JPS605389B2 - Flash welding power waveform adjustment method and device - Google Patents

Flash welding power waveform adjustment method and device

Info

Publication number
JPS605389B2
JPS605389B2 JP218078A JP218078A JPS605389B2 JP S605389 B2 JPS605389 B2 JP S605389B2 JP 218078 A JP218078 A JP 218078A JP 218078 A JP218078 A JP 218078A JP S605389 B2 JPS605389 B2 JP S605389B2
Authority
JP
Japan
Prior art keywords
welding
capacitor
flash
voltage
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP218078A
Other languages
Japanese (ja)
Other versions
JPS5495948A (en
Inventor
桓友 山崎
幹雄 山中
亨 斉藤
良和 石野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP218078A priority Critical patent/JPS605389B2/en
Publication of JPS5495948A publication Critical patent/JPS5495948A/en
Publication of JPS605389B2 publication Critical patent/JPS605389B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Arc Welding Control (AREA)

Description

【発明の詳細な説明】 本発明は、フラッシュ溶接において良好な溶接製品を得
るための溶接電源波形の調整法及びその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for adjusting a welding power source waveform in order to obtain a good welded product in flash welding.

一般にフラッシュ溶接においては、その電源として商用
周波数の単相交流が用いられるが、この場合各正弦波形
半サイクルのうち電圧の高い区間でのみフラッシュが発
生し、各電圧波形の極性の切換わるゼロクロス点前後の
かなり長い区間にわたっては電圧が不充分でフラッシン
グは休止する。この休止期間中も被溶接物同志の突合せ
は移動電極により進行しており、その間に短絡面積が増
大し、該休止後に最初に発生するフラッシュはこの大短
絡部を溶断するため粗大フラッシュになり溶接端面が荒
れるほか、通常フラッシュ溶接は大気中で行うため該フ
ラッシュの休止期間中には非接触部の酸化が進むなど溶
接結果に悪い結果を及ぼす。これらの難点を克服するた
め電源波形を矩形波にすると連続的なフラッシュの発生
がみられ、良好な溶接成品が得られることはすでに公知
である。しかしながらフラッシュ熔接用電源としての矩
形波を得るためには、商用電源から順変換装置により一
旦直流を得、更にこれをィンバータ等により正負に切換
えて矩形波電源とするなど装置が複雑で高価になる欠点
があった。本発明者らは矩形波電源によるものと実質的
に同等の溶接品質を得ることを前提条件にして該電源装
置の簡素化に努めてきたが、各正弦波交流電圧波形の電
圧の低い期間のトランスへの通電をあらかじめ充電され
たコンデンサからの放電によって行うことにより、矩形
波電源によるものと実質的に同等の溶接品質のものが得
られるという知見を得た。
Generally, in flash welding, single-phase alternating current at commercial frequency is used as the power source, but in this case, flash occurs only in the high voltage section of each sine wave half cycle, and the zero cross point where the polarity of each voltage waveform changes. Flushing stops due to insufficient voltage over a fairly long section before and after. Even during this pause period, the objects to be welded are brought together by the moving electrode, and during this period the short circuit area increases, and the first flash that occurs after the pause is a coarse flash because the large short circuit part is fused and welded. In addition to roughening of the end face, since flash welding is usually performed in the atmosphere, oxidation of non-contact parts progresses during the period when the flash is not in use, which has a negative effect on the welding result. It is already known that if the power supply waveform is made into a rectangular wave in order to overcome these difficulties, a continuous flash will occur and a good welded product can be obtained. However, in order to obtain a square wave as a power source for flash welding, the equipment is complicated and expensive, as it requires first obtaining direct current from a commercial power source using a forward converter, and then switching it between positive and negative using an inverter etc. to create a square wave power source. There were drawbacks. The present inventors have endeavored to simplify the power supply device with the prerequisite of obtaining welding quality substantially equivalent to that of a rectangular wave power source. It has been found that by energizing the transformer by discharging from a pre-charged capacitor, it is possible to obtain welding quality that is substantially equivalent to that obtained using a square wave power source.

すなわち本発明は溶接トランスの一次側に挿入された2
組のコンデンサの充放電を制御することにより、電源の
交流電圧の各正弦波半サイクルの電圧の高い期間におい
ては商用電源から溶接トランスへの通電と該コンデンサ
への充電を行い、また交流電圧の各正弦波半サイクルの
電圧の低い期間においては該コンデンサからの放電電流
によって熔接トランスへの通電を行うことを特徴とする
フラッシュ溶接の電源波形調整法、および同方法を実施
するための装置として、逆並列に接続された2組のサィ
リスタ又はイグナイトロンを介して商用電源から熔接ト
ランスへ通電するフラッシュ溶接装置において、コンデ
ンサ及びその放電制御装置を直列に接続した2組のコン
デンサ充放電回路を相互に逆向きに溶接トランスの1次
側捲線と並列に接続したことを特徴とするフラッシュ溶
接の電源波形調整装置を提供するものである。
In other words, the present invention has two
By controlling the charging and discharging of the set of capacitors, during the high voltage period of each sine wave half cycle of the AC voltage of the power supply, the welding transformer is energized from the commercial power source and the capacitor is charged, and the AC voltage is A flash welding power waveform adjustment method characterized in that a welding transformer is energized by the discharge current from the capacitor during the low voltage period of each sine wave half cycle, and an apparatus for implementing the method, In a flash welding device that supplies power from a commercial power source to a welding transformer via two sets of thyristors or ignitrons connected in antiparallel, two sets of capacitor charging/discharging circuits in which a capacitor and its discharge control device are connected in series are connected to each other. The present invention provides a flash welding power waveform adjusting device characterized in that it is connected in parallel with the primary winding of a welding transformer in the opposite direction.

以下に本発明を詳細に説明する。第1図は本発明を実施
するための装置の一例を示したもので商用電源1からの
交流電圧を、逆並列に接続した2組のィグナィトロン又
はサイリス夕2,2′を介して熔接トランス3の1次側
に印加し、該トランスの2次側出力を被溶接物4に印加
してフラッシュ溶接を行う通常の溶接装置に、コンデン
サ5,5′および逆導通のサイリスタ6,6′からなる
点線で囲んだ部分の回路を新たに挿入したものである。
The present invention will be explained in detail below. FIG. 1 shows an example of a device for carrying out the present invention, in which AC voltage from a commercial power supply 1 is applied to a welding transformer 3 via two sets of ignitrons or thyristors 2, 2' connected in antiparallel. A conventional welding device that performs flash welding by applying a voltage to the primary side of the transformer and applying the secondary side output of the transformer to the workpiece 4 includes a capacitor 5, 5' and a reverse conduction thyristor 6, 6'. This is a newly inserted circuit that is surrounded by a dotted line.

その動作原理を、第2図に示すトランスの1次側に印加
される電圧波形と各素子の点孤信号および導通状況との
関係図と共に説明する。第2図の点線で示す波形は商用
電源1の電圧波形であるが、同図のA点において第1図
の逆導通サィリス夕6の点弧を行い、前のサイクルで充
電されたコンデンサ5からの放電電流によって溶接トラ
ンス3の通電を第2図のB点まで行う。
The principle of operation will be explained with reference to the relationship diagram of the voltage waveform applied to the primary side of the transformer, the firing signal of each element, and the conduction state shown in FIG. The waveform indicated by the dotted line in Fig. 2 is the voltage waveform of the commercial power supply 1, but the reverse conduction syringe 6 of Fig. 1 is ignited at point A in the figure, and the voltage is transferred from the capacitor 5 charged in the previous cycle. The welding transformer 3 is energized by the discharge current up to point B in FIG.

B点以降は商用電源1の電圧がコンデンサ5の電圧より
高くなるため、B点においてィグナィトロン2の導通が
開始し、その後は商用電源によってコンデンサ5への充
電と溶接トランス3への通電を行う。次にCDの間では
コンデンサ5の電圧の方が商用電源より高くなるためこ
の間はコンデンサ5の放電電流によって溶接トランス3
への通電を行う。したがってC点でィグナィトロン2は
自然消弧するため、コンデンサ5から商用電源へ電流が
逆流するのを防止できる。次に商用電源電圧の極性の切
換わる○点においてサィリスタ6の強制消弧を行い、以
後ィグナィトロン2′、逆導通サィリスタ6′、コンデ
ンサ5′により前記のものと電流極性が逆ながら同様の
作動を行い、ABC′〇の電圧を溶接トランスに印加す
る。
Since the voltage of the commercial power supply 1 becomes higher than the voltage of the capacitor 5 after point B, conduction of the ignitron 2 starts at point B, and thereafter, the capacitor 5 is charged and the welding transformer 3 is energized by the commercial power supply. Next, between the CDs, the voltage of the capacitor 5 is higher than the commercial power supply, so during this time, the discharge current of the capacitor 5 causes the welding transformer to
energize. Therefore, since the ignitron 2 naturally extinguishes at point C, current can be prevented from flowing backward from the capacitor 5 to the commercial power supply. Next, the thyristor 6 is forcibly extinguished at the point ○ where the polarity of the commercial power supply voltage changes, and thereafter the same operation is performed by the ignitron 2', the reverse conduction thyristor 6', and the capacitor 5', although the current polarity is reversed. Then, voltage ABC'〇 is applied to the welding transformer.

正確にはDとA′の間には数〜数十仏秒の休止時間が存
在する。なお第2図でFはサィラトロン6,6′の順流
、Bは同逆流を、またCはィグナィトロン2,2′の導
通を示す。本発明方法においてコンデンサ5,5′の容
量は、溶接トランス3に印加される電圧が最も低くなる
BおよびB′においてなおかつフラッシュが発生するに
足る充分な電圧をトランスの2次側に確保できる程度の
大きさに選定すればよい。
To be exact, there is a pause of several to tens of French seconds between D and A'. In FIG. 2, F indicates the forward flow of the thyratrons 6 and 6', B indicates the reverse flow, and C indicates conduction of the ignitrons 2 and 2'. In the method of the present invention, the capacitances of the capacitors 5 and 5' are set to such an extent that the voltage applied to the welding transformer 3 is lowest at B and B', and at the same time, sufficient voltage to generate a flash can be secured on the secondary side of the transformer. The size should be selected as follows.

その実際の大きさは被溶接物の断面積や突合せ速度、電
源電圧等によって異るが、通常は数千〜数万マイクロフ
アラツドの程度である。また本発明方法においてイグナ
イトロン2,2′の代りにサィリスタを用い得ることは
当然である。以上のようにして本発明は被溶接物に常に
フラッシュを発生させるに足る電圧を供給するための比
較的簡易な方法と装置を提供するもので、その電圧波形
にはかなりの凹凸が存在するもの)、矩形波方式と同様
に連続的なフラッシュの発生が行なわれ、良好な溶接結
果をもたらすものである。
The actual size varies depending on the cross-sectional area of the object to be welded, the butting speed, the power supply voltage, etc., but it is usually on the order of several thousand to tens of thousands of microfarads. Furthermore, it is natural that thyristors can be used in place of the ignitrons 2, 2' in the method of the invention. As described above, the present invention provides a relatively simple method and device for constantly supplying a voltage sufficient to cause a flash to a workpiece, even though the voltage waveform has considerable irregularities. ), similar to the square wave method, a continuous flash is generated, resulting in good welding results.

本発明方式を矩形波電源方式と比較すると、交流を直流
に変換する’l頃変換装置が矩形波方式では必要である
のに対して本発明においてはその必要がなく、また本発
明装置に必要な大容量半導体素子の数は矩形波方式で必
須なィンバータ装置に用いられるもの)半数にすぎない
。すなわち本発明は比較的簡単な装置を通常のフラッシ
ュ溶接機に挿入することにより実質的に矩形波と同様な
効果が得られるものでありその産業上の効果は極めて顕
著である。以下に実施例により本発明方法の効果をさら
に具体的に説明する。実施例 第1図に示す装置で点線で囲まれた部分がない通常のフ
ラッシュ溶接機(従来方式)、及び点線で囲まれた部分
を挿入したフラッシュ熔接機すなわち本発明装置、更に
14%の1ノップルを含む脈流をインバータで正負に切
換え50日2の矩形波に類する波形の交流としたものを
溶接トランスの1次側に印加するフラッシュ溶接、の3
通りの方法で厚さ2.仇奴中3仇舷(断面積60伽)の
ステンレス鋼板の突合せ熔接を行い、溶接部のバリを平
滑に研削した後、引張試験により溶接部の強度を評価し
た。
Comparing the system of the present invention with a rectangular wave power supply system, it is found that while a rectangular wave system requires a conversion device for converting alternating current to direct current, the present invention does not require it; The number of large-capacity semiconductor elements is only half of those used in inverter devices, which are essential for square wave systems. That is, the present invention provides an effect substantially similar to that of a rectangular wave by inserting a relatively simple device into a normal flash welding machine, and its industrial effects are extremely significant. The effects of the method of the present invention will be explained in more detail below using Examples. Example The apparatus shown in FIG. 1 includes a normal flash welding machine (conventional method) without the part surrounded by dotted lines, a flash welding machine with the part surrounded by dotted lines inserted, that is, the apparatus of the present invention, and an additional 14% 3. Flash welding, in which the pulsating flow including the nopple is switched between positive and negative by an inverter and an alternating current with a waveform similar to the square wave of 50 days 2 is applied to the primary side of the welding transformer.
Thickness 2. Stainless steel plates of 3 lengths (cross-sectional area: 60 degrees) were butt-welded, and after grinding the welded part smooth, the strength of the welded part was evaluated by a tensile test.

なお溶接条件は2次無負荷電圧はいずれも7.2V(従
来法ではその実効値、本発明方法では波形調整前の入力
電圧の実効値、矩形波に類する波形ではその平均値)と
し、フラッシュ時間3秒フラッシュ代8肋、アプセツト
代2.5肋、アプセット通電サイクル数1.0サイクル
に設定した。また本発明装置におけるコンデンサの容量
は6000山Fにした。各方法により夫々3Z本づつの
溶接を行い、それらの溶接バリ研削後の引張強度の平均
値と最低値を第1表に示す。同表の結果が示す通り従来
法によるものでは溶接部の引張強度の平均値が低いこと
もさることながら、一部に極端に強度の低いものが生じ
、溶接の信頼性に問題がある。
The welding conditions are that the secondary no-load voltage is 7.2V (its effective value in the conventional method, the effective value of the input voltage before waveform adjustment in the method of the present invention, and its average value in the case of a waveform similar to a rectangular wave), and the flash The time was set to 3 seconds, the flash length was 8 cycles, the upset length was 2.5 cycles, and the number of upset energization cycles was set to 1.0 cycles. Further, the capacitance of the capacitor in the device of the present invention was set to 6000 F. 3Z welds were each welded using each method, and Table 1 shows the average and minimum values of the tensile strengths after grinding the weld burrs. As shown in the results in the same table, in the conventional method, not only the average value of the tensile strength of the welded parts is low, but also some parts have extremely low strength, which poses a problem in the reliability of welding.

この強度の低いもの)破断面には多くの冷援部がみられ
たほか、従来法によるものでは多くのはのが引張試験に
より腕性破断を生じた。これらの現象は従来法ではフラ
ッシュの発生が交流波形のゼロクロス点の前後で休止す
ることによるものと考えられる。一方本発明方法による
ものでは矩形波に類するものと同等の引張強度のものが
得られ、強度の平均値、最低値共に高い値を示しており
、溶接の信頼性が高い。引張試験による被断形体は全て
建性破断であった。第1表
Many cold-reinforced parts were observed on the fracture surface (low-strength specimens), and many of the specimens using the conventional method developed arm fractures during the tensile test. These phenomena are thought to be due to the fact that in the conventional method, the flash generation stops before and after the zero-crossing point of the AC waveform. On the other hand, with the method of the present invention, a tensile strength equivalent to that of a rectangular wave can be obtained, and both the average value and the minimum value of the strength are high, and the reliability of welding is high. All fractured shapes in the tensile test showed structural failure. Table 1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一例を示す回路図、第2図は本発
明方法によって波形調整された溶接トランス一次側の無
負荷電圧波形と各素子の点弧信号および導通状況との関
係を示す図である。 1・・・・・・商用交流電源、2,2′・…・・ィグナ
ィトロン又はサィリスタ、3・…・・溶接トランス、4
・・・・・・被溶接物、5,5′・・…・コンデンサ、
6,6′・・・・・・逆導通サィリスタ。 第1図 第2図
Fig. 1 is a circuit diagram showing an example of the device of the present invention, and Fig. 2 shows the relationship between the no-load voltage waveform on the primary side of the welding transformer whose waveform was adjusted by the method of the present invention, and the ignition signal and conduction status of each element. It is a diagram. 1... Commercial AC power supply, 2, 2'... Ignitron or thyristor, 3... Welding transformer, 4
...Object to be welded, 5,5'...Capacitor,
6,6'... Reverse conduction thyristor. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1 溶接トランスの一次側に挿入された2組のコンデン
サの充放電を制御することにより、電源の交流電圧の各
正弦波半サイクルの電圧の高い期間においては商用電源
から溶接トランスへの通電と該コンデンサへの充電を行
い、また交流電圧の各正弦波半サイクルの電圧の低い期
間においては該コンデンサからの放電電流によって溶接
トランスへの通電を行うことを特徴とするフラツシユ溶
接の電源波形調整法。 2 逆並列に接続された2組のサイリスタ又はイグナイ
トロンを介して商用電源から溶接トランスへ通電するフ
ラツシユ溶接装置において、コンデンサ及びその放電制
御装置を直列に接続した2組のコンデンサ充放電回路を
相互に逆向きに溶接トランスの1次側捲線と並列に接続
したことを特徴とするフラツシユ溶接の電源波形調整装
置。
[Claims] 1. By controlling the charging and discharging of two sets of capacitors inserted in the primary side of the welding transformer, welding can be performed from the commercial power source during the high voltage period of each sine wave half cycle of the AC voltage of the power source. Flash welding characterized by energizing a transformer and charging the capacitor, and energizing the welding transformer with a discharge current from the capacitor during the low voltage period of each sine wave half cycle of the AC voltage. power waveform adjustment method. 2. In a flash welding device that supplies power from a commercial power source to a welding transformer via two sets of thyristors or ignitrons connected in antiparallel, two sets of capacitor charging/discharging circuits each having a capacitor and its discharge control device connected in series are connected to each other. A power waveform adjustment device for flash welding, characterized in that it is connected in parallel with the primary winding of a welding transformer in the reverse direction.
JP218078A 1978-01-12 1978-01-12 Flash welding power waveform adjustment method and device Expired JPS605389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP218078A JPS605389B2 (en) 1978-01-12 1978-01-12 Flash welding power waveform adjustment method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP218078A JPS605389B2 (en) 1978-01-12 1978-01-12 Flash welding power waveform adjustment method and device

Publications (2)

Publication Number Publication Date
JPS5495948A JPS5495948A (en) 1979-07-28
JPS605389B2 true JPS605389B2 (en) 1985-02-09

Family

ID=11522154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP218078A Expired JPS605389B2 (en) 1978-01-12 1978-01-12 Flash welding power waveform adjustment method and device

Country Status (1)

Country Link
JP (1) JPS605389B2 (en)

Also Published As

Publication number Publication date
JPS5495948A (en) 1979-07-28

Similar Documents

Publication Publication Date Title
US2235385A (en) Welding method and apparatus
EP0670623B1 (en) Controllable power supply
US3459996A (en) Starting circuit for direct current arc welder
JPS605389B2 (en) Flash welding power waveform adjustment method and device
US4273986A (en) Method and apparatus for arc butt welding
US4273984A (en) Flash butt welding apparatus
US3445620A (en) Apparatus for and method of demagnetizing
GB2319126A (en) Initial arcing sustaining power supply for DC arc welder or cutter
JPS6224877A (en) Capacitor type spot welding machine
JPS58132368A (en) Arc welding machine
JP3128752B2 (en) Spot welding machine
JP2019514689A (en) Direct contact type aluminum resistance welding method using AC trapezoidal wave
US3718802A (en) Ripple control for electric arc welding power supply apparatus
JP2537516B2 (en) Control method and apparatus for arc welding power source
US3316477A (en) Synchronizing circuit
US2508115A (en) Impulse resistance welder
US3826893A (en) Single phase t-r unit
US2900573A (en) Resistance welding control for bench welder
JPH06210472A (en) Pulse laser welding method for aluminum alloy
US2459795A (en) Method and apparatus for electric welding
US3015021A (en) Means for controlling automatic flashbutt welding machines
JP2020022974A (en) Narrowing portion detection control method for welding power source
JP2819607B2 (en) MIG and MAG pulse arc welding method
JPS62234676A (en) Electric current controlling method for resistance welding machine
JP2711137B2 (en) AC TIG welding equipment