱間押出しによ勺偏肉が少なく、表面性状の良好
な継目無鋼Vを得ることができたのである。
As described above, the conventional stainless steel round billets used for making pipes were manufactured through hot working processes such as slow blooming rolling or forging, so the internal structure was changed to the solidified structure due to recrystallization. It was destroyed,
Therefore, if the tube manufacturing conditions were selected correctly, it was possible to obtain a seamless steel V with less wall thickness deviation and good surface quality by hot extrusion using the Eugene-Séjournet method.

しかしながら、製管用丸ビレットの製造において、上述
のように一旦熱間加工工程(分塊・圧延、或いは鍛造)
を経ることは多大なコスト上昇を招くものであり、また
高合金鋼等では途中で割れ等が発生しやすく、従来から
大きな問題となっていた。
However, in the production of round billets for pipe making, as mentioned above, the hot working process (blowing, rolling, or forging) is performed once.
This process results in a significant increase in costs, and high alloy steels are prone to cracking during the process, which has been a major problem in the past.

このようなことから、最近では、製管用丸ビレットを直
接溶鋼から連続鋳造する方法が注目され、様々な角度か
らの検討が加えられてきている。
For these reasons, recently, a method of continuously casting round billets for pipe making directly from molten steel has attracted attention, and studies have been conducted from various angles.

その中でも、水平連続鋳造法L1設備費が比較的低廉で
、しかも得られる鋳片に曲げや矯正等の外力が加ってい
ないという利点があり、また、凝固初期に溶鋼静圧が大
きく凝固シェルに作用するため該シェルが均一とな夛、
真円度の良い丸ビレツト全製造することができる点でも
優れておシ、従って、垂直型や彎曲型連続鋳造法では困
難であった通常ステンレス鋼はもちろんのこと、高合金
鋼であっても直接丸ビレットに鋳造することが可能であ
ることから、特に大きな期待を集めていた。
Among them, the horizontal continuous casting method L1 has the advantage that the equipment cost is relatively low, and the obtained slab is not subjected to external forces such as bending or straightening. The shell is uniform because it acts on
It is also excellent in that it can produce round billets with good roundness, and therefore it can be used not only for ordinary stainless steel, but also for high alloy steel, which is difficult to cast using vertical or curved continuous casting methods. It attracted particularly high expectations because it can be directly cast into round billets.

ところが、水平連続鋳造法によって製造したステンレス
鋼丸ビレットを、外削した後そのままユジーンセジュル
ネ方式で熱間押出し製管すると、ビレットの天側(鋳造
時の上方側)に相肖する部分のパイプ肉厚が地側(鋳造
時の下方側)部分に比べて薄くなるという偏肉が発生し
、パイプ不良音引き起すという問題を解決することがで
きなかったのである、 本発明者等は、上述のような観点から、分塊・圧延等の
熱間加工工程を要することなく、ステンレス鋼溶鋼から
、寸法精度の艮好な高品質の継目無鋼管を製管すること
が可能な製管用丸ビレツト全直接的に製造すべく、まず
、前記のような水平連続鋳造法によって製造したステン
レス鋼丸ビレットにみられる製管不良原因の究明を月相
して研究を行い、以下に示す事項全確認した。
However, when a stainless steel round billet manufactured by the horizontal continuous casting method is externally milled and then hot extruded using the Eugene-Séjournet method, the part of the pipe that corresponds to the top side of the billet (the upper side at the time of casting) The inventors of the present invention were unable to solve the problem of uneven wall thickness, which is thinner than the base side (lower side during casting), which causes pipe failure noise. From this point of view, we developed a complete round billet for pipe manufacturing that can produce high-quality seamless steel pipes with excellent dimensional accuracy from molten stainless steel without requiring hot working processes such as blooming and rolling. In order to directly manufacture pipes, we first conducted research to determine the causes of pipe manufacturing defects found in stainless steel round billets manufactured by the horizontal continuous casting method as described above, and confirmed all of the following items.

即ち、水平連続鋳造丸ビレットh、第1図に示すマクロ
組織写真図にみられるように柱状晶の成長方向が軸対象
よシずれて上部側(天側)に偏っておシ、ビレット下部
側(地側)からの柱状晶が中心を通り越して上部側にま
で及んでいる。なお第1図は、5US304ステンレス
鋼を水平連続鋳造して得た丸ビレット(直径: 212
 mm )横断面のマクロ組織写真図である。そして、
このような柱状晶成長方向の偏る理由は、水平連続鋳造
法では一般に地側の冷却能が大きいので、凝固過程にお
けるビレットの内部未凝固溶鋼の温度分布が天側で高く
地側で低くなるという現象のためであると推定されるが
、このように柱状晶の成長方向が不均一であるとビレッ
ト横断面位置における変形抵抗も異なることとhv、従
って、このようなビレットの熱間押出し製管を行うと、
得られるi4イノの肉厚が部位によって異なるという、
いわゆる偏肉が発生することを確認したのである。
In other words, in a horizontally continuously cast round billet h, as seen in the macrostructure photograph shown in Fig. 1, the growth direction of the columnar crystals is deviated from the axis symmetry and is biased toward the upper side (top side), and the billet is lower side. Columnar crystals from the ground side pass through the center and extend to the upper side. Figure 1 shows a round billet (diameter: 212 mm) obtained by horizontal continuous casting of 5US304 stainless steel.
mm) is a cross-sectional macroscopic structure photograph. and,
The reason for this bias in the growth direction of columnar crystals is that in horizontal continuous casting, the cooling capacity is generally greater on the bottom side, so the temperature distribution of the unsolidified molten steel inside the billet during the solidification process is higher on the top side and lower on the bottom side. This is presumed to be due to the phenomenon that if the growth direction of the columnar crystals is non-uniform, the deformation resistance at the cross-sectional position of the billet will also be different. When you do
The thickness of the resulting i4ino differs depending on the part.
It was confirmed that so-called uneven thickness occurs.

第2図は、5US304ステンレス鋼連続鋳造丸ビレツ
ト(直径: 212 ym ) vi:鋳造のままでユ
ジーンセジュルネ方式の熱間押出し製管した際の、ビレ
ットの柱状晶偏向部面積率(%)と得られた鋼管の偏肉
率(%)との関係を示したグラフである。
Figure 2 shows the area ratio (%) of the deflected columnar crystals of a 5US304 stainless steel continuously cast round billet (diameter: 212 ym) vi: when hot extrusion tubes were made using the Eugene Séjournet method as cast. It is a graph showing the relationship with the thickness unevenness rate (%) of the obtained steel pipe.

なお、柱状晶偏向部面積率とは、ビレット横断面のマク
ロ組織を模式的に示した第3図において、ビレット横断
面全面積に対する柱状晶偏向部の全面積(第3図におけ
るAI +Aaの面積)の割合、つまう、 で表わされるものである。そして、第3図からも、柱状
晶の偏向部面積率が大きくなるにつれて得られる鋼管の
偏肉率が高くなることが明らかである。
In addition, the area ratio of the columnar crystal deflection portion is the total area of the columnar crystal deflection portion (the area of AI + Aa in FIG. 3) relative to the total area of the billet cross section in FIG. ) is expressed as the ratio of It is also clear from FIG. 3 that as the area ratio of the deflected portion of columnar crystals increases, the uneven thickness ratio of the obtained steel pipe increases.

そこで、本発明者等は、水平連続鋳造法によってステン
レス鋼丸ビレツ) k ’1 ”&する際、柱状晶偏肉
部発生を防止するために、柱状晶の成長方向がビレット
横断面全周にわたってほぼ均一な軸対称となるようにす
る手段?見出し、もって製管した場合に偏肉の少ない製
管用ステンレス鋼丸ビレツト全鋳造材のままで実現すべ
く更に研究全型ねた結果、以下(a)〜(e)に示す如
き知見を得るに至ったのである。即ち、 (a) 水平連続鋳造法においてステンレス鋼丸ビレツ
)f製造する場合、丸ビレツト鋳片の凝固があまシ進行
していない領域において電磁撹拌にて溶鋼を撹拌すると
、丸ビレツト鋳片内部の未凝固溶鋼の天・地間の温度分
布が均一となって柱状晶成長方向が軸対称となり、丸ビ
レツト横断面全周にわたってほぼ均一なマクロ組織が得
られること、(b) この場合、電磁撹拌装置の配置位
置を凝固過程にあるビレット鋳片の液相率が30%以上
である位置にしないと、柱状晶の成長方向均一化効果が
得られないこと。なお、この場合の液相率とは、ビレッ
ト鋳片の未凝固部半径を鋳片半径で割シ、自乗したもの
を云ν。
Therefore, in order to prevent the occurrence of uneven thickness of the columnar crystals when producing stainless steel round billets by horizontal continuous casting method, the present inventors have determined that the growth direction of the columnar crystals extends over the entire circumference of the cross section of the billet in order to prevent the occurrence of uneven thickness of the columnar crystals. We found a way to achieve almost uniform axial symmetry, and as a result of further research to realize a stainless steel round billet for pipe manufacturing with less uneven thickness when pipe-manufactured using a completely cast material, we found the following (a) ) to (e). That is, (a) When manufacturing stainless steel round billets using the horizontal continuous casting method, the solidification of round billet slabs does not progress at all. When the molten steel is stirred by electromagnetic stirring in the round billet slab, the temperature distribution between the top and bottom of the unsolidified molten steel inside the round billet slab becomes uniform, and the direction of columnar crystal growth becomes axially symmetrical, almost all around the cross section of the round billet. (b) In this case, unless the electromagnetic stirring device is placed at a position where the liquid phase ratio of the billet slab in the solidification process is 30% or more, the growth direction of columnar crystals will be uniform. The liquid phase ratio in this case is defined as the radius of the unsolidified part of the billet slab divided by the slab radius and squared.

第4図は、電磁撹拌全開始する位置での丸ビレツト鋳片
(材質:5US304鋼、直径:212、、)の液相率
と、前記柱状晶の偏向部面積率との関係を示すグラフで
あるが、第4図からも、電磁撹拌位置の液相率が大きい
ほど、即ち電磁撹拌装置の配置位置が鋳型に近いほど柱
状晶の側内面積率は減少しておシ、特に液相率:30%
以上の位置で撹拌すると効果の大きいことがわかる。そ
して、このような事実から、柱状晶の成長方向は液相率
の高い領域(凝固シェル厚のホさい部分)で決められて
しまい、一旦成長した柱状晶の方向は、後の部分で未凝
固溶鋼を撹拌したとしても修正し難いものであるという
ことも推察できる。
Figure 4 is a graph showing the relationship between the liquid phase ratio of a round billet slab (material: 5US304 steel, diameter: 212 mm) at the position where electromagnetic stirring is fully started and the deflection area ratio of the columnar crystals. However, as shown in Figure 4, the larger the liquid phase ratio at the electromagnetic stirring position, that is, the closer the electromagnetic stirring device is placed to the mold, the smaller the inner area ratio of columnar crystals becomes. :30%
It can be seen that stirring at the above positions is highly effective. Based on this fact, the growth direction of columnar crystals is determined by the region with a high liquid phase ratio (the part where the solidified shell thickness is large), and the direction of the columnar crystals once grown is determined by the unsolidified part in the later part. It can also be inferred that it is difficult to correct even if the molten steel is stirred.

つ丑シ、ビレット鋳片の液相率が30%以上の部分で未
凝固溶鋼を撹拌すると、第4図から明らかなように柱状
晶偏向部面積率が20%以下となり、また特に鋳型近傍
位置で撹拌するとこれが5%以下となって、第2図に示
したように製管された鋼管の偏肉が大幅に減少し、通常
の圧延ビレットなみとなること、 (C)シかしながら、未凝固溶鋼撹拌位置が適正であっ
たとしても、電磁撹拌の強度が弱いと柱状晶の成長方向
均一化は困難であるが、適正位置にて未凝固溶鋼全溶鋼
撹拌流速: 5t7n/ sec以上で撹拌すると、柱
状晶の成長方向と丸ビレツト鋳片の法線方向の角度の差
θの、内周方向全域における最大値と最小値の差が20
度以下という、極めて均一な鋳造組織が得られること、 (d) 上述のように、鋳型近傍にて未凝固溶鋼を電磁
撹拌して凝固初期における鋳片未凝固部大・地の温度差
を減少するとともに、電磁撹拌の強度を溶鋼撹拌流速で
5 cm/ sec以上として、丸ビレツト鋳片表皮か
らの柱状晶の成長方向と鋳片の法線方向との角度の差を
、鋳片全周にわたるその最大値と最小値の差が20度以
内になるように抑制すると、得られたステンレス鋼丸ビ
レツト鋳片を鋳造のままでユジーンセジュルネ方式にて
製管したとしても、偏肉率が通常圧延材ビレットとほぼ
同レベルに収すること、 (e) また、鋳造のま葦のヒレット全直接押出製管す
ると、特に高合金鋼の場合には表面肌の不良音引き起し
やすいが、このようなときにはビレット表面近傍全軽圧
下するのが有効である。しかしながら、この場合でも内
部には依然として粗大柱状晶が存在するので、従来の水
平連続鋳造で製造したビレットでけやはりM’ll不良
を引き起すが、前述のように適正位置で適正強度の電磁
撹拌を行いながら製造した水平連続鋳造ビレットでは、
表面肌劣化を防止するために表面近傍のみに軽圧下を加
えた高合金鋼製のものであっても、偏肉全極力抑えた製
管が可能であること。
When unsolidified molten steel is stirred in a part of a billet slab where the liquid phase ratio is 30% or more, as is clear from Figure 4, the area ratio of the columnar crystal deflection part becomes 20% or less, and especially in the vicinity of the mold. (C) While stirring, this becomes less than 5%, and as shown in Figure 2, the uneven wall thickness of the manufactured steel pipe is greatly reduced, and it becomes comparable to a normal rolled billet. Even if the stirring position of unsolidified molten steel is appropriate, it is difficult to uniformize the growth direction of columnar crystals if the strength of electromagnetic stirring is weak. When stirring, the difference between the maximum and minimum values of the angle θ between the growth direction of columnar crystals and the normal direction of the round billet slab in the entire inner circumferential direction becomes 20.
(d) As mentioned above, the unsolidified molten steel is electromagnetically stirred near the mold to reduce the temperature difference between the unsolidified part of the slab and the ground in the early stage of solidification. At the same time, the strength of the electromagnetic stirring was set to a molten steel stirring flow rate of 5 cm/sec or more, and the difference in angle between the direction of growth of columnar crystals from the skin of the round billet slab and the normal direction of the slab was adjusted over the entire circumference of the slab. If the difference between the maximum value and the minimum value is suppressed to within 20 degrees, even if the resulting stainless steel round billet slab is made into pipes using the Eugene-Séjournet method as cast, the thickness deviation rate will be normal. (e) In addition, when the fillet of cast reed is completely directly extruded, it is easy to cause surface roughness, especially in the case of high-alloy steel; In such cases, it is effective to lightly reduce the entire area near the billet surface. However, even in this case, coarse columnar crystals still exist inside the billet, which will still cause M'll defects in billets manufactured by conventional horizontal continuous casting, but as mentioned above, electromagnetic stirring with appropriate strength at the appropriate position In the horizontal continuous casting billet produced by
Even if the pipe is made of high-alloy steel with light reduction applied only near the surface to prevent surface deterioration, it is possible to manufacture pipes with minimal thickness deviation.

この発明は、上記知見に基ついてなされたものであシ、 凝固過程にある鋳片の液相率=30%以上の位置に配置
した電磁撹拌装置により溶鋼撹拌流速;5crn/se
c以上で未凝固溶鋼を撹拌する工程を含む水ザ連続鋳造
にて、ステンレス鋼溶鋼を連続的に丸ビレツト鋳片とす
ることによシ、鋳造のままで製管したとしても偏肉の少
ない良品質の継目無鋼管を得ることのできる製管用ステ
ンレス鋼丸ビレットを製造する点に特徴を有するもので
ある。
This invention has been made based on the above knowledge, and the present invention is based on the above-mentioned findings.The present invention is based on the above-mentioned findings.
Continuous water heater casting, which involves stirring unsolidified molten steel at a temperature of c or more, allows molten stainless steel to be continuously formed into round billet slabs, resulting in less uneven thickness even when pipes are made as cast. This method is characterized in that it manufactures stainless steel round billets for pipe making that can yield seamless steel pipes of good quality.

なお、ここで液相率とは、前述したように未凝固鋳片の
未凝固部半径全ビレット半径で割シ、その商を自乗した
ものである。
Note that, as mentioned above, the liquid phase ratio here is the ratio of the radius of the unsolidified part of the unsolidified slab divided by the total billet radius, and the quotient is squared.

また、ここで言うステンレス鋼とは、広義に定義される
ものを言い、合金元素量:5%以上の酊銹、#f酸、耐
酸化性又は耐熱性をもった合金鋼のすべてを意味するも
のであシ、例えばs ty s 304mや5US31
6鋼に代表されるクラスのステンレスf+M (i7前
記方法によって鋳造してビレットとし、鋳造のま1で直
接押出すと、それだけで十分に良好な寸法精度と表面性
状の鋼管を得られるが、更に平滑な表面を必要とする場
合や、高合金鋼の場合には、ビレットの表皮部から1 
mm以上の深さに軽圧下等を施して表層部を微細化すれ
ば、所望の良好な表面性状を実現することができる。
Furthermore, the term "stainless steel" as used herein is defined in a broad sense, and refers to all alloy steels with an alloying element content of 5% or more, resistant to #f acid, oxidation resistant, or heat resistant. For example, s ty s 304m or 5US31
Class stainless steel f+M (i7) represented by No. 6 steel (i7) If the method described above is used to cast into a billet and then directly extruded from the casting mill, a steel pipe with sufficiently good dimensional accuracy and surface quality can be obtained. When a smooth surface is required or in the case of high-alloy steel, it is necessary to
By applying light reduction or the like to a depth of mm or more to make the surface layer finer, a desired good surface quality can be achieved.

以上のように、この発明は、水平連続鋳造C(おいて未
凝固鋳片全適正な条件で電磁撹拌することによシ、柱状
晶の成長方向全全R,jでほぼ均一として変形抵抗の位
置による差に!少し、製管時にパイプの偏肉を来たさな
い連続鋳造ステンレス鋼丸ビL/ットを製造することに
関するものであるが、電磁撹拌装置は、小型に納めるた
め、或いは保守の点から、永久磁石全周方向に回転する
永久磁石回転方式とするのが有オUである、。
As described above, the present invention achieves almost uniform deformation resistance in the entire growth direction R,j of columnar crystals by electromagnetically stirring the entire unsolidified cast slab under appropriate conditions in horizontal continuous casting C (C). Differences depending on position! This is related to manufacturing continuous cast stainless steel round pipes that do not cause uneven wall thickness during pipe manufacturing. From the viewpoint of maintenance, it is best to use a permanent magnet rotation system in which the permanent magnet rotates in the entire circumferential direction.

次に、この発明の方法において、電磁撹拌装置の配置位
置、及び溶鋼撹拌流速を前記のようTic数値限定した
理由を説明する。
Next, in the method of this invention, the reason why the arrangement position of the electromagnetic stirring device and the molten steel stirring flow rate are limited to the Tic value as described above will be explained.

A)電磁撹拌装置の配置位置 第4図からも明らかなように、電磁撹拌装置の配置位置
が鋳片の液相率:30%を下回る部分であると柱状晶の
偏向部分が極端に大きくなり、製管時に偏肉を発生する
のに対し1、鋳片の液相率が30%す、上の位置に電磁
撹拌装置を配置すると柱状晶の成長方向の均一化が格段
に向上して製管時の偏肉発生が抑えられることがら、電
磁撹拌装置の配置位置金、鋳片の液相率:30%以上の
位置と定めた。
A) Placement position of the electromagnetic stirring device As is clear from Figure 4, if the placement position of the electromagnetic stirring device is below the liquid phase ratio of the slab of 30%, the deflected portion of the columnar crystals becomes extremely large. 1.The liquid phase ratio of the slab is 30%, whereas uneven thickness occurs during pipe manufacturing.If an electromagnetic stirring device is placed in the upper position, the uniformity of the growth direction of the columnar crystals is greatly improved. The electromagnetic stirrer was placed at a position where the liquid phase ratio of the gold and slab was 30% or more, in order to suppress the occurrence of uneven thickness in the tube.

B)溶鋼撹拌流速 溶鋼撹拌流速が5 cm/ sec木硲では、柱状晶の
成長方向均一化が困難であって、柱状晶の成長方向と丸
鋳片の法線方向との角度の差θの、円周方向における最
大値と最小値の差が20度を越えてしまい、製管の際に
偏肉を生ずるようになることから、溶鋼撹拌流速k 5
 on/ sec以上と定めた。
B) Molten steel stirring flow rate When the molten steel stirring flow rate is 5 cm/sec, it is difficult to make the growth direction of columnar crystals uniform, and the difference θ between the angle between the growth direction of columnar crystals and the normal direction of the round slab is , the difference between the maximum value and the minimum value in the circumferential direction exceeds 20 degrees, which causes uneven thickness during pipe manufacturing, so the molten steel stirring flow rate k 5
on/sec or more.

次いで、この発明全実施例により比較例と対比しながら
説明する。
Next, all embodiments of the present invention will be explained in comparison with comparative examples.

実施例 水平連続鋳造機によって、鋳込速度: 0.7m/mi
nで5US304鋼及びインコロイ800 (商椋名:
20Cr−32Ni鋼)をそれぞれ鋳込み、各々径が2
12鴫の丸ビレツ14−鋳造した。このときの溶鋼量は
20トンであり、約100分の鋳込時間で約70mのビ
レットが得られた。
Example Casting speed: 0.7 m/mi by horizontal continuous casting machine
N5US304 steel and Incoloy 800 (Shop name:
20Cr-32Ni steel), each with a diameter of 2
12-shaped round billet 14-cast. The amount of molten steel at this time was 20 tons, and a billet of about 70 m was obtained in about 100 minutes of casting time.

電磁撹拌装置は永久磁石回転式を用い、第1表に示す条
件で種々位置を変え、また一部電磁撹拌強度を変更して
鋳込みを行った。
A permanent magnet rotating type electromagnetic stirring device was used, and casting was carried out under the conditions shown in Table 1 with various positions and some changes in the electromagnetic stirring intensity.

第1表に示す条件A及びBは鋳型的電磁撹拌であり、摩
件C〜Fは2次冷却帯及び放冷帯に電磁撹拌装置を配置
して撹拌を行ったものである。
Conditions A and B shown in Table 1 are mold-like electromagnetic stirring, and conditions C to F are cases in which electromagnetic stirring devices are placed in the secondary cooling zone and the cooling zone.

そして、第2表に示したように、条件A−Fについては
SU^304鋼を鋳込み、条件A及びEに関してはイン
コロイ800(商標名)を鋳込んだ。
As shown in Table 2, SU^304 steel was cast for conditions A to F, and Incoloy 800 (trade name) was cast for conditions A and E.

得られたビレットは、黒皮を削って、外径:206 m
 、内径:28咽、長さ=480胴の寸法に形を整えた
後、ユジーンセジュルネ方式の製管により熱間押出しし
て、外径: 83 m 、内径;59 mn 、肉厚:
12mの継目無鋼管を製造した。
The resulting billet has an outer diameter of 206 m by cutting off the black skin.
, Inner diameter: 28mm, Length = 480mm After shaping to the dimensions of the body, it was hot extruded using the Eugene-Séjournet method of pipe making, and the outer diameter: 83m, the inner diameter: 59mn, and the wall thickness:
A 12m seamless steel pipe was manufactured.

ナオ、インコロイ800(商標名)については、一部ビ
レットの軽圧下を行い、表皮層の微細化を図ってから製
管に供した。
Regarding NAO and Incoloy 800 (trade name), part of the billet was subjected to light pressure reduction to make the skin layer finer, and then used for pipe production.

仁のような処理の過程で測定したビレットの柱状晶偏向
部面積率、及び得られた鋼管の偏肉率と表面性状を第2
表に示す。
The area ratio of the columnar crystal deflection part of the billet measured during the grain-like treatment process, and the thickness unevenness ratio and surface texture of the obtained steel pipe were measured in the second
Shown in the table.

第2表に示される結果からも、!磁撹拌装置の配置位置
をビレットの液相率:30%以上の場所とし、かつ撹拌
強度ヲ浴鋼流速で5 cm/ see以上として水平連
続鋳造を行って得たビレットは、柱状晶が規則正しく成
長して吃・り、製管した場合の鋼管偏肉率が10%以下
と良好な性状を示すことが明らかであQ1得られた鋼管
の表面性状も良好なものであることがわかる。
From the results shown in Table 2,! Billets obtained by horizontal continuous casting with the magnetic stirrer placed at a location where the liquid phase ratio of the billet is at least 30%, and the stirring strength and bath steel flow rate at least 5 cm/see, have columnar crystals that grow regularly. It is clear that the steel pipe obtained by this method shows good properties with a thickness unevenness ratio of 10% or less when the pipe is manufactured, and it can be seen that the surface quality of the steel pipe obtained from Q1 is also good.

なお、第5図は、試験番号1の本発明法によって得られ
た水平連続鋳造ビレットのマクロ組織写真図であるが、
第5図からも、本発明法によると規則正しく柱状晶が成
長した水平連続鋳造ビレットを得られることが明白であ
る。
In addition, FIG. 5 is a macrostructure photograph of the horizontal continuous casting billet obtained by the method of the present invention in test number 1.
It is clear from FIG. 5 that according to the method of the present invention, a horizontal continuous casting billet in which columnar crystals grow regularly can be obtained.

これに対して、液相率か30%未満の位い゛に電磁撹拌
装置を配置した場合や、撹拌強度が低い場合には、得ら
れた水平連続鋳造ピレノ)k製管すると偏肉が大きく現
われ、パイプ不良が多発することも第2表から明らかで
ある。
On the other hand, if the electromagnetic stirring device is placed at a liquid phase ratio of less than 30%, or if the stirring intensity is low, the resulting horizontal continuous casting pipe will have a large thickness deviation. It is also clear from Table 2 that pipe defects occur frequently.

このように、水平連続鋳造においてステンL/ス鋼丸ビ
レットを製造するに際し、電磁撹拌装置をモールド入口
部になるべく近づけて配置することにより、初期凝固に
おける柱状晶の成長方向’lr一様とすることができ、
従って得られたビレット金製管した場合には偏肉が通常
材レベルとなるのである。
In this way, when manufacturing stainless L/S steel round billets by horizontal continuous casting, by placing the electromagnetic stirring device as close as possible to the mold entrance, the growth direction of columnar crystals during initial solidification can be made uniform. It is possible,
Therefore, when the resulting billet metal tube is made, the uneven thickness is on the same level as that of ordinary material.

壕だ、この実施例では、供試鋼として2鋼種のみ葡選ん
だが、他のフェライト系ステンレス鋼。
In this example, only two types of steel were selected as test steels, but other ferritic stainless steels were used.

マルテンサイト系ステンレス鋼、オーステナイト系ステ
ンレス鋼にもとよシ、合金元素:5%以上を含んだとこ
ろの、いわゆる広義のステンレス鋼のいずれに本発明方
法を適用しても良好な結果が得られることは、前述した
通シである。そして、ビレットサイズも任意に選択し得
ることももちろんのことである。
Good results can be obtained by applying the method of the present invention to any of the so-called broadly defined stainless steels, including martensitic stainless steel and austenitic stainless steel, as well as those containing 5% or more of alloying elements. This is the general rule mentioned above. It goes without saying that the billet size can also be selected arbitrarily.

上述のように、この発明によれば、分塊・圧延等の熱間
加工工程を要することなく、性状の良好な製管用ステン
レス鋼丸ビレットiコスト安く製造することができ、良
品質の継目無鋼管の製造能率全大幅に上昇することが可
能となるなど、工業上有用な効果かもたらきれるのであ
る。
As described above, according to the present invention, it is possible to manufacture stainless steel round billets for pipe making with good properties at low cost without requiring hot working steps such as blooming and rolling, and to produce high-quality seamless billets. This can bring about industrially useful effects, such as making it possible to significantly increase the overall manufacturing efficiency of steel pipes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図に従来の水平連続鋳造によって製造されたステン
レス鋼丸ビレツト横断面のマクロ組織写真図、第2図は
鋳造ビレットり柱状晶偏向部面積率と製管された鋼管の
偏肉率との関係を示したグラフ、第3図は水平連続鋳造
ビレット横断面マクロ組織全模式的に示したところの「
偏向部面積率」全説明するための図、第4図は電磁撹拌
装置配置位置での丸ビレツト鋳片の液相率と柱状晶偏向
部面積率との関係全示すグラフ、第5図は本発明の方法
によって得られたステンレス鋼丸ビレツト横断面のマク
ロ組織写真図である。 出願人 住友金属工業株式会社 代理人 富 1)和 夫 ほか1名 第 1図 第2図 イミtイ人14フーイ廂F力7ンf#I’4匠(%ン第
3図 勉4図 L′シツI−レyネ13P(%ン 年5 久al −゛゛j
Figure 1 shows a macrostructure photograph of a cross section of a stainless steel round billet manufactured by conventional horizontal continuous casting, and Figure 2 shows the relationship between the area ratio of the columnar grain deflection area of the cast billet and the uneven thickness ratio of the manufactured steel pipe. A graph showing the relationship, Figure 3, is a schematic representation of the horizontal continuous casting billet cross-sectional macrostructure.
Figure 4 is a graph showing the relationship between the liquid phase ratio of a round billet slab and the area ratio of columnar crystal deflection areas at the location of the electromagnetic stirrer. FIG. 2 is a photograph of the macrostructure of a cross section of a stainless steel round billet obtained by the method of the invention. Applicant Sumitomo Metal Industries Co., Ltd. Agent Tomi 1) Kazuo and 1 other person Figure 1 Figure 2 Imitinto 14 Fui 2F Force 7f #I'4 Takumi (%n Figure 3 Tsutomu 4 Figure L) 'Situ I-Reyne 13P (%n year 5 Kual -゛゛j

Claims (1)

【特許請求の範囲】[Claims] 凝固過程にある鋳片の液相率二3oチ以上の位置に配置
した電磁撹拌装置により溶鋼撹拌流速:6 cm/ 5
60以上で未凝固溶鋼を撹拌する工程を含む゛ 水平連
続鋳造にて、ステンレス鋼溶鋼を連続的に丸ビレツト鋳
片とすること全特徴とする、製管用ステンレス鋼丸ビレ
ットの製造方法。
The molten steel is stirred at a flow rate of 6 cm/5 by an electromagnetic stirring device placed at a position where the liquid phase ratio of the slab in the solidification process is 23° or more.
A method for manufacturing stainless steel round billets for pipe making, which includes the step of stirring unsolidified molten steel at a temperature of 60° C. or higher.
JP15986483A 1983-08-31 1983-08-31 Production of stainless steel round billet for making pipe Pending JPS6054251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15986483A JPS6054251A (en) 1983-08-31 1983-08-31 Production of stainless steel round billet for making pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15986483A JPS6054251A (en) 1983-08-31 1983-08-31 Production of stainless steel round billet for making pipe

Publications (1)

Publication Number Publication Date
JPS6054251A true JPS6054251A (en) 1985-03-28

Family

ID=15702881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15986483A Pending JPS6054251A (en) 1983-08-31 1983-08-31 Production of stainless steel round billet for making pipe

Country Status (1)

Country Link
JP (1) JPS6054251A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337933A (en) * 1986-07-31 1988-02-18 積水化学工業株式会社 Manufacture of ceramic foam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337933A (en) * 1986-07-31 1988-02-18 積水化学工業株式会社 Manufacture of ceramic foam
JPH0456796B2 (en) * 1986-07-31 1992-09-09 Sekisui Chemical Co Ltd

Similar Documents

Publication Publication Date Title
EP0560210B1 (en) Compound roll and method of producing same
CN114643280B (en) Hot rolling method of niobium-containing austenitic stainless steel section
US5832984A (en) Method of producing long steel products
JP2007307574A (en) Continuous casting method of billet
JPS6054251A (en) Production of stainless steel round billet for making pipe
JPS6233009B2 (en)
JP3215573B2 (en) Continuous casting method of nickel-containing steel
JP2002346710A (en) Continuous casting and rolling method
JP3039369B2 (en) Method for producing Ni-containing steel
JPS5877743A (en) Ingot making method for alloy steel containing niobium
JP3533834B2 (en) Method for producing round billet for producing Cr-containing seamless steel pipe with good workability
JPH10128510A (en) Method for continuously casting steel
JPH0890182A (en) Method for continuously casting wide and thin cast slab
JP2003103352A (en) Centrifugal casting method
JP2944476B2 (en) Continuous forging method that prevents surface cracks in slabs
JP3348667B2 (en) Manufacturing method of round billet slab by continuous casting
JP2000094101A (en) Continuously cast slab, continuous casting method thereof and production of thick steel plate
JP3329305B2 (en) Continuous casting method of round billet slab
JP3006954B2 (en) Method for producing austenitic stainless steel cold rolled sheet having excellent surface quality and cold rolled sheet
JPS60187426A (en) Manufacture of seamless stainless steel pipe
JPH03166345A (en) Manufacture of ni-base alloy thin sheet
JPS5924558A (en) Production of stainless steel billet
JPH0852555A (en) Eccentric solidified continuous casting method of seamless steel pipe base stock and production of seamless steel pipe
JPS62101354A (en) Casting method for copper and copper alloy
US994326A (en) Method of producing steel bars and plates.