JPS6053445B2 - Plunger solenoid coil current limiting circuit - Google Patents

Plunger solenoid coil current limiting circuit

Info

Publication number
JPS6053445B2
JPS6053445B2 JP51132123A JP13212376A JPS6053445B2 JP S6053445 B2 JPS6053445 B2 JP S6053445B2 JP 51132123 A JP51132123 A JP 51132123A JP 13212376 A JP13212376 A JP 13212376A JP S6053445 B2 JPS6053445 B2 JP S6053445B2
Authority
JP
Japan
Prior art keywords
solenoid
power
suction
current
solenoid coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51132123A
Other languages
Japanese (ja)
Other versions
JPS5357462A (en
Inventor
崇 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP51132123A priority Critical patent/JPS6053445B2/en
Publication of JPS5357462A publication Critical patent/JPS5357462A/en
Publication of JPS6053445B2 publication Critical patent/JPS6053445B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Relay Circuits (AREA)

Description

【発明の詳細な説明】 本発明はプランジャソレノイドコイル(以後、ソレノイ
ドという)の電流制限回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a current limiting circuit for a plunger solenoid coil (hereinafter referred to as a solenoid).

一般にソレノイドは第1図に示す如く、ストロークが大
きい時(第1日A点)は吸引力は小さくストロークが小
さく (特に吸引後、第1図B点)なれば非常に大きな
吸引力を有する。
Generally, as shown in Fig. 1, a solenoid has a small suction force when the stroke is large (point A on the first day), and a very large suction force when the stroke is small (particularly after suction, point B in Fig. 1).

所が吸引後はこのような大きな吸引力を必要としない装
置においては従来第2図及び第3図に示す如く吸引中は
3又は4のトランジスタをON(飽和状態とする)とし
、ソレノイド1の両端に全電源電圧を供給しソレノイド
に大きな吸引力を与え、吸引後は大電力用の抵抗2又は
大電力用のトランジスタ4によつて電源電圧を分圧しソ
レノイド1の両端にかかる電圧を数分の1にする事によ
つてソレノイドに流れる電流を制限し吸引後のソレノイ
ドに必要な保持力(第1図°点)を維持するに必要な電
流値(保持電流という)にまで制限していた。
However, in devices that do not require such a large suction force after suction, as shown in FIGS. The full power supply voltage is supplied to both ends to give a large attraction force to the solenoid, and after attraction, the power supply voltage is divided by the high power resistor 2 or the high power transistor 4 to reduce the voltage applied to both ends of the solenoid 1 for several minutes. 1, the current flowing through the solenoid was limited to the current value (called the holding current) necessary to maintain the holding force required for the solenoid after suction (point 1 in Figure 1). .

さらに、この吸引後の電流制限によつてソレノイドの吸
引後の消費電力の低減及びソレノイドの温度上昇による
焼損を防いでいた。尚第1図のaカーブはソレノイドに
全電圧がか、かつた時のストロークと吸引力の関係、を
カーブはソレノイドにかかる電圧を落とした(電流制限
)時のストロークの吸引力の関係を示し、cカーブは装
置の負荷である。
Furthermore, this post-suction current restriction reduces the power consumption of the solenoid after suction and prevents the solenoid from burning out due to temperature rise. The curve a in Figure 1 shows the relationship between the stroke and attraction force when the solenoid is fully energized, and the curve shows the relationship between the stroke and attraction force when the voltage applied to the solenoid is reduced (current limitation). , c curve is the load on the device.

第1図によればこのソレノイドに要求される吸J引力は
(負荷はストロークに関係なく一定である)ストローク
に関係なく2.7に9以上の吸引力を必要とし4点より
吸引し8点まで動カルて保持したとすると4点では2.
8に9の吸引力であつたのに8点では7に9もの吸引力
を有している。
According to Figure 1, the suction force required for this solenoid is 2.7 regardless of the stroke (the load is constant regardless of the stroke). If you keep moving up to 4 points, it will be 2.
Although the suction force was 8 to 9, the 8 point had a suction force of 7 to 9.

そこで第′−2図及び第3図の様な方法で吸引後電流制
限を行い負荷を保持するに必要な保持力C点を得ている
。所が一方ソレノイド1の電流を制限する為に直列に入
れた抵抗器2及びトランジスタ4には保持電流が流れる
為ソレノイドを保持する為に必要な電力以外に余分に抵
抗器2又はトランジスタ4によつて電力を消費する事に
なる。
Therefore, the current is limited after attraction by the method shown in FIGS. 1-2 and 3, and the holding force required to hold the load at point C is obtained. On the other hand, in order to limit the current of solenoid 1, a holding current flows through resistor 2 and transistor 4, which are connected in series. This results in consumption of electricity.

例えば直列に入れた抵抗値(r)をソレノイドの抵抗値
(R)の2倍とし電源電圧を(■)吸引後ソレノイドで
消費される電力を(Ps)、直列抵抗器で消費される電
力を(Pr)とすれば(但し、トランジスタのスイッチ
ング動作における電圧降下は無視するものとする)とな
り、抵抗器2はソレノイド1で消費される電力の2倍も
の電力を余分に消費する事になり、大電力用の抵抗器を
必要とする上、発熱に対する配慮も必要である。
For example, if the resistance value (r) connected in series is twice the resistance value (R) of the solenoid, the power supply voltage is (■), the power consumed by the solenoid after suction is (Ps), and the power consumed by the series resistor is (Pr) (however, the voltage drop due to the switching operation of the transistor is ignored), the resistor 2 will consume twice as much power as the power consumed by the solenoid 1. In addition to requiring a resistor for high power, consideration must also be given to heat generation.

又トランジスタ4についても抵抗器2の場合と同じ事が
いえ、トランジスタ4は大電力用のものが必要な上発熱
に対する配慮も必要となる。そこで本発明はこの無駄な
電力の消費をなくししかも電流制限を行なうようソレノ
イドに供給される電流を2電源とし吸引中に高い電圧を
供給し吸引後は低い電圧が供給されるように半導体回路
によるスイッチングを行い吸引後の消費電力をほとんど
ソレノイドのみで消費するようにしたソレ.ノイドの電
流制限回路を提供せんとするものである。
The same thing can be said about the transistor 4 as in the case of the resistor 2, and the transistor 4 needs to be designed for high power use, and consideration must also be given to heat generation. Therefore, in order to eliminate this wasteful power consumption and to limit the current, the present invention uses a semiconductor circuit to provide two power sources for the current supplied to the solenoid, and to supply a high voltage during suction and a low voltage after suction. This solenoid performs switching so that almost all the power consumed after suction is consumed only by the solenoid. The present invention aims to provide a current limiting circuit for a noid.

以下本発明回路の具体化例を図面を参照しながら詳細に
説明する。
Hereinafter, embodiments of the circuit of the present invention will be explained in detail with reference to the drawings.

第4図において外部より吸引中に必要な電流■1及び吸
引後に必要な電源V2(V1〉V2=眉、〜↓V1)が
供給され、V1はPNPトランジスタqのエミッターと
バイアス抵植只、に、V2はNPNトランジスタQ3の
コレクタに接続される。
In Fig. 4, the current ■1 required during suction and the power V2 required after suction (V1>V2=brow, ~↓V1) are supplied from the outside, and V1 is applied to the emitter of the PNP transistor q and the bias resistor. , V2 are connected to the collector of NPN transistor Q3.

Q2のコレクタ−ー及びαのエミッターは直接接続され
ソレノイド1の一方に直結され、又ソレノイド1の他方
は共通のアースに接続される。さらにR1の他方はqの
ベース及び3の該回路の制御回路(電流制限回路には直
接関係がないので図の様なスイッチで代用する)に接続
されると共に制御回路3のスイッチが0N(閉成される
)のときには放電、0FFのときには充電されるような
コンデンサC1に接続される。該C1の他方はC1が充
電中には0Nになる様なQ1のベースに接続されQ1の
コレクターはR,を介してQ1が0NのときQ2も0N
になる様なQ2のベースに接続される。尚、Dl,R2
は回路保護用のダイオード及び抵)抗であり、また、D
2は回路保護を行なうと共にコンデンサC1の放電を急
速に行わせるためのダイオードである。
The collector of Q2 and the emitter of α are directly connected to one side of the solenoid 1, and the other side of the solenoid 1 is connected to a common ground. Further, the other side of R1 is connected to the base of q and the control circuit of the circuit 3 (not directly related to the current limiting circuit, so a switch like the one shown in the figure is used instead), and the switch of control circuit 3 is set to 0N (closed). The capacitor C1 is connected to a capacitor C1 which is discharged when the voltage is set (0FF) and charged when the voltage is 0FF. The other side of C1 is connected to the base of Q1 such that it becomes 0N while C1 is charging, and the collector of Q1 is connected to R, so that when Q1 is 0N, Q2 is also 0N.
It is connected to the base of Q2 such that In addition, Dl, R2
is a diode and resistor for circuit protection, and D
2 is a diode for protecting the circuit and rapidly discharging the capacitor C1.

次に以上の如く構成される本発明回路の動作について説
明する。該回路を0N10FFさせる為の・制御回路3
のスイッチが0Nされアース回路に接続されているとき
Q3のベース及びQ1のベースは直流的にアース電位に
接続されQ,は0FF..Q1もOFF..Q1のコレ
クタよりR3を介してベースに接続されているQ2も0
FFである。従つてソレノイード1はOのエミッター、
Q2のコレクターによりそれぞれの電源から遮断されて
いる。次に3のスイッチが0FF(開成される)となる
と■1に接続されたR1→C1→Q1のベース→Q1の
エミッター→アースを通してC1に充電が始まると同時
にQ1が0NとなりQ1のコレクタ―電流(=Q2のベ
ース電流)がV,→Q2のエミッター→Q2のベース→
R3→Q1のコレクター→Q1のエミッター→アースを
通して流れると共にQ2が0Nとなり、ソレノイドにV
1→Q2のエミッターQ2のコレクター→ソレノイド→
アースを通して電流が流れソレノイドが吸引される。
Next, the operation of the circuit of the present invention constructed as above will be explained. Control circuit 3 for making the circuit 0N10FF
When the switch is 0N and connected to the ground circuit, the base of Q3 and the base of Q1 are DC connected to the ground potential, and Q is 0FF. .. Q1 is also OFF. .. Q2, which is connected from the collector of Q1 to the base via R3, is also 0.
It is FF. Therefore, solenoid 1 is the emitter of O,
They are cut off from their respective power sources by the Q2 collector. Next, when the switch 3 becomes 0FF (opened), ■ R1 connected to 1 → C1 → base of Q1 → emitter of Q1 → charging begins in C1 through earth, and at the same time Q1 becomes 0N and the collector current of Q1 (=Base current of Q2) is V, → Emitter of Q2 → Base of Q2 →
It flows through R3 → Q1 collector → Q1 emitter → ground, and Q2 becomes 0N, and V is applied to the solenoid.
1 → Q2 emitter Q2 collector → solenoid →
Current flows through the ground and the solenoid is attracted.

このときQ3のエミッター電位はほぼV1(実際にはQ
2のコレクターエミッター間による飽和電圧(0.1V
〜0.5■)が差し引かれる)に等しく又Q3のベース
電位はC1の充電電圧がかかつているが■1より大きく
なる事はなく、Q3は0FFの状態にある。而してソレ
ノイドがV1により完全に吸引される。さらにR1によ
るC1への充電が進みQ1を0Nにするに足りる充電電
流が流れなくなり始めるとQ1のコレクタ電流つまりQ
2のベース電流も減り始め、さらにQ2のコレクター電
流が減り始める。するとQ2はもはやONの状態を維持
できなくなり0FFになろうとし始める。ということは
Q2のコレクターエミッター間の電圧降下が大きくなり
始め、ソレノイドにかかる電圧が小さくなり始める。
At this time, the emitter potential of Q3 is approximately V1 (actually Q
The saturation voltage between collector and emitter of 2 (0.1V
~0.5■) is subtracted), and although the charging voltage of C1 is applied to the base potential of Q3, it never becomes larger than ■1, and Q3 is in the 0FF state. The solenoid is then completely suctioned by V1. Furthermore, as the charging of C1 by R1 progresses and the charging current sufficient to set Q1 to 0N begins to flow, the collector current of Q1, that is, Q
The base current of Q2 also begins to decrease, and the collector current of Q2 also begins to decrease. Then, Q2 can no longer maintain the ON state and starts to become 0FF. This means that the voltage drop between the collector and emitter of Q2 begins to increase, and the voltage across the solenoid begins to decrease.

この頃になるとC1はほぼ充電が完了しC1の電位がV
1近くになつている。このC1の電位がソレノイドにか
かる電圧より大きくなると、いいかえればQ3のベース
電圧がQ3のエミッター電圧より高く(約0.7V位)
なると急激にQ3が0NとなりQl,Q2は0FFとな
る。従つてソレノイドはらによつてV1より切り離され
、V1よりJ−!氏いV2に接続され吸引後は吸
241引中の糺ヒ〜−の電流値て保持する。
At this time, C1 is almost fully charged and the potential of C1 is V.
It's getting close to 1. When the potential of C1 becomes larger than the voltage applied to the solenoid, in other words, the base voltage of Q3 becomes higher than the emitter voltage of Q3 (approximately 0.7V).
Then, Q3 suddenly becomes 0N, and Ql and Q2 become 0FF. Therefore, the solenoid is separated from V1 by J-! After suction, it is connected to V2.
241, the current value of the terminal is maintained.

24 この後、ソレノイドの駆動を停止させる場合には、3の
スイッチを0NすることによりQl,Q2,qは全て0
FFされるため、ソレノイドは電源から遮断される。
24 After this, if you want to stop driving the solenoid, turn switch 3 to 0N so that Ql, Q2, and q are all 0.
Since the solenoid is FF, the solenoid is cut off from the power supply.

また、充電状態にあるC1は3のスイッチ及びD2を介
して急速に放電が行われる。尚Q3が0Nとなつた時Q
l,Q2が0FFになるのはQ3はエミッターフォロワ
ーとして使用されている為Oが0NになればQ3のエミ
ッター電位は即V2となり、qのベース電圧は■2+0
.7Vとなる。
Further, C1 in a charged state is rapidly discharged via switch 3 and D2. Furthermore, when Q3 becomes 0N, Q
l, Q2 become 0FF because Q3 is used as an emitter follower, so when O becomes 0N, the emitter potential of Q3 immediately becomes V2, and the base voltage of q becomes ■2+0
.. It becomes 7V.

という事はQ2が0Nの間はC1はほぼV1まで充電さ
れていたものがQ3の0NにによりV2+0.7Vまで
放電した事になりC1のマイナス側、つまりQ1のベー
スには−(V1−(V2+0.7))■なる負電圧が現
われQl,Q2を直ちに0FFとしているが、実際には
この負電圧によつてQ1が破壊されるのを防止する為D
2なるダイオードを入れてこの負電圧をD2によつてバ
イパスしD2の電圧降下による約一0.7■の逆バイア
スをQ1のベースに与えている。このQ2ONからQ,
ONに切り変る過程は一瞬の内に行われ使用されている
トランジスタは全てス!ツチング動作を行なわせている
ためQ2及びqが能動領域を通過する時間は一瞬であり
よく見られる様な能動領域を通過する時間が長いための
トランジスタのランナウェイによる破壊もしくは発熱が
全くない。従つてQ2及びらは許容損失の小さなトラン
ジスタで十分まかなえる事になり従来の様にソレノイド
で消費させる電力を減らす変りに大電力用の抵抗又は大
電力用のトランジスタで電力を消費させる必要はなく又
系全体の消費電力が数分の1小さくてすむような事を特
徴とする回路である。
This means that while Q2 was 0N, C1 was charged to almost V1, but due to Q3 being 0N, it was discharged to V2 + 0.7V, and the negative side of C1, that is, the base of Q1, has -(V1-( A negative voltage of V2+0.7)) appears and immediately sets Ql and Q2 to 0FF, but in reality, to prevent Q1 from being destroyed by this negative voltage, D
A diode 2 is inserted to bypass this negative voltage through D2, and a reverse bias of approximately 10.7 cm due to the voltage drop of D2 is applied to the base of Q1. Q from this Q2ON,
The process of switching to ON takes place in an instant, and all the transistors used are switched on! Since the switching operation is performed, the time for Q2 and q to pass through the active region is instantaneous, and there is no breakage or heat generation due to transistor runaway, which is often seen when the transistors take a long time to pass through the active region. Therefore, Q2 and Q2 can be sufficiently covered by transistors with small power dissipation, and there is no need to consume power with a high-power resistor or a high-power transistor instead of reducing the power consumed by the solenoid as in the past. This circuit is characterized by the fact that the power consumption of the entire system can be reduced by a fraction.

また、本発明による回路ではC1の放電を急速に行うD
2を設け、3のスイッチが短時間の間に0N,.0FF
された場合でもC1を完全に放電させる.ことができる
ため、ソレノイドが駆動されなくなることを防ぐことが
できる。以下に従来の回路と本発明による回路の比較を
行ないながら更に本発明回路の特徴を説明する。
Further, in the circuit according to the present invention, D
2 is provided, and the switch 3 is turned ON for a short time, . 0FF
C1 is completely discharged even if Therefore, it is possible to prevent the solenoid from not being driven. The features of the circuit according to the present invention will be further explained below while comparing the conventional circuit and the circuit according to the present invention.

条件を同じくする為従来の回路、本発明回路のソレノイ
ドの抵抗をR1電源電圧を■1(本発明回路は吸引中に
必要な高い方の電源とする)とし吸引後の電流を吸引中
の電流ちの人に制限するものとすると、第2図では吸引
後の電流をAにするには抵抗器2の抵抗値rはr=訳と
なる。従つて吸引中の電流1。
In order to make the conditions the same, the solenoid resistance of the conventional circuit and the inventive circuit is set to R1, the power supply voltage is 1 (the inventive circuit uses the higher power supply required during suction), and the current after suction is the current during suction. Assuming that the current is limited to a certain number of people, in FIG. 2, the resistance value r of the resistor 2 in order to make the current after attraction A is r=. Therefore the current 1 during attraction.

:V1/R吸引後の電流 又吸引中におけるソレノイドの消費電力 吸引後におけるソレノーYFの消!亨力 吸引後における抵抗の消費電力 吸引後における全体の消費電力 となり吸引後におけるソレノイドの消費電力は吸引中の
Δになる。
:V1/R current after suction or power consumption of solenoid during suction Turn off solenoid YF after suction! Power consumption of the resistor after excessive force suction The total power consumption after suction becomes the total power consumption after suction, and the power consumption of the solenoid after suction becomes Δ during suction.

にもかかわらず抵抗によつても電力消費が行われ系全体
としては吸引中のAの電力消費となる。第3図では吸引
後の電流をAにするにはトランジスタ4によつ寸,の電
圧降下を生じさせる事・になり同図aの抵抗による消費
電力分をトランジスタで消費させる事により吸引後のソ
レノイドで消費される電力は吸引中のΔ、トランジスタ
はト全体でAとなる。
Nevertheless, the resistance also consumes power, and the system as a whole consumes the power of A during suction. In Figure 3, in order to make the current after attraction A, it is necessary to cause a voltage drop in transistor 4 of about 100 Ω. The power consumed by the solenoid is Δ during suction, and the power consumed by the transistor is A in total.

(尚A,bともスイッチングにおけるトランジスタの電
圧降下は無視する。)本発明回路では吸引後の電流を一
にするにはV2はV2=1!1となる。従つて吸引中の
電流 ち=■1/R 吸引後の電流 吸引中におけるソレノイドの消費電力 PO=POR=10V1 吸引後におけるソレノイドの消費電力ニ系全体の消費電
力となり、従来の回路ど比較して吸引中における電力は
全く変わらないが、吸引後はソレノイドとしては同じよ
うに吸引中の六の電力であるが従来の回路はさらに余分
に抵抗又はトランジスタによつてソレノイドに必要な電
力の2倍にあたる電力を消費し全体として本発明回路の
3倍の電力を消費する事になる。
(The voltage drop of the transistor during switching is ignored for both A and b.) In the circuit of the present invention, in order to make the current after attraction the same, V2 becomes V2=1!1. Therefore, the current during suction is 1/R.The power consumption of the solenoid during suction after suction is PO=POR=10V1.The power consumption of the solenoid after suction is the power consumption of the entire system, and compared to the conventional circuit. The power during suction does not change at all, but after suction, the solenoid has the same power as during suction, but the conventional circuit uses an extra resistor or transistor, which is twice the power required for the solenoid. This consumes power, and as a whole, it consumes three times as much power as the circuit of the present invention.

此様に本発明回路は無駄な電力消費がなくなりしかも電
源制限を行なうことによりソレノイドに供給される電源
を2電源とし、吸引中は高い電圧を供給し、吸引後は低
い電圧が供給されるようにスイッチングを行い吸引後の
電力消費を殆んどソレノイドのみでなされるようにした
ものでソレノイドの電源制限回路としてはきわめて有効
なもの−である。
In this way, the circuit of the present invention eliminates unnecessary power consumption, and by limiting the power supply, two power supplies are supplied to the solenoid, so that a high voltage is supplied during suction, and a low voltage is supplied after suction. This circuit performs switching so that the power consumption after suction is done almost exclusively by the solenoid, and is extremely effective as a power supply limiting circuit for a solenoid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はプランジャソレノイドコイルのストロークと吸
引力との関係図、第2図及び第3図は従来一般に用いら
れているプランジャソレノイドコイルの電流制限回路の
回路図、第4図は本発明の一実施例に於けるプランジャ
ソレノイドコイルの電流制限回路の回路図である。 1・・・・・・プランジャソレノイドコイル、Q2,Q
,・・・トランジスタ、C1・・・・・コンデンサ、D
2・・・・ダイオード。
Fig. 1 is a diagram showing the relationship between the stroke of the plunger solenoid coil and the attraction force, Figs. 2 and 3 are circuit diagrams of the current limiting circuit of the plunger solenoid coil that has been generally used in the past, and Fig. 4 is a diagram of the current limiting circuit of the plunger solenoid coil that is generally used in the past. FIG. 3 is a circuit diagram of a current limiting circuit of a plunger solenoid coil in an embodiment. 1... Plunger solenoid coil, Q2, Q
,...Transistor, C1...Capacitor, D
2...Diode.

Claims (1)

【特許請求の範囲】[Claims] 1 プランジャソレノイドコイルに異なる値の電流を供
給する第1及び第2の電源と、この第1及び第2の電源
にそれぞれ接続されプランジャソレノイドコイルに供給
する電源のON、OFFを行う第1及び第2のトランジ
スタと、前記第1及び第2のトランジスタの制御電極間
に接続されたコンデンサと、上記コンデンサの1端と電
源の帰線との間に接続され、その放電を急速に行わせる
放電手段とを設け、コンデンサの充電時に第1のトラン
ジスタをオンさせて第1の電源をプランジャソレノイド
コイルに供給し、コンデンサの充電完了時に第2のトラ
ンジスタをオンさせると共にこの第2のトランジスタの
オンにより第1のトランジスタをオフさせて第2の電源
をプランジャソレノイドコイルに供給させるようにして
制限された電流が流れるようにしたプランジャソレノイ
ドコイルの電流制限回路。
1. First and second power supplies that supply currents of different values to the plunger solenoid coil, and first and second power supplies that are connected to the first and second power supplies and turn on and off the power supplies supplied to the plunger solenoid coil, respectively. a capacitor connected between the control electrodes of the first and second transistors; and a discharging means connected between one end of the capacitor and a return line of the power supply, for rapidly discharging the capacitor. When the capacitor is charged, the first transistor is turned on to supply the first power to the plunger solenoid coil, and when the capacitor is charged, the second transistor is turned on and the second transistor is turned on. A current limiting circuit for a plunger solenoid coil in which a first transistor is turned off and a second power source is supplied to the plunger solenoid coil so that a limited current flows.
JP51132123A 1976-11-02 1976-11-02 Plunger solenoid coil current limiting circuit Expired JPS6053445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51132123A JPS6053445B2 (en) 1976-11-02 1976-11-02 Plunger solenoid coil current limiting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51132123A JPS6053445B2 (en) 1976-11-02 1976-11-02 Plunger solenoid coil current limiting circuit

Publications (2)

Publication Number Publication Date
JPS5357462A JPS5357462A (en) 1978-05-24
JPS6053445B2 true JPS6053445B2 (en) 1985-11-26

Family

ID=15073937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51132123A Expired JPS6053445B2 (en) 1976-11-02 1976-11-02 Plunger solenoid coil current limiting circuit

Country Status (1)

Country Link
JP (1) JPS6053445B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211726A (en) * 1984-03-30 1985-10-24 富士通株式会社 Relay drive system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50107458A (en) * 1974-01-31 1975-08-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50107458A (en) * 1974-01-31 1975-08-23

Also Published As

Publication number Publication date
JPS5357462A (en) 1978-05-24

Similar Documents

Publication Publication Date Title
JP3018857B2 (en) Electromagnetic device drive circuit
KR100438457B1 (en) Device for switching of inductive consumer
JPS58191527A (en) Electronic latching circuit
JPS60157326A (en) Monolithic integrated circuit
JPS6053445B2 (en) Plunger solenoid coil current limiting circuit
JP3558938B2 (en) DC stabilized power supply
JP4182170B2 (en) Inrush current suppression circuit
US5654661A (en) Drive circuit for SCR device
JP4124082B2 (en) Constant voltage power circuit
US4754389A (en) Voltage regulating circuitry for a DC to DC converter
JPH0670487A (en) Power supply switching-over circuit
JP2000175345A (en) Overcurrent protective circuit apparatus
EP4362334A1 (en) Automatic power off circuit of non-rebound switches
JP2731284B2 (en) Drive circuit for voltage-driven elements
JPS6343793Y2 (en)
JP3540869B2 (en) Starter circuit device for self-biased electronic circuits
SU1275557A1 (en) High-speed electromagnetic device
JPH063451Y2 (en) Current supply circuit
KR910005464B1 (en) Switching mode power supply
JP2518216Y2 (en) Bias cutoff circuit
JPS61141103A (en) Driving circuit for solenoid
JPS62260307A (en) Plunger driving circuit
JPS62135264A (en) Transistor chopper circuit
JPH01274660A (en) Driving circuit for power switch element
JPH03112321A (en) Power source device