JPS6053405B2 - Method for manufacturing dielectric thin body with high dielectric constant - Google Patents

Method for manufacturing dielectric thin body with high dielectric constant

Info

Publication number
JPS6053405B2
JPS6053405B2 JP52118358A JP11835877A JPS6053405B2 JP S6053405 B2 JPS6053405 B2 JP S6053405B2 JP 52118358 A JP52118358 A JP 52118358A JP 11835877 A JP11835877 A JP 11835877A JP S6053405 B2 JPS6053405 B2 JP S6053405B2
Authority
JP
Japan
Prior art keywords
dielectric constant
thin body
dielectric
high dielectric
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52118358A
Other languages
Japanese (ja)
Other versions
JPS5450998A (en
Inventor
昇 津屋
賢一 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP52118358A priority Critical patent/JPS6053405B2/en
Publication of JPS5450998A publication Critical patent/JPS5450998A/en
Publication of JPS6053405B2 publication Critical patent/JPS6053405B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】 この発明はLiNb039LiTaO39NaTa03
、W03、NaNO2、BaTi03、Pb(Zr、T
i)Osなど、またはこれらの特性を改善するための元
素を添加した結晶性高誘電率物質、たとえばLiNb0
Detailed Description of the Invention This invention relates to LiNb039LiTaO39NaTa03
, W03, NaNO2, BaTi03, Pb(Zr, T
i) Crystalline high dielectric constant material such as Os or other elements added to improve these properties, such as LiNb0
.

を熔融させて単相となつた熔融体化合物を回転している
冷却体にて急冷することにより、この熔融体とほぼ同一
組成のアモルファス(非晶質)誘電体を面積比にて少な
くとも50%以上含む誘電体薄倖を製造する方法に関す
るものである。
By rapidly cooling the molten compound which has become a single phase by melting it in a rotating cooling body, an amorphous (amorphous) dielectric material having almost the same composition as this molten compound is formed by at least 50% of the area ratio. The present invention relates to a method of manufacturing a dielectric thin film including the above.

従来、熔融体を冷却してアモルファス状態になることが
知られている誘電体物質としては、たとえば誘電体ガラ
スがある。
2. Description of the Related Art Conventionally, dielectric materials known to turn into an amorphous state by cooling a molten material include, for example, dielectric glass.

これには熔融ガラスを一対のロール間で挾み上げて得ら
れる板状ガラスや、熔融ガラスをノズルから吹き出させ
て巻き取ることにより得られるガラスファイバーなどが
ある。しカル誘電体ガラスそのものの誘電率は、たとえ
ばBi。
These include sheet glass obtained by sandwiching molten glass between a pair of rolls, and glass fiber obtained by blowing molten glass out of a nozzle and winding it up. The dielectric constant of the dielectric glass itself is, for example, Bi.

O、、CdO、SiO。系で16〜32の範囲であり、
高誘電率のものは得られていなかつた。また機械的に弱
いため耐衝撃性に劣つており、さらに加工が困難である
、あるいは熱に対して弱いなどの問題があつた。また高
誘電性化合物を基板上に蒸着、電着、スパッタリングな
どの方法でこれらを部分的にアモルファス状態にした薄
体を得る技術が知られてい’る。
O, CdO, SiO. The system ranges from 16 to 32,
A material with a high dielectric constant had not been obtained. In addition, it is mechanically weak and has poor impact resistance, and furthermore, it has problems such as being difficult to process and being weak against heat. Also known is a technique for obtaining a thin body of a highly dielectric compound partially in an amorphous state by vapor deposition, electrodeposition, sputtering, or the like on a substrate.

しカル基板に付着していないアモルファス状態を含む薄
片、薄体のような誘電体薄倖を製造する方法はまだ見い
出されていない。この発明は少なくとも一部がアモルフ
ァス状態を含む誘電体薄倖を製造する方法に関し、その
要・旨とするところは、熔融させた結晶性高誘電率物質
をノズルから噴出させ、これを回転体の回転面上で急冷
することにより、面積比にて少なくとも50%以上のア
モルファス状態を含む誘電体薄倖を形成することを特徴
とするものである。
A method for manufacturing a dielectric thin film such as a thin piece or thin body containing an amorphous state that is not attached to a thermal substrate has not yet been found. The present invention relates to a method for manufacturing a dielectric thin film containing at least a part of an amorphous state, and its gist is to eject a molten crystalline high permittivity material from a nozzle, and to apply it to a rotating body. It is characterized by forming a dielectric thin layer containing at least 50% or more of the amorphous state in terms of area ratio by rapidly cooling on the surface.

結晶性高誘電率物質としては、BaTiO3,PbTl
O3,Pb(Ti,Zr)03,LiNb03,LiT
a03,NaNb03,NaTa03,AgNb03な
どのペロブスカイト型のもの、Pb(Znll3Nbl
l3)03,Pb(Fell2Nbll2)03などの
複合ペロブスカイト型のもの、Ba2Nb2O7,Ca
2Nb2O7,Ba2Ta2O,などのパイロクロア型
のもの、BaBi2Ta2O9などのビスマス層状型の
もの、KXWO3(0.43≦×≦0.51)、Pl)
N■06などのタングステンブロンズ型のものがある。
Examples of crystalline high dielectric constant materials include BaTiO3 and PbTl.
O3, Pb(Ti, Zr)03, LiNb03, LiT
perovskite type such as a03, NaNb03, NaTa03, AgNb03, Pb (Znll3Nbl
l3)03, composite perovskite type such as Pb(Fell2Nbll2)03, Ba2Nb2O7, Ca
Pyrochlore types such as 2Nb2O7, Ba2Ta2O, bismuth layered types such as BaBi2Ta2O9, KXWO3 (0.43≦×≦0.51), Pl)
There are tungsten bronze types such as N■06.

この発明方法により、これらの結晶性高誘電率物質から
誘電体薄体が得られるが、この誘電体薄体を作る結晶性
高誘電率物質の熔融体には多くの元素を固溶させ得る。
まず、結晶状態において広範囲にわたつて固溶する同じ
結晶形を示す複合の化合物を溶融させた熔融体から急冷
することにより誘電体薄体が得られる。この例としては
例えば(Ba,TO)TiO3系がある。次に固溶させ
ることのできる添加可能な元素としては、添加元素その
ものあるいはその化合物があり、たとえは酸化物、混合
体単体あるいはそれらの複合体として添加でき、またP
bO,NaCO3等のようなフラックスとして添加でき
る。
According to the method of the present invention, a dielectric thin body can be obtained from these crystalline high dielectric constant substances, and many elements can be solid-dissolved in the melt of the crystalline high dielectric constant substance from which the dielectric thin body is made.
First, a dielectric thin body is obtained by rapidly cooling a molten body of a composite compound exhibiting the same crystalline form that is solid-solved over a wide range in a crystalline state. An example of this is the (Ba,TO)TiO3 system. Next, the elements that can be added as a solid solution include the additive elements themselves or their compounds, for example, they can be added as oxides, mixtures alone, or complexes thereof, and P
It can be added as a flux such as bO, NaCO3, etc.

さらに、他の添加元素としては、原結晶が含有する金属
元素と結晶状態において一部置換可能な元素、たとえば
遷移金属元素がある。
Further, as other additive elements, there are elements that can partially replace the metal elements contained in the original crystal in the crystal state, such as transition metal elements.

これらの元素の誘電体薄体に対する添加可能な範囲は普
通結晶状態の固溶限界よりは広い。
The range in which these elements can be added to the dielectric thin body is generally wider than the solid solubility limit in the crystalline state.

また、この他に添加可能な元素は熔融体にその熔融状態
で溶解しうるすべての元素である。上記に詳述したすべ
ての元素は添加することにより構成された誘電体薄体の
電気的性質等を必要に応じて変化させるのに役立つもの
である。結晶性高誘電率物質を熔融させる場合には次の
ような点に注意を払わなければならない。つまり、熔融
した結晶性高誘電率物質をノズルから噴出させることが
できる粘調度であることが必要であり、結晶性高誘電率
物質の融点より高くなりすぎると粘調度が低くなりすぎ
るため、熔融体がノズルより自発的に滲出して液滴状に
近くなる。さらにそれ以上の温度で熔融させると自発的
に流下し、良好な熔融体が得られず、結果的には良質な
誘電体薄体が得られなくなる。したがつて、結晶性高誘
電率物質はその物質自体の融点または融点を越えた付近
で熔融されていることを要する。結晶性高誘電率物質を
熔融させるには抵抗加熱法、高周波加熱法があるが、熔
融させることができればその他任意の手段を採りうる。
熔融された結晶性高誘電率物質はノズルから噴出される
が、噴出させる時点は回転面の直上にノズルが達したと
きに行えばよく、これにはマイクノロスイツチなどを用
いればよい。
Further, other elements that can be added include all elements that can be dissolved in the melt in its molten state. All of the elements detailed above are useful for changing the electrical properties of the constructed dielectric thin body as needed. When melting a crystalline high dielectric constant material, attention must be paid to the following points. In other words, the viscosity must be such that the molten crystalline high dielectric constant material can be jetted out from the nozzle. The body oozes out spontaneously from the nozzle and becomes almost like a droplet. Furthermore, if it is melted at a temperature higher than that, it will flow down spontaneously, making it impossible to obtain a good melt, and as a result, a good quality dielectric thin body cannot be obtained. Therefore, the crystalline high dielectric constant material must be melted at or near the melting point of the material itself. There are resistance heating methods and high frequency heating methods for melting a crystalline high dielectric constant material, but any other method can be used as long as it can be melted.
The molten crystalline high dielectric constant material is ejected from the nozzle, and the ejection may be performed when the nozzle reaches just above the rotating surface, and a microkno switch or the like may be used for this purpose.

また良質な誘電体薄体を得るために、ノズルには特に白
金、白金・ロジウムからなるものがよい。またノズルの
先端形状としては円形状、だ円形状などであるが、得よ
うとする誘電体薄体の大きさに合わせて・選択すればよ
い。ノズルの内面をライニング加工すれば熔融した結晶
性高誘電率物質が噴出しやすくなり、製造が容易に行え
る。ノズルから噴出する熔融した結晶性高誘電率物質の
噴出圧は高すぎても低すぎても誘電体薄体中・に占める
結晶質の割合が増加するため、0.1〜1.0の気圧の
範囲にあることが望ましい。
In order to obtain a high-quality dielectric thin body, the nozzle is particularly preferably made of platinum or platinum/rhodium. The shape of the tip of the nozzle may be circular, elliptical, etc., and may be selected depending on the size of the dielectric thin body to be obtained. Lining the inner surface of the nozzle makes it easier to eject the molten crystalline high dielectric constant material, making it easier to manufacture. The ejection pressure of the molten crystalline high permittivity material ejected from the nozzle is 0.1 to 1.0 atmospheric pressure because the proportion of crystalline material in the dielectric thin body will increase if the ejection pressure is too high or too low. It is desirable that it be within the range of .

良質な誘電体薄体を得るには、回転体の回転面上に噴出
させて急冷させるが、この場合回転体としては熱伝導の
よいものを用いる。
In order to obtain a high-quality dielectric thin body, it is quenched by jetting it onto the rotating surface of a rotating body. In this case, a rotating body with good heat conductivity is used.

たとえばこれには銅、アルミニウム、鉄などの材質から
なる回転体がある。この回転体の回転速度は遅すぎると
誘電体薄体の膜厚が厚くなり、鱗片状になると同時に結
晶質部分が多くなるため、回転速度としては1400r
pm以上が好ましい。
For example, these include rotating bodies made of materials such as copper, aluminum, and iron. If the rotational speed of this rotating body is too slow, the thickness of the dielectric thin film will become thick, and at the same time it will become scaly and have many crystalline parts, so the rotational speed should be 1400 r.
pm or more is preferable.

回転体の直径は上記した結晶性高誘電率物質の熔融温度
、回転体の回転速度、およびノズルからの噴出圧の各条
件に適合した大きさがあり、たとえば回転体の回転面の
線速度が同一であつても、回転体の直径が大きい場合に
は、小さい場合にくらべて回転体が受ける遠心力が小さ
いので、回転面との付着力が大きい材料では良好な誘電
体薄体が得られず、また付着力の小さい材料では冷却さ
れる時間が短かすぎるため、アモルファス状態を少なく
とも一部含む良質な誘電体薄体が得られない。
The diameter of the rotating body has a size that matches the above-mentioned conditions of the melting temperature of the crystalline high dielectric constant material, the rotation speed of the rotating body, and the ejection pressure from the nozzle. Even if they are the same, if the diameter of the rotating body is large, the centrifugal force exerted on the rotating body is smaller than if it is small, so a material with a large adhesion force to the rotating surface will not produce a good dielectric thin body. Moreover, since the cooling time for materials with low adhesion is too short, it is impossible to obtain a high-quality dielectric thin body containing at least a portion of an amorphous state.

たとえばその大きさとしては50〜350T!Rlnφ
程度のものである。回転体としてはたとえば円板状ある
いはドラム状のものがあり、円板状の場合には冷却面と
して側面の平滑な回転面上を用いればよい。
For example, its size is 50-350T! Rlnφ
It is of a certain degree. The rotating body may be, for example, disc-shaped or drum-shaped, and in the case of a disc-shaped body, the rotating surface with a smooth side surface may be used as the cooling surface.

またドラム状のものは冷却面として平滑な内側面を用い
ればよい。以下この発明の実施例を図面とともに詳細に
説明する。
Further, in the case of a drum-shaped one, a smooth inner surface may be used as a cooling surface. Embodiments of the present invention will be described in detail below with reference to the drawings.

実施例1第1図において、1は容器でLiNbO3から
なる熔融した結晶性高誘電率物質2が入つている。
Embodiment 1 In FIG. 1, 1 is a container containing a molten crystalline high dielectric constant material 2 made of LiNbO3.

この容器1は結晶性高誘電率物質2と反応しないもの、
たとえば白金、白金・ロジウムなどからなる。この容器
1の先端に0.1〜0.5wnφのノズル3を有してい
る。容器1内の熔融した結晶性高誘電率物質2は抵抗体
4の加熱により1250〜1300℃に保持されている
。5はノズル3付近に配置された熱電対てある。
This container 1 is one that does not react with the crystalline high dielectric constant material 2,
For example, it is made of platinum, platinum/rhodium, etc. A nozzle 3 having a diameter of 0.1 to 0.5 wnφ is provided at the tip of the container 1. The molten crystalline high dielectric constant material 2 in the container 1 is maintained at a temperature of 1250 to 1300° C. by heating with a resistor 4. 5 is a thermocouple arranged near the nozzle 3.

6は回転体て熱伝導のよい銅よりなる。6 is a rotating body made of copper with good heat conductivity.

この回転体6の大きさを直径300w1nφとし、平滑
な回転面上を有する円板状のものを用いて3800rp
mの回転数で回転させておき、ノズル3を回転体6の平
滑な回転面上に近接させ、容器1内のLiNbO3をノ
ズル3より噴出圧を0.1〜1.0気圧に変化させなが
ら回転面上へ噴出させ、熔融体を回転面上で急冷して誘
電体薄体を得た。得られた誘電体薄体は厚み5〜30μ
m、幅0.1〜0.87mのものであつた。
The size of this rotating body 6 is 300w1nφ in diameter, and a disc-shaped one with a smooth rotating surface is used.
The nozzle 3 is brought close to the smooth rotating surface of the rotating body 6, and the LiNbO3 in the container 1 is ejected from the nozzle 3 while changing the pressure from 0.1 to 1.0 atm. The melt was ejected onto a rotating surface, and the molten material was rapidly cooled on the rotating surface to obtain a dielectric thin body. The obtained dielectric thin body has a thickness of 5 to 30μ
m, with a width of 0.1 to 0.87 m.

これを鉱物顕微鏡で測定したところ、全体あるいは相当
部分にわたつてアモルファス状態であることが確認でき
た。またこの薄体のうち厚み7μm1幅0.5順、長さ
5wInのものについて誘電率を測定した。つまり、第
2図に示すように、この薄体11を一対の平行電極12
,13間に挾んでコンデンサ4を構成し、変成器ブリッ
ジ15を用いて誘電率を測定したところ75てあり、従
来のLiNbO3単結晶にくらべて大きな値を示すこと
が確認できた。なお、16,17は同軸ケーブルである
。また、自由に振動し得る状態で薄体を保持し、動イン
ピーダンスを測定したところ、電気振動が機械的振動に
変換されることも確認され、電気一機械変換器として利
用できることが判明した。
When this was measured using a mineral microscope, it was confirmed that the whole or a considerable portion of it was in an amorphous state. Further, among these thin bodies, the dielectric constant was measured for a thin body having a thickness of 7 μm, a width of 0.5 mm, and a length of 5 WIn. That is, as shown in FIG. 2, this thin body 11 is connected to a pair of parallel electrodes 12.
, 13, and measured the dielectric constant using the transformer bridge 15, it was found to be 75, which is larger than that of the conventional LiNbO3 single crystal. Note that 16 and 17 are coaxial cables. Furthermore, when the thin body was held in a state where it could vibrate freely and its dynamic impedance was measured, it was confirmed that electrical vibrations were converted into mechanical vibrations, indicating that it could be used as an electro-mechanical converter.

実施例2結晶性高誘電率物質としてPbTiO3を用い
、1300〜1350゜Cで熔融さぜ、第1図に示す装
置にて、製造条件を回転数3000rpm1噴出圧0.
8気圧として誘電体薄体を得た。
Example 2 PbTiO3 was used as a crystalline high dielectric constant material, and was melted at 1300 to 1350°C using the apparatus shown in Fig. 1 under the manufacturing conditions of 3000 rpm, 1 jet pressure, and 0.
A dielectric thin body was obtained at a pressure of 8 atmospheres.

得られた薄体は厚み10〜20pm1幅0.3〜0.6
TmInのもので、X線および鉱物顕微鏡で測定したと
ころ、ほとんど全体がアモルファス状態であることが確
認できた。また実施例1と同様にその特性を測定したと
ころ、きわめて大きな誘電率が検出され、また電気一機
械変換器として利用できることが判明した。
The obtained thin body has a thickness of 10 to 20 pm and a width of 0.3 to 0.6
It was made of TmIn, and when measured using an X-ray and mineral microscope, it was confirmed that almost the entire material was in an amorphous state. Furthermore, when its characteristics were measured in the same manner as in Example 1, an extremely large dielectric constant was detected, and it was found that it could be used as an electrical-mechanical converter.

上記したほか、得られた誘電体薄体についての特徴的な
性質について以下に説明する。機械的強度として、曲げ
に対する強度は同一の厚さの同一寸法の導体て帯面を湾
曲させると、結晶質のものと比較した場合、破壊に至る
抗折力強度は5〜6倍と大きな値を示す。
In addition to the above, characteristic properties of the obtained dielectric thin body will be described below. In terms of mechanical strength, when bending a conductor of the same thickness and dimensions, the transverse rupture strength at breakage is 5 to 6 times greater than that of a crystalline conductor. shows.

すなわちこの発明によるもののほうが圧倒的に強い。ま
た、光の透過性は、多結晶質の導体とこの発明の薄体と
くらべた場合、顕微鏡観測によると前者が白濁状態であ
るにも拘わらず、後者は平行ニコルの状態で極めて光の
透過性が高く、クロスニコルの状態では暗黒状態にあり
、薄体の境界線のみが可視化される。
In other words, this invention is overwhelmingly stronger. Furthermore, when comparing the light transmittance of a polycrystalline conductor and the thin body of this invention, microscopic observation shows that although the former is cloudy, the latter is in a parallel Nicols state and has extremely high light transmission. In the crossed nicol state, it is in a dark state, and only the border of the thin body is visible.

さらに上記した各実施例で作成したコンデンサについて
静電容量の測定中に直流バイアス電圧を加えた。
Furthermore, a direct current bias voltage was applied to the capacitors produced in each of the examples described above during measurement of capacitance.

この電圧を変化させて測定した絶縁破壊電圧は多結晶質
の薄体にくらべて10f9以上であつた。このことはこ
の発明による誘電体薄体のほうが多結晶質の薄体にくら
べ、絶縁耐力がはるかに高いことを示している。また、
誘電率については上記した各実施例て説明したが、別の
例ては誘電体薄体を作成するにあたり、原料として用い
た単結晶そのものから切出した薄片の誘電率にくらべ、
この発明による誘電・体薄体のそれは約1咋であつた。
The dielectric breakdown voltage measured by changing this voltage was 10f9 or more compared to a polycrystalline thin body. This shows that the dielectric thin body according to the present invention has much higher dielectric strength than the polycrystalline thin body. Also,
The dielectric constant has been explained in each of the above examples, but in another example, when creating a dielectric thin body, compared to the dielectric constant of a thin piece cut from the single crystal itself used as a raw material,
The weight of the dielectric thin body according to this invention was approximately 1 ku.

これは誘電体薄体では結晶構造がないため、あるいは存
在していたとしても面積比にて50%未満であるため、
高誘電率発生の起因となるべき電界印加による各原子あ
るいはイオンの分極に方向性・が本質的に依存しないこ
とによるためであろうと考えられる。
This is because the dielectric thin body does not have a crystal structure, or even if it does exist, the area ratio is less than 50%.
This is thought to be because the directionality does not essentially depend on the polarization of each atom or ion due to the application of an electric field, which is the cause of the generation of a high dielectric constant.

また、分極の存在と関係する誘電体率の電界依存性に対
しては、印加バイアス電圧の上昇に伴つていくらかの誘
電率の低下が認められる。
Regarding the electric field dependence of the dielectric constant, which is related to the presence of polarization, some decrease in the dielectric constant is observed as the applied bias voltage increases.

このこ)とは誘電体薄体の誘電率に非線形が伴つている
か、あるいは誘電ヒステリシスに伴う抗電力が極めて小
さい強誘電性に基くものかどちらかである。なお、誘電
体薄体中に含まれるアモルファス状態は面積比にして少
なくとも50%以上の範囲にあることが望まれる。
This is either due to nonlinearity in the dielectric constant of the dielectric thin body, or it is based on ferroelectricity, where the coercive force associated with dielectric hysteresis is extremely small. Note that it is desirable that the amorphous state contained in the dielectric thin body is at least 50% or more in terms of area ratio.

これは50%未満になると機械的強度が弱くなり、薄体
状態で保持することが困難になるからである。また、装
置全体を真空中に設置すると空気抵抗がなくなり、さら
に良質な誘電体薄体を得ることができる。
This is because if it is less than 50%, the mechanical strength becomes weak and it becomes difficult to maintain it in a thin state. Moreover, if the entire apparatus is placed in a vacuum, air resistance is eliminated, and a dielectric thin body of even higher quality can be obtained.

以上のようにこの発明によれば、熔融させた結晶性高誘
電率物質をノズルから噴出させ、これを回転面上で急冷
することにより、面積比にて少なくとも50%以上のア
モルファス状態を含む誘電体薄体が得られ、従来のアモ
ルファス状態の誘電体にくらべて大きな誘電率が得られ
るとともに、任意の大きさに切断して電極を付与するだ
けでチップ状のコンデンサが得られる。
As described above, according to the present invention, a molten crystalline high permittivity material is ejected from a nozzle and is rapidly cooled on a rotating surface, thereby forming a dielectric material containing at least 50% of the amorphous state in terms of area ratio. A thin body can be obtained, and a dielectric constant larger than that of conventional amorphous dielectrics can be obtained, and a chip-shaped capacitor can be obtained by simply cutting to a desired size and adding electrodes.

またそのほかにトランスデューサ、振動子、光導行路、
光モジュレータ、圧電、光電記録、熱記録、光検出、誘
電体増幅、発振子、静電リレー、静電変圧器などの用途
があり、工業的利用価値の大きなものである。
In addition, transducers, oscillators, light guides,
It has applications such as optical modulators, piezoelectricity, photoelectric recording, thermal recording, photodetection, dielectric amplification, oscillators, electrostatic relays, and electrostatic transformers, and has great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明を実施するための装置を示す概略図、
第2図は誘電率を測定する回路図てある。 1一容器、2一熔融させた結晶性高誘電率物質、3−ノ
ズル、6一回転体、7一誘電体薄体。
FIG. 1 is a schematic diagram showing an apparatus for carrying out this invention;
FIG. 2 is a circuit diagram for measuring dielectric constant. 1- container, 2- melted crystalline high dielectric constant material, 3- nozzle, 6- rotating body, 7- dielectric thin body.

Claims (1)

【特許請求の範囲】 1 熔融させた結晶性高誘電率物質をノズルから噴出さ
せ、これを回転体の回転面上で急冷することにより、面
積比にて少なくとも50%以上のアモルファス状態を含
む誘電体薄体を形成することを特徴とする高誘電率を有
する誘電体薄体の製造方法。 2 結晶性高誘電率物質はその融点または融点を越えた
付近で熔融していることを特徴とする特許請求の範囲第
1項記載の高誘電率を有する誘電体薄体の製造方法。 3 ノズルは白金または白金・ロジウムよりなることを
特徴とする特許請求の範囲第1項記載の高誘電率を有す
る誘電体薄体の製造方法。 4 回転体は熱伝導の良好なものからなることを特徴と
する特許請求の範囲第1項記載の高誘電率を有する誘電
体薄体の製造方法。 5 回転体は銅または銅・ベリリウムよりなることを特
徴とする特許請求の範囲第1項または第4項記載の高誘
電率を有する誘電体薄体の製造方法。
[Claims] 1. A dielectric material containing at least 50% amorphous state in terms of area ratio by ejecting a molten crystalline high dielectric constant material from a nozzle and rapidly cooling it on the rotating surface of a rotating body. A method for producing a thin dielectric body having a high dielectric constant, the method comprising forming a thin body. 2. The method for manufacturing a dielectric thin body having a high dielectric constant according to claim 1, wherein the crystalline high dielectric constant material is melted at or near its melting point. 3. The method for manufacturing a dielectric thin body having a high dielectric constant according to claim 1, wherein the nozzle is made of platinum or platinum/rhodium. 4. The method for manufacturing a dielectric thin body having a high dielectric constant according to claim 1, wherein the rotating body is made of a material having good heat conductivity. 5. The method for manufacturing a dielectric thin body having a high dielectric constant according to claim 1 or 4, wherein the rotating body is made of copper or copper/beryllium.
JP52118358A 1977-09-30 1977-09-30 Method for manufacturing dielectric thin body with high dielectric constant Expired JPS6053405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52118358A JPS6053405B2 (en) 1977-09-30 1977-09-30 Method for manufacturing dielectric thin body with high dielectric constant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52118358A JPS6053405B2 (en) 1977-09-30 1977-09-30 Method for manufacturing dielectric thin body with high dielectric constant

Publications (2)

Publication Number Publication Date
JPS5450998A JPS5450998A (en) 1979-04-21
JPS6053405B2 true JPS6053405B2 (en) 1985-11-26

Family

ID=14734719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52118358A Expired JPS6053405B2 (en) 1977-09-30 1977-09-30 Method for manufacturing dielectric thin body with high dielectric constant

Country Status (1)

Country Link
JP (1) JPS6053405B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2467116A1 (en) * 1979-10-12 1981-04-17 Sodex Magister IMPROVEMENTS TO ANTI-THEFT FOR MOTOR VEHICLES
JPS5762984U (en) * 1980-10-01 1982-04-14
JPS57145255A (en) * 1981-03-03 1982-09-08 Matsushita Electric Ind Co Ltd Flat type pyroelectricity element and manufacture thereof
JP6218116B2 (en) * 2013-03-26 2017-10-25 Toto株式会社 Composite metal oxide particles and method for producing the same

Also Published As

Publication number Publication date
JPS5450998A (en) 1979-04-21

Similar Documents

Publication Publication Date Title
US4244722A (en) Method for manufacturing thin and flexible ribbon of dielectric material having high dielectric constant
EP0691693B1 (en) Thin film piezoelectric device and ink jet recording head comprising the same
JP4258530B2 (en) Piezoelectric thin film element
DE102017129169B4 (en) Piezoelectric thin film composite, piezoelectric thin film substrate, piezoelectric thin film device, piezoelectric actuator, piezoelectric sensor, head assembly, head stacking assembly, hard disk drive, print head, and ink jet printer device
JP6202202B2 (en) Piezoelectric thin film, piezoelectric thin film element and target, and piezoelectric thin film and piezoelectric thin film element manufacturing method
JP2008270514A (en) Piezoelectric thin-film element
JPS6053405B2 (en) Method for manufacturing dielectric thin body with high dielectric constant
Lorenz et al. Electromechanical properties of robocasted barium titanate ceramics
Yamashita et al. Enhanced electrical properties by AC poling of relaxor-Pb (Zr, Ti) O3 single crystals manufactured by the solid state crystal growth method
Rittenmyer Electrostrictive ceramics for underwater transducer applications
DE69007757T2 (en) Process for the deposition of a ceramic thin film and product produced thereafter.
Hou et al. Sintering aids modified electrocaloric response in BaZr0. 2Ti0. 8O3 bilayer films
DE1466033B2 (en) PIEZOELECTRIC NON-FERROELECTRIC SEMICONDUCTOR MATERIAL PROCESS FOR THE PRODUCTION AND USE THEREOF
JP2008270379A (en) Piezoelectric thin-film element
Scarisoreanu et al. Pulsed laser deposition of perovskite relaxor ferroelectric thin films
JP5531529B2 (en) Substrate with piezoelectric thin film, piezoelectric thin film element, actuator, and sensor
Dausch et al. The domain switching and structural characteristics of PLZT bulk ceramics and thin films chemically prepared from the same acetate precursor solutions
JP7188438B2 (en) Dielectric compositions and electronic components
Yao et al. Effects of Heat‐Treatment Temperature on the Properties of (1–x)(Na0. 5Bi0. 5) TiO3–xBiAlO3 Lead‐Free Piezoelectric Thin Films
Shi et al. Influence of annealing time on microstructure and dielectric properties of (Ba 0.3 Sr 0.7)(Zn 1/3 Nb 2/3) O 3 ceramic thin films prepared by sol–gel method
Ito et al. The piezoelectric PZT thin films deposited on metal substrates
JPS6053406B2 (en) Dielectric thin body with high dielectric constant and manufacturing method thereof
Pattipaka et al. Investigation of surface scaling, optical and microwave dielectric studies of Bi 0.5 Na 0.5 TiO 3 thin films
JP4422678B2 (en) Method for manufacturing ferroelectric single crystal film structure using vapor deposition method
TWI672283B (en) NOx film and capacitor