JPS6053521B2 - Cooling device for induction coil for non-contact current collection in superconducting magnetic levitation vehicle - Google Patents

Cooling device for induction coil for non-contact current collection in superconducting magnetic levitation vehicle

Info

Publication number
JPS6053521B2
JPS6053521B2 JP3794680A JP3794680A JPS6053521B2 JP S6053521 B2 JPS6053521 B2 JP S6053521B2 JP 3794680 A JP3794680 A JP 3794680A JP 3794680 A JP3794680 A JP 3794680A JP S6053521 B2 JPS6053521 B2 JP S6053521B2
Authority
JP
Japan
Prior art keywords
induction coil
vehicle
damping sheet
cryostat
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3794680A
Other languages
Japanese (ja)
Other versions
JPS56133902A (en
Inventor
吉洋 地蔵
忠利 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3794680A priority Critical patent/JPS6053521B2/en
Publication of JPS56133902A publication Critical patent/JPS56133902A/en
Publication of JPS6053521B2 publication Critical patent/JPS6053521B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)

Description

【発明の詳細な説明】 本発明は、超電導磁気浮上車輌における非接触集電用
誘導コイルの冷却装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling device for an induction coil for non-contact current collection in a superconducting magnetic levitation vehicle.

一般的な超電導磁気浮上車輌の超電導磁石、誘導コイ
ル及び地上コイル等の関係配置を示す添付図面第1図に
ついて、これら構成機器の関係とその作用について説明
すると、符号1は車体、2は超電導電磁石を収納したク
ライオスタット、3は浮上用地上コイル、4は推進案内
用地上コイル、5はダンピングシート、6は誘導コイル
、7は非接触集電装置であり、車体1は、走行路に沿つ
て敷設された推進案内用地上コイル4に推進電流を通電
することにより、クライオスタット2に収納された超電
導電磁石との間に電磁力が働き、これにより推進され、
また、走行路に沿つて敷設された浮上用地上コイル3の
上を車輌が走行することによつて、浮上用地上コイル3
に誘起した電流と超電導電磁石との間に働く電磁力によ
り浮上支持される。
Referring to the attached drawing, Figure 1, which shows the relative arrangement of superconducting magnets, induction coils, ground coils, etc. of a general superconducting magnetic levitation vehicle, the relationship and function of these components will be explained. Reference numeral 1 indicates the vehicle body, and 2 indicates the superconducting electromagnet. 3 is a ground coil for levitation, 4 is a ground coil for propulsion guidance, 5 is a damping sheet, 6 is an induction coil, 7 is a non-contact current collector, and the vehicle body 1 is installed along the running route. By applying a propulsion current to the ground coil 4 for propulsion guidance, an electromagnetic force acts between it and the superconducting electromagnet housed in the cryostat 2, and this causes propulsion.
In addition, when the vehicle runs on the levitation ground coil 3 laid along the running route, the levitation ground coil 3
It is suspended and supported by the electromagnetic force acting between the current induced in the superconducting electromagnet and the superconducting electromagnet.

また、誘導コイル6は、車体1の下面に浮上用地上コイ
ル3に対向して、車体1の長手方向に複数個、例えば、
車輛諸元によつても異なるが、片側30〜60@I程度
配置されており、浮上用地上コイル3の誘起電流による
磁界の高調波成分により電圧が誘起される。非接触集電
装置7は、例えば、整流器、バッテリー、インバータ等
により構成され、誘導コイル6の誘起電圧により、例え
一ば、図示されていない車載冷凍機用圧縮機駆動用電動
機や照明等の車載負荷に電力を供給する。ダンピングシ
ート5は、車体1に対する受動的ダンピングの働きをす
るために設けられたものであつて、例えば、アルミニウ
ム等の非磁性導体板で作・られており、また、浮上用地
上コイル3や推進案内用地上コイル4から超電導電磁石
に作用する磁界の高調波成分をシールドする効果も持つ
ている。超電導磁気浮上車輛は、このように概略構成さ
れ作用するが、これが実用的規模の車輛の場合にあつて
は、非接触集電によつて得られる電力は、通常、車輛速
度500kfR/hの場合において、100〜200K
W程度であつて、このための誘導コイル6は、取付けス
ペース、重量等の制約から、余り大きくすることはでき
ず、従つて、誘導コイル6の電流密度は、例えば、2〜
4A/iとかなり高く選ばざるを得ない状態である。一
方、誘導コイル6を重量的に有利なアルミニウム線で構
成した場合に、乾式自冷が可能な電流密度は、一般に経
験上から、せいぜいハ/ml以下とされている。
Further, a plurality of induction coils 6 are provided on the lower surface of the vehicle body 1, facing the levitation ground coil 3, in the longitudinal direction of the vehicle body 1, for example.
Although it varies depending on the vehicle specifications, about 30 to 60@I are arranged on one side, and a voltage is induced by harmonic components of the magnetic field caused by the induced current of the levitation ground coil 3. The non-contact current collector 7 is composed of, for example, a rectifier, a battery, an inverter, etc., and uses the induced voltage of the induction coil 6 to generate electric power, for example, for driving a compressor for an on-vehicle refrigerator, a light, etc. (not shown). Provides power to the load. The damping sheet 5 is provided to perform a passive damping function on the vehicle body 1, and is made of a non-magnetic conductive plate such as aluminum. It also has the effect of shielding harmonic components of the magnetic field acting on the superconducting electromagnet from the guiding ground coil 4. A superconducting magnetically levitated vehicle has the general structure and functions as described above, but in the case of a practical-scale vehicle, the power obtained by non-contact current collection is normally about 100 kfR/h at a vehicle speed of 500 kfR/h. , 100-200K
W, and the induction coil 6 for this purpose cannot be made too large due to restrictions such as installation space and weight. Therefore, the current density of the induction coil 6 is, for example, 2 to
I have no choice but to choose 4A/i, which is quite high. On the other hand, when the induction coil 6 is made of aluminum wire, which is advantageous in terms of weight, the current density at which dry self-cooling is possible is generally determined from experience to be no more than Ha/ml.

従つて、非接触集電用の誘導コイル6の場合には、例え
ば、油冷又は風冷のような強制冷却手段を構する必要が
生ずる。しかしながら、このような強制冷却手段を構す
ることは、前記のように誘導コイル6が車体1の下面長
手方向に数1011も配置されていることを考えると、
その議装上及び保守上から、非常に困難であると共に、
車体下面と浮上用地上コイル上面との間の有効空隙の減
少や車輛重量の増加につながるという欠点があつた。
Therefore, in the case of the induction coil 6 for non-contact current collection, it is necessary to provide forced cooling means such as oil cooling or air cooling. However, considering that as many as 1011 induction coils 6 are arranged in the longitudinal direction of the lower surface of the vehicle body 1 as described above, it is difficult to provide such a forced cooling means.
It is very difficult to install and maintain, and
The drawbacks were that the effective air gap between the lower surface of the vehicle body and the upper surface of the levitation ground coil decreased and the weight of the vehicle increased.

本発明はこのような欠点を除去した非接触集電用誘導コ
イルの冷却装置を得ることを、その目的とするものであ
つて、そのために、誘導コイルをダンピングシートに熱
的に熱抵抗を極力小さくするようにして接触させて取り
付けたことを特徴とするものであつて、ダンピングシー
トを誘導コイルの発生する熱に対する放熱フィンとして
兼用さ−せることにより、特別の強制冷却手段を講する
ことなく、誘導コイルの冷却を行なえるようにしたもの
である。
An object of the present invention is to obtain a cooling device for an induction coil for non-contact current collection that eliminates such drawbacks, and for this purpose, the induction coil is thermally reduced to the lowest possible thermal resistance using a damping sheet. The damping sheet is characterized by being attached in contact with each other in a small size, and by using the damping sheet as a heat dissipation fin for the heat generated by the induction coil, it is possible to eliminate the need for special forced cooling means. , the induction coil can be cooled.

以下、本発明をその一実施例を示す添付図面第2図に基
づいて説明する。
Hereinafter, the present invention will be explained based on the attached drawing, FIG. 2, which shows one embodiment of the present invention.

図において、符号10はダンピングシートであつて、従
来装置と同様にクライオスタット2を囲繞すると共にそ
の一端は誘導コイル6の内側にまで延長され、誘導コイ
ル6と車体1との間にはさみ込んで取り付けられている
In the figure, reference numeral 10 denotes a damping sheet, which surrounds the cryostat 2 as in the conventional device, and one end of which is extended to the inside of the induction coil 6, and is installed by being sandwiched between the induction coil 6 and the vehicle body 1. It is being

この場合、ダンピングシート10と誘導コイル6との間
には、空隙を生じて伝達抵抗が大きくならないように、
伝熱抵抗の小さな充てん物をそう入したり、又は、伝熱
抵抗が小さいように密着させて、誘導コイルとダンピン
グシートとの間の熱伝導を極力良くするようにしている
。なお、上記以外の部分については、従来装置と同様で
ある。
In this case, in order to prevent a gap from forming between the damping sheet 10 and the induction coil 6 and increasing the transmission resistance,
The heat conduction between the induction coil and the damping sheet is made as good as possible by inserting a filling material with a low heat transfer resistance or by bringing them into close contact with each other so as to have a small heat transfer resistance. Note that the parts other than the above are the same as the conventional device.

本発明はこのように構成されているので、誘導コイル6
に発生した熱は、伝熱抵抗の小さな充てん物又は接触面
のために、すみやかにダンピングシート10に伝熱し、
更に、このダンピングシート10は、クライオスタット
2の浮上用地上コイ・ル3に面した底面、及び、推進案
内用地上コイル4に面した側面を覆うように取り付けら
れていて、きわめて広い表面積を有し、これが放熱面積
の機能を有するために、熱放散が大きく、従つて、誘導
コイルに発生した熱を、空気中に十分に放散することが
可能であり、更に、誘導コイルの発生する交流磁界を、
超電導電磁石に対してダンピングシートがシールドする
ように、誘導コイル6をダンピングシート10に対して
反超電導電磁石側に取り付けているために、誘導コイル
の交流磁界が超電導電磁石に及ぼす影響、例えば、AC
ロス等の悪影響を軽減することができる効果を有してお
り、特に、強制冷却手段を講することなく、十分に、誘
導コイルを冷却し得る効果を有している。
Since the present invention is configured in this way, the induction coil 6
The heat generated in the damping sheet 10 is quickly transferred to the damping sheet 10 due to the filling or contact surface with low heat transfer resistance.
Furthermore, this damping sheet 10 is attached to cover the bottom surface of the cryostat 2 facing the levitation ground coil 3 and the side surface facing the propulsion guide ground coil 4, and has an extremely large surface area. Since this has the function of a heat dissipation area, heat dissipation is large, and therefore the heat generated in the induction coil can be sufficiently dissipated into the air. ,
Since the induction coil 6 is attached to the side opposite to the superconducting electromagnet with respect to the damping sheet 10 so that the damping sheet shields the superconducting electromagnet, the influence of the AC magnetic field of the induction coil on the superconducting electromagnet, e.g.
It has the effect of reducing adverse effects such as loss, and in particular, it has the effect of sufficiently cooling the induction coil without using forced cooling means.

なお、上記実施例は、誘導コイルの冷却にダンピングシ
ートを利用する場合について述べたが、ダンピングシー
トの代わりに、クライオスタット自体に誘導コイルを熱
的に接触させることにより、誘導コイルの熱をすみやか
にクライオスタットに伝熱し、その広面積によつて熱を
放散させるようにしても、その効果は上記実施例と何ら
変わるものではない。
Although the above embodiment describes the case where a damping sheet is used to cool the induction coil, it is possible to quickly dissipate the heat of the induction coil by bringing the induction coil into thermal contact with the cryostat itself instead of using the damping sheet. Even if the heat is transferred to the cryostat and dissipated by its wide area, the effect is no different from the above embodiment.

また、上記実施例においては、浮上用地上コイルの高調
波磁界を利用する場合について説明したが、推進案内用
地上コイルの高調波磁界を利用する場合においても、本
発明と同様であり、また、その効果も、本発明の効果と
同等である。
Further, in the above embodiment, a case was explained in which the harmonic magnetic field of the ground coil for levitation was used, but the present invention is similar to the case where the harmonic magnetic field of the ground coil for propulsion guidance is used. The effect is also equivalent to the effect of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的な磁気浮上車輛とその地上コイルとの配
置関係を示す車輛の進行方向に垂直な面の断面図、第2
図は本発明の一実施例の車輛の進行方向に垂直な面の断
面図である。 1・・・車体、2・・・超電導電磁石を収納したクライ
オスタット、3・・・浮上用地上コイル、4・・・推進
案内用地上コイル、5,10・・・ダンピングシート、
6・・・誘導コイル、7・・・非接触集電装置。
Figure 1 is a cross-sectional view of a plane perpendicular to the direction of travel of the vehicle, showing the arrangement relationship between a general magnetic levitation vehicle and its ground coil;
The figure is a cross-sectional view taken along a plane perpendicular to the traveling direction of a vehicle according to an embodiment of the present invention. 1... Vehicle body, 2... Cryostat containing a superconducting electromagnet, 3... Ground coil for levitation, 4... Ground coil for propulsion guide, 5, 10... Damping sheet,
6... Induction coil, 7... Non-contact current collector.

Claims (1)

【特許請求の範囲】 1 車上に、超電導電磁石を収納したクライオスタット
、又は、外面にダンピングシートを取り付けた前記クラ
イオスタットと、非接触集電装置と、その誘導コイルと
を備え、車輛の走行路に沿つて敷設された浮上用地上コ
イル及び推進案内用地上コイルと、前記車上の超電導電
磁石との間に働く電磁力により浮上支持及び推進案内さ
れる超電導磁気浮上車輛において、上記誘導コイルを、
伝熱抵抗を小さくするようにして、上記クライオスタッ
ト又はダンピングシートに接触取付け、クライオスタッ
ト又はダンピングシート表面を放熱面に兼用したことを
特徴とする超電導磁気浮上車輛における非接触集電用誘
導コイルの冷却装置。 2 誘導コイルを、この誘導コイル自身の発生する交流
磁界が上記ダンピングシートにより超電導電磁石に対し
てシールドされるように、配置した特許請求の範囲第1
項記載の超電導磁気浮上車輛における非接触集電用誘導
コイルの冷却装置。
[Scope of Claims] 1. A cryostat containing a superconducting electromagnet or the cryostat with a damping sheet attached to the outer surface, a non-contact current collector, and its induction coil are provided on the vehicle, and the vehicle is equipped with a cryostat on the vehicle's running path. In a superconducting magnetic levitation vehicle that is levitation supported and propelled and guided by electromagnetic force acting between a levitation ground coil and a propulsion guide ground coil laid along the vehicle and a superconducting electromagnet on the vehicle, the induction coil is
A cooling device for an induction coil for non-contact current collection in a superconducting magnetic levitation vehicle, characterized in that it is attached in contact with the cryostat or damping sheet to reduce heat transfer resistance, and the surface of the cryostat or damping sheet also serves as a heat radiation surface. . 2. Claim 1, in which the induction coil is arranged so that the alternating current magnetic field generated by the induction coil itself is shielded from the superconducting electromagnet by the damping sheet.
A cooling device for an induction coil for non-contact current collection in a superconducting magnetic levitation vehicle as described in 2.
JP3794680A 1980-03-24 1980-03-24 Cooling device for induction coil for non-contact current collection in superconducting magnetic levitation vehicle Expired JPS6053521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3794680A JPS6053521B2 (en) 1980-03-24 1980-03-24 Cooling device for induction coil for non-contact current collection in superconducting magnetic levitation vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3794680A JPS6053521B2 (en) 1980-03-24 1980-03-24 Cooling device for induction coil for non-contact current collection in superconducting magnetic levitation vehicle

Publications (2)

Publication Number Publication Date
JPS56133902A JPS56133902A (en) 1981-10-20
JPS6053521B2 true JPS6053521B2 (en) 1985-11-26

Family

ID=12511710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3794680A Expired JPS6053521B2 (en) 1980-03-24 1980-03-24 Cooling device for induction coil for non-contact current collection in superconducting magnetic levitation vehicle

Country Status (1)

Country Link
JP (1) JPS6053521B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110405A (en) * 1985-11-06 1987-05-21 Japanese National Railways<Jnr> Ground coil for magnetic levitation railway

Also Published As

Publication number Publication date
JPS56133902A (en) 1981-10-20

Similar Documents

Publication Publication Date Title
US5628252A (en) Method and apparatus for combined levitation and guidance along guideway curvature in electrodynamic magnetically levitated high speed vehicle
US3589300A (en) Magnetic suspension system
EP0529157A1 (en) Alternating current magnetic levitation transport system
Yamamura Magnetic levitation technology of tracked vehicles present status and prospects
US4636667A (en) Excitation arrangement for a long stator drive
KR101009465B1 (en) Magnetic levitation system and magnetic levitation method using halbach array
JP2001520962A (en) Electric energy transmission device
US10604898B2 (en) Rail-bound maglev train
CN111873808A (en) Superconductive electric-electromagnetic hybrid magnetic suspension train
JP6484240B2 (en) Carrier device and power receiving device
CN110803029A (en) Hybrid electric levitation system
US3850108A (en) Armature assembly and magnetically suspended vehicle
US5253592A (en) Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor
KR20220015203A (en) Null-flux magnetic levitation apparatus and system
JPS6053521B2 (en) Cooling device for induction coil for non-contact current collection in superconducting magnetic levitation vehicle
JP3810932B2 (en) Non-contact induction current collector
RU2647784C1 (en) System of magnetic levitation and side stabilization of magnetic levitation vehicles
He et al. Investigation of the stability of AC repulsive-force levitation systems for low-speed maglev
JP3194470B2 (en) Non-contact induction current collector
JP3954047B2 (en) Superconducting magnetic levitation system
JP2020198763A (en) Power reception device
JP3151512B2 (en) Superconducting magnet for maglev train
JPH11215615A (en) Superconducting magnetically levitated running car
JPH0669246B2 (en) Levitating, guiding and propulsion combination device for induction repulsion type magnetic levitation railway
JP2903093B2 (en) Magnetic levitation train magnetic shield device, maglev train vehicle, magnetic levitation train magnetic shield