JP2008270514A - Piezoelectric thin-film element - Google Patents

Piezoelectric thin-film element Download PDF

Info

Publication number
JP2008270514A
JP2008270514A JP2007111315A JP2007111315A JP2008270514A JP 2008270514 A JP2008270514 A JP 2008270514A JP 2007111315 A JP2007111315 A JP 2007111315A JP 2007111315 A JP2007111315 A JP 2007111315A JP 2008270514 A JP2008270514 A JP 2008270514A
Authority
JP
Japan
Prior art keywords
thin film
piezoelectric thin
piezoelectric
nbo
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007111315A
Other languages
Japanese (ja)
Other versions
JP5056139B2 (en
Inventor
Kenji Shibata
憲治 柴田
Fumito Oka
史人 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2007111315A priority Critical patent/JP5056139B2/en
Publication of JP2008270514A publication Critical patent/JP2008270514A/en
Application granted granted Critical
Publication of JP5056139B2 publication Critical patent/JP5056139B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric thin-film element containing a potassium sodium niobate thin film having excellent piezoelectric characteristics. <P>SOLUTION: The piezoelectric thin-film element 8 has a structure in which at least a lower electrode 2 such as platinum, a piezoelectric thin-film 3 having a perovskite structure represented by general formula (K<SB>x</SB>Na<SB>1-x</SB>)NbO<SB>3</SB>(0<x<1) and having a film thickness of 0.2-10 μm, and an upper electrode 4 such as platinum are disposed on a substrate 1, wherein the composition of K, Na and Nb in the piezoelectric thin-film 3 satisfies the relation 1.15<(K+Na)/Nb<1.50. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、圧電薄膜素子に関する。   The present invention relates to a piezoelectric thin film element.

圧電材料は、種々の目的に応じて様々な圧電素子に加工され、素子に電圧を加えることにより変形が生じるアクチュエータや、それとは逆に素子に圧力を加えることにより変形を生じさせ、その変形に応じて電圧が発生するセンサなどの機能性電子部品として広く利用されている。   Piezoelectric materials are processed into various piezoelectric elements according to various purposes, and actuators that deform when voltage is applied to the elements, and conversely, deformation occurs when pressure is applied to the elements. It is widely used as a functional electronic component such as a sensor that generates a voltage in response.

アクチュエータやセンサの用途に利用されている圧電材料としては、優れた圧電特性を有する鉛系材料の強誘電体材料、特にPZTと呼ばれるPb(Zr1−xTi)O系のペロブスカイト型強誘電体材料がこれまで広く用いられており、このような強誘電体材料は通常個々の元素からなる酸化物粉末を焼結することにより作製される。 As a piezoelectric material used for actuators and sensors, a lead-based ferroelectric material having excellent piezoelectric characteristics, particularly a Pb (Zr 1-x Ti x ) O 3 perovskite-type strong material called PZT. Dielectric materials have been widely used so far, and such ferroelectric materials are usually produced by sintering oxide powders composed of individual elements.

一方、近年は各種電子部品の小型化・高性能化が進み、それに伴ってアクチュエータ等の圧電素子も一層小型化することが求められている。このような場合には、圧電材料を膜厚が数μmから数十μmの薄膜形状にすることが要求され、適当な基板上に薄膜を形成する方法が用いられる。
従来からの製法である焼結法を中心とする製造方法により作製した圧電材料は、結晶粒が比較的大きいため、近年の小型化の要求に沿って薄膜化を進めるには大きな問題がある。つまり、10μm程度の薄膜になると、その膜厚が、材料を構成する結晶粒の大きさに近づいてしまうため、個々の結晶粒の特性の影響が無視できなくなる。そのため、特性のばらつきや劣化が顕著になるといった問題が発生する。
また、固形状の焼結体を薄膜形状に加工することは、経済的・工業的見地から見ても現実的な方法とは言い難い。
このような理由から、焼結法に代わって薄膜形成技術を応用した圧電材料の形成法が近年盛んに研究されるようになってきた。薄膜形成技術としては、例えばスパッタリング法(特許文献1参照)や、PLD(レーザーアブレーション法)、ゾルゲル法等がある。最近、RFスパッタリング法で形成したPZT薄膜が高精細高速インクジェットプリンタのヘッド用アクチュエータとして実用化されている(特許文献2参照)。
他方、前記のPZTから成る圧電焼結体や圧電薄膜は、鉛を60〜70重量%程度含有しているため、生態学的見地および公害防止の面から好ましくない。そこで、環境への配慮から鉛を含有しない圧電材料の開発が望まれている。
On the other hand, in recent years, various electronic components have been reduced in size and performance, and accordingly, piezoelectric elements such as actuators have been required to be further downsized. In such a case, the piezoelectric material is required to have a thin film shape with a film thickness of several μm to several tens of μm, and a method of forming a thin film on an appropriate substrate is used.
A piezoelectric material manufactured by a manufacturing method centering on a sintering method, which is a conventional manufacturing method, has a relatively large crystal grain, and therefore has a great problem in promoting thinning in accordance with the recent demand for miniaturization. That is, when the film thickness is about 10 μm, the film thickness approaches the size of the crystal grains constituting the material, so the influence of the characteristics of the individual crystal grains cannot be ignored. For this reason, there arises a problem that variation and deterioration of characteristics become remarkable.
Further, it is difficult to say that processing a solid sintered body into a thin film shape is a realistic method from an economic and industrial standpoint.
For these reasons, a method for forming a piezoelectric material using a thin film forming technique instead of a sintering method has been actively studied in recent years. Examples of the thin film forming technique include a sputtering method (see Patent Document 1), a PLD (laser ablation method), a sol-gel method, and the like. Recently, PZT thin films formed by RF sputtering have been put to practical use as head actuators for high-definition high-speed ink jet printers (see Patent Document 2).
On the other hand, the piezoelectric sintered body or piezoelectric thin film made of PZT described above contains about 60 to 70% by weight of lead, which is not preferable from the viewpoint of ecology and pollution prevention. Therefore, development of a piezoelectric material that does not contain lead is desired in consideration of the environment.

現在、様々な非鉛圧電材料が研究されているが、その中にニオブ酸カリウムナトリウム(一般式:(KNa1−x)NbO(0<x<1))がある。このニオブ酸カリウムナトリウムは、ペロブスカイト構造を有する材料であり、非鉛の材料としては比較的良好な圧電特性を示すため、非鉛圧電材料の有力な候補として期待されている。 Currently, various lead-free piezoelectric materials have been studied, among which potassium sodium niobate (general formula: (K x Na 1-x ) NbO 3 (0 <x <1)). This potassium sodium niobate is a material having a perovskite structure and exhibits relatively good piezoelectric characteristics as a non-lead material, and thus is expected as a promising candidate for a non-lead piezoelectric material.

ニオブ酸カリウムナトリウム焼結体は、一般式:(KNa1−x)NbO(0<x<1)において組成比x=0.5付近で優れた圧電特性を有する。しかしながら、現状においてニオブ酸カリウムナトリウムの薄膜では、焼結体と同じ組成であっても、焼結体に匹敵する圧電特性は実現されていない。 The potassium sodium niobate sintered body has excellent piezoelectric characteristics in the general formula: (K x Na 1-x ) NbO 3 (0 <x <1) near the composition ratio x = 0.5. However, at present, a thin film of potassium sodium niobate does not realize piezoelectric characteristics comparable to the sintered body even though it has the same composition as the sintered body.

なお、従来技術には、ニオブ酸系化合物について、充分な圧電特性を有する圧電薄膜素子を得るためにペロブスカイト型結晶構造の配向度について検討されたものや(特許文献3参照)、ニオブ酸系化合物薄膜は絶縁耐圧が非常に低いことから、実用化に耐えるよう
にするために絶縁耐圧について検討されたものがあるが(特許文献4参照)、(K+Na)/Nbの組成比について検討されたものはない。
In the prior art, the niobic acid compound has been studied for the degree of orientation of the perovskite crystal structure in order to obtain a piezoelectric thin film element having sufficient piezoelectric characteristics (see Patent Document 3), the niobic acid compound Since the withstand voltage of the thin film is very low, the withstand voltage has been studied in order to withstand practical use (see Patent Document 4), but the composition ratio of (K + Na) / Nb has been studied. There is no.

特開2002−151754号公報JP 2002-151754 A 特開平11−135850号公報Japanese Patent Laid-Open No. 11-135850 特開2007−19302号公報JP 2007-19302 A 特開2007−42740号公報JP 2007-42740 A

ニオブ酸カリウムナトリウム結晶は斜方晶のペロブスカイト構造を有している。斜方晶の各頂点にK、Na(金属R)が、体心にNb(金属M)が、そして金属Mを中心として酸素Oが斜方晶の各面心にそれぞれ配置されている。酸素と金属MからなるNbO八面体の向きは金属Rとの相互作用により容易に歪み、これによってより対称性の低い正方晶に相転移する。この相転移により、この結晶の物性が変化する。
したがって、ニオブ酸カリウムナトリウムを構成するK、Na及びNbの組成を検討しないと、ニオブ酸カリウムナトリウム薄膜の結晶の物性を変化させることは困難となり、優れた圧電特性が得られないと考えられる。
以上述べたように、従来のニオブ酸カリウムナトリウム薄膜はK、Na及びNbの組成が全く配慮されておらず、圧電特性低下の要因になっていた。
The potassium sodium niobate crystal has an orthorhombic perovskite structure. K, Na (metal R) are arranged at each vertex of the orthorhombic crystal, Nb (metal M) is arranged at the body center, and oxygen O is arranged at each face center of the orthorhombic crystal around the metal M. The orientation of the NbO 6 octahedron composed of oxygen and metal M is easily distorted by the interaction with the metal R, thereby causing a phase transition to a less symmetric tetragon. Due to this phase transition, the physical properties of the crystal change.
Therefore, unless the composition of K, Na and Nb constituting potassium sodium niobate is studied, it is difficult to change the crystal properties of the potassium sodium niobate thin film, and it is considered that excellent piezoelectric characteristics cannot be obtained.
As described above, the conventional potassium sodium niobate thin film does not give any consideration to the composition of K, Na and Nb, which causes a decrease in piezoelectric characteristics.

本発明の目的は、優れた圧電特性を有するニオブ酸カリウムナトリウム薄膜を用いた圧電薄膜素子を提供することにある。   An object of the present invention is to provide a piezoelectric thin film element using a potassium sodium niobate thin film having excellent piezoelectric characteristics.

本発明の第一の態様は、基板上に少なくとも下部電極、一般式(KNa1−x)NbO(0<x<1)で表されるペロブスカイト構造を有し、膜厚が0.2μm以上かつ10μm以下である圧電薄膜、及び上部電極を配した構造を有する圧電薄膜素子であって、前記圧電薄膜におけるK、Na及びNbの組成が、1.15<(K+Na)/Nb<1.50の関係を有することを特徴とする。 The first aspect of the present invention has at least a lower electrode on the substrate, a perovskite structure represented by the general formula (K x Na 1-x ) NbO 3 (0 <x <1), and a film thickness of 0. A piezoelectric thin film element having a structure in which a piezoelectric thin film of 2 μm or more and 10 μm or less and an upper electrode are arranged, and the composition of K, Na, and Nb in the piezoelectric thin film is 1.15 <(K + Na) / Nb <1 .50 relationship.

本発明の第二の態様は、基板上に少なくとも下部電極、一般式(KNa1−x)NbO(0<x<1)で表されるペロブスカイト構造を有し、膜厚が0.2μm以上かつ10μm以下である圧電薄膜、及び上部電極を配した構造を有する圧電薄膜素子であって、前記圧電薄膜の一部の層におけるK、Na及びNbの組成が、1.15<(K+Na)/Nb<1.50の関係を有することを特徴とする。 The second aspect of the present invention has at least a lower electrode on the substrate, a perovskite structure represented by the general formula (K x Na 1-x ) NbO 3 (0 <x <1), and a film thickness of 0. A piezoelectric thin film element having a structure in which a piezoelectric thin film of 2 μm or more and 10 μm or less and an upper electrode are arranged, and the composition of K, Na, and Nb in a part of the layer of the piezoelectric thin film is 1.15 <(K + Na ) / Nb <1.50.

本発明の第三の態様は、第一の態様に記載の発明において、前記圧電薄膜におけるK、Na及びNbの組成が、1.15<(K+Na)/Nb<1.50の範囲内で徐々に変化させた傾斜層であることを特徴とする。   According to a third aspect of the present invention, in the invention described in the first aspect, the composition of K, Na and Nb in the piezoelectric thin film is gradually within a range of 1.15 <(K + Na) / Nb <1.50. It is characterized by being a graded layer changed to.

本発明の第四の態様は、第二の態様に記載の発明において、前記圧電薄膜の一部の層におけるK、Na及びNbの組成が、1.15<(K+Na)/Nb<1.50の範囲内で徐々に変化させた傾斜層であることを特徴とする。   According to a fourth aspect of the present invention, in the invention according to the second aspect, the composition of K, Na, and Nb in the partial layer of the piezoelectric thin film is 1.15 <(K + Na) / Nb <1.50. It is characterized by being a graded layer that is gradually changed within the range.

本発明によれば、優れた圧電特性を有するニオブ酸カリウムナトリウム薄膜を用いた圧電薄膜素子を得ることができる。   According to the present invention, a piezoelectric thin film element using a potassium sodium niobate thin film having excellent piezoelectric characteristics can be obtained.

発明者らは、組成比(K+Na)/Nbが変化することにより、ニオブ酸カリウムナトリウムの圧電特性が変化すること、また、上記xの値ではなく組成比(K+Na)/Nbを一定の範囲に収めることにより圧電特性の優れた圧電薄膜素子を得るという知見を得た。
この知見を基に、以下、本発明を実施するための最良の形態を説明するが、この実施の形態は例示的に示されるもので、本発明の技術思想から逸脱しない限り種々の変形が可能である。
The inventors changed the piezoelectric characteristics of potassium sodium niobate by changing the composition ratio (K + Na) / Nb, and set the composition ratio (K + Na) / Nb in a certain range instead of the value of x. It was found that a piezoelectric thin film element having excellent piezoelectric characteristics was obtained.
Based on this knowledge, the best mode for carrying out the present invention will be described below. However, this embodiment is shown as an example, and various modifications can be made without departing from the technical idea of the present invention. It is.

[圧電薄膜素子の構造]
図1に示すように、本実施形態における圧電薄膜素子8は、基板1、下部電極2、圧電薄膜3、上部電極4から形成される。
[Structure of piezoelectric thin film element]
As shown in FIG. 1, the piezoelectric thin film element 8 in this embodiment is formed of a substrate 1, a lower electrode 2, a piezoelectric thin film 3, and an upper electrode 4.

[基板及び電極材料]
基板1はニオブ酸カリウムナトリウムを成膜する際の温度に耐える耐熱性を有することが必要であり、さらに安価であることも工業的には重要な要素である。これに最も適した基板1としてはSi基板が好ましいが、技術的には他の基板も使用できる。また上部電極4及び下部電極2を構成する電極材料も同様に耐熱性を有することが必要であり、白金等を用いることが好ましいが、これに限定されるものではない。
[Substrate and electrode material]
The substrate 1 is required to have heat resistance that can withstand the temperature at the time of film formation of potassium sodium niobate, and it is also an industrially important factor that it is inexpensive. The most suitable substrate 1 is preferably a Si substrate, but other substrates can be used technically. Moreover, the electrode material which comprises the upper electrode 4 and the lower electrode 2 needs to have heat resistance similarly, Although it is preferable to use platinum etc., it is not limited to this.

[圧電薄膜]
上記圧電薄膜3は、一般式(KNa1−x)NbO(0<x<1)で表されるペロブスカイト構造を有するニオブ酸カリウムナトリウム薄膜である。
ニオブ酸カリウムナトリウム薄膜結晶が理想的な立方晶とするときの(K+Na)/Nbの組成比は1.0である。しかし、本実施の形態では、上記圧電薄膜3の(K+Na)/Nbの組成比は、1.15<(K+Na)/Nb<1.50の範囲内とする。圧電薄膜3は一層で形成し、上記組成比を上記範囲内に入るように均一としている。
組成比の下限については、後述する圧電定数と組成比の関係(図7)から、組成比が1.15を越えると充分大きな圧電定数が得られ、逆に組成比が1.15未満であれば大きな圧電定数が得られない。
組成比の上限については、組成比が1.50を越えるとペロブスカイト構造が崩れて圧電特性の劣化を引き起こし、逆に組成比が1.50未満であればペロブスカイト構造は崩れず圧電特性の劣化も生じない。
したがって、組成比は1.15から1.50であることが好ましく、この範囲内であれば、十分大きな圧電定数が得られ、圧電特性の劣化も生じない。
上記圧電薄膜3の膜厚は0.2μm以上かつ10μm以下である。膜厚が0.2μm以上であれば、圧電薄膜素子8としての実効的な圧電特性を得ることができ、10μm以上の膜厚の圧電薄膜3を作製したい場合は、従来のように焼結体を用いればよい。
また、ニオブ酸カリウムナトリウム薄膜に少量の添加物(例えば、原子数濃度8%以下のLi)を混入した場合も、圧電特性の向上といった効果が期待できる。
さらに、圧電薄膜3が多層構造または傾斜組成構造を有する場合において、圧電薄膜3全体の膜厚の5%以上が上記組成比を有する薄膜である場合も同様の効果が期待できる。さらに膜厚の20%以上が上記組成比を有する薄膜であることが望ましい。
[Piezoelectric thin film]
The piezoelectric thin film 3 is a potassium sodium niobate thin film having a perovskite structure represented by a general formula (K x Na 1-x ) NbO 3 (0 <x <1).
When the potassium sodium niobate thin film crystal is an ideal cubic crystal, the composition ratio of (K + Na) / Nb is 1.0. However, in this embodiment, the composition ratio of (K + Na) / Nb of the piezoelectric thin film 3 is in the range of 1.15 <(K + Na) / Nb <1.50. The piezoelectric thin film 3 is formed as a single layer, and the composition ratio is uniform so as to fall within the above range.
Regarding the lower limit of the composition ratio, a sufficiently large piezoelectric constant is obtained when the composition ratio exceeds 1.15 from the relationship between the piezoelectric constant and the composition ratio described later (FIG. 7), and conversely, the composition ratio is less than 1.15. A large piezoelectric constant cannot be obtained.
Regarding the upper limit of the composition ratio, if the composition ratio exceeds 1.50, the perovskite structure collapses and causes deterioration of the piezoelectric characteristics. Conversely, if the composition ratio is less than 1.50, the perovskite structure does not collapse and the piezoelectric characteristics deteriorate. Does not occur.
Therefore, the composition ratio is preferably 1.15 to 1.50. If the composition ratio is within this range, a sufficiently large piezoelectric constant can be obtained, and deterioration of piezoelectric characteristics does not occur.
The film thickness of the piezoelectric thin film 3 is 0.2 μm or more and 10 μm or less. When the film thickness is 0.2 μm or more, effective piezoelectric characteristics as the piezoelectric thin film element 8 can be obtained, and when it is desired to produce the piezoelectric thin film 3 having a film thickness of 10 μm or more, a sintered body is used as in the prior art. May be used.
In addition, when a small amount of additive (for example, Li having an atomic number concentration of 8% or less) is mixed into the potassium sodium niobate thin film, an effect of improving the piezoelectric characteristics can be expected.
Further, when the piezoelectric thin film 3 has a multilayer structure or a gradient composition structure, the same effect can be expected when 5% or more of the total film thickness of the piezoelectric thin film 3 is a thin film having the above composition ratio. Further, it is desirable that 20% or more of the film thickness is a thin film having the above composition ratio.

[圧電薄膜素子の製造方法]
図1に示すように、基板1上に、例えばスパッタリング法で白金下部電極2を形成する。その下部電極2上に、上記ニオブ酸カリウムナトリウム薄膜3を成膜する。その成膜方法としては、例えば、スパッタリング法、CVD法、PLD法、ゾルゲル法などが挙げられる。スパッタリング法で製膜する場合、(K+Na)/Nbの組成比を1.15以上にするには、ターゲットとなるニオブ酸カリウムナトリウム焼結体の組成をNbの含有率が少ないもの(例えば(K+Na)/Nb>1))にしたり、ターゲットの水冷具合を調節
し、成膜中のターゲット表面温度を高くしたりすればよい。その後、白金下部電極2と同様に、白金上部電極4を形成する。このように圧電薄膜素子8を製造する。
[Method of manufacturing piezoelectric thin film element]
As shown in FIG. 1, a platinum lower electrode 2 is formed on a substrate 1 by sputtering, for example. The potassium sodium niobate thin film 3 is formed on the lower electrode 2. Examples of the film forming method include a sputtering method, a CVD method, a PLD method, and a sol-gel method. In the case of forming a film by sputtering, in order to make the composition ratio of (K + Na) / Nb 1.15 or more, the composition of the target potassium sodium niobate sintered body has a low Nb content (for example, (K + Na ) / Nb> 1)) or by adjusting the water cooling of the target to increase the target surface temperature during film formation. Thereafter, the platinum upper electrode 4 is formed in the same manner as the platinum lower electrode 2. Thus, the piezoelectric thin film element 8 is manufactured.

[圧電薄膜素子による実施形態の効果]
本実施の形態の圧電薄膜素子によれば、次のような効果が得られる。
圧電薄膜におけるK、Na及びNbの組成が、1.15<(K+Na)/Nb<1.50の関係を有するので、圧電特性の劣化を招くことなく、十分大きな圧電定数を得ることができる。その結果、焼結体に匹敵する優れた圧電特性を実現することができる。また、圧電薄膜素子は、鉛を全く含有していないので、鉛フリーの環境問題に容易に対応することができる。
さらに、圧電薄膜の厚さが0.2μm以上かつ10μm以下であるので、圧電薄膜素子の小型化の要請に充分に応えることができる。例えば、インクジェットプリンタ、スキャナー、ジャイロ、超音波発生装置、超音波センサ、圧力センサ、速度センサ、加速度センサなどの小型電子部品に利用することができる。
[Effects of Embodiment by Piezoelectric Thin Film Element]
According to the piezoelectric thin film element of the present embodiment, the following effects can be obtained.
Since the composition of K, Na, and Nb in the piezoelectric thin film has a relationship of 1.15 <(K + Na) / Nb <1.50, a sufficiently large piezoelectric constant can be obtained without causing deterioration of piezoelectric characteristics. As a result, excellent piezoelectric characteristics comparable to a sintered body can be realized. Further, since the piezoelectric thin film element does not contain lead at all, it can easily cope with lead-free environmental problems.
Furthermore, since the thickness of the piezoelectric thin film is 0.2 μm or more and 10 μm or less, it is possible to sufficiently meet the demand for miniaturization of the piezoelectric thin film element. For example, it can be used for small electronic components such as inkjet printers, scanners, gyros, ultrasonic generators, ultrasonic sensors, pressure sensors, speed sensors, and acceleration sensors.

以上、本発明の実施の形態を説明した。しかしながら、本発明は上述したような実施の形態に限定されるものではない。
例えば、実施の形態では圧電薄膜を単層で形成し、その組成比を上記範囲内に入るように均一としたが、圧電薄膜を二層以上で形成し、そのうちの少なくとも一層(一部の層)の組成比を上記範囲内に入るように均一としてもよい。また、圧電薄膜を組成比が徐々に変化する傾斜層とし、その組成比を上記範囲内に入るように変化させてもよい。これらの場合において、上記組成比を有する一部の層における膜厚は圧電薄膜の全膜厚の5%以上であることが好ましく、20%以上であることがより好ましい(図9)。
また、実施の形態では、金属RにKとNaを混入するようにしたが、金属Rに少量の添加物、例えば、原子濃度8%以下のLiを混入しても良く、その場合にも、実施の形態と同様に圧電特性の向上といった効果が期待できる。
The embodiment of the present invention has been described above. However, the present invention is not limited to the embodiment described above.
For example, in the embodiment, the piezoelectric thin film is formed as a single layer and the composition ratio is uniform so as to be within the above range. However, the piezoelectric thin film is formed of two or more layers, and at least one layer (some layers) ) May be uniform so as to fall within the above range. Further, the piezoelectric thin film may be an inclined layer whose composition ratio gradually changes, and the composition ratio may be changed so as to fall within the above range. In these cases, the film thickness in a part of the layers having the composition ratio is preferably 5% or more of the total film thickness of the piezoelectric thin film, and more preferably 20% or more (FIG. 9).
In the embodiment, K and Na are mixed in the metal R, but a small amount of additive, for example, Li having an atomic concentration of 8% or less may be mixed in the metal R. The effect of improving the piezoelectric characteristics can be expected as in the embodiment.

本発明の好ましい態様を付記する。
第一の態様によれば、基板上に少なくとも下部電極、一般式(KNa1−x)NbO(0<x<1)で表されるペロブスカイト構造を有し、膜厚が0.2μm以上かつ10μm以下である圧電薄膜、及び上部電極を配した構造を有する圧電薄膜素子であって、前記圧電薄膜におけるK、Na及びNbの組成が、1.15<(K+Na)/Nb<1.50の関係を有する圧電薄膜素子が提供される。
Preferred embodiments of the present invention will be additionally described.
According to the first aspect, the substrate has at least a lower electrode, a perovskite structure represented by the general formula (K x Na 1-x ) NbO 3 (0 <x <1), and a film thickness of 0.2 μm. A piezoelectric thin film element having a structure in which a piezoelectric thin film having a thickness of 10 μm or less and an upper electrode is provided, and the composition of K, Na, and Nb in the piezoelectric thin film is 1.15 <(K + Na) / Nb <1. A piezoelectric thin film element having 50 relationships is provided.

第二の態様によれば、基板上に少なくとも下部電極、一般式(KNa1−x)NbO(0<x<1)で表されるペロブスカイト構造を有し、膜厚が0.2μm以上かつ10μm以下である圧電薄膜、及び上部電極を配した構造を有する圧電薄膜素子であって、前記圧電薄膜の一部の層におけるK、Na及びNbの組成が、1.15<(K+Na)/Nb<1.50の関係を有する圧電薄膜素子が提供される。 According to a second aspect, at least a lower electrode having a perovskite structure represented by the general formula (K x Na 1-x) NbO 3 (0 <x <1), thickness of 0.2μm on the substrate A piezoelectric thin film element having a structure in which a piezoelectric thin film of 10 μm or less and an upper electrode are arranged, and the composition of K, Na, and Nb in a part of the piezoelectric thin film is 1.15 <(K + Na) A piezoelectric thin film element having a relationship of /Nb<1.50 is provided.

第三の態様によれば、第一の態様に記載の発明において、前記圧電薄膜におけるK、Na及びNbの組成が、1.15<(K+Na)/Nb<1.50の範囲内で徐々に変化させた傾斜層である圧電薄膜素子が提供される。   According to a third aspect, in the invention according to the first aspect, the composition of K, Na and Nb in the piezoelectric thin film is gradually reduced within a range of 1.15 <(K + Na) / Nb <1.50. A piezoelectric thin film element that is a changed graded layer is provided.

第四の態様によれば、第二の態様に記載の発明において、前記圧電薄膜の一部の層におけるK、Na及びNbの組成が、1.15<(K+Na)/Nb<1.50の範囲内で徐々に変化させた傾斜層である圧電薄膜素子が提供される。   According to a fourth aspect, in the invention according to the second aspect, the composition of K, Na, and Nb in the partial layer of the piezoelectric thin film satisfies 1.15 <(K + Na) / Nb <1.50. A piezoelectric thin film element is provided that is a graded layer that is gradually changed within a range.

第五の態様によれば、基板上に下部電極を形成する工程と、前記下部電極上に、一般式(KNa1−x)NbO(0<x<1)で表されるペロブスカイト構造を有する圧電
薄膜を結晶成長させる工程と、前記圧電薄膜上に上部電極を形成する工程とを有し、
前記結晶成長工程では、ターゲットに(KNa1−x)NbO焼結体を用いたスパッタリング法により、膜厚が0.2μm以上かつ10μm以下で、K、Na及びNbの組成が、1.15<(K+Na)/Nb<1.50の関係を有する圧電薄膜を結晶成長させる圧電薄膜素子の製造方法が提供される。
According to the fifth aspect, the step of forming the lower electrode on the substrate, and the perovskite structure represented by the general formula (K x Na 1-x ) NbO 3 (0 <x <1) on the lower electrode Crystal growth of a piezoelectric thin film having a step of forming an upper electrode on the piezoelectric thin film,
In the crystal growth step, the film thickness is 0.2 μm or more and 10 μm or less, and the composition of K, Na, and Nb is 1 by sputtering using a (K x Na 1-x ) NbO 3 sintered body as a target. A method of manufacturing a piezoelectric thin film element is provided, in which a piezoelectric thin film having a relationship of .15 <(K + Na) / Nb <1.50 is grown.

第六の態様によれば、基板上に下部電極を形成する工程と、前記下部電極上に、一般式(KNa1−x)NbO(0<x<1)で表されるペロブスカイト構造を有し、ターゲットに(KNa1−x)NbO焼結体を用いたスパッタリング法により、膜厚が0.2μm以上かつ10μm以下の圧電薄膜を結晶成長させる工程と、前記圧電薄膜上に上部電極を形成する工程とを有し、
前記結晶成長工程では、前記圧電薄膜の一部の層に、K、Na及びNbの組成が、1.15<(K+Na)/Nb<1.50の関係を有する圧電薄膜を結晶成長させる圧電薄膜素子の製造方法が提供される。
According to the sixth aspect, the step of forming the lower electrode on the substrate, and the perovskite structure represented by the general formula (K x Na 1-x ) NbO 3 (0 <x <1) on the lower electrode And growing a piezoelectric thin film having a film thickness of 0.2 μm or more and 10 μm or less by a sputtering method using a (K x Na 1-x ) NbO 3 sintered body as a target, and on the piezoelectric thin film Forming an upper electrode on
In the crystal growth step, a piezoelectric thin film in which a piezoelectric thin film in which a composition of K, Na, and Nb has a relationship of 1.15 <(K + Na) / Nb <1.50 is grown on a part of the piezoelectric thin film. An element manufacturing method is provided.

以下実施例を用いて説明する。なお、圧電薄膜の組成は、AES(オージェ電子分光測定)またはXPS(X線光電子分光測定)によって測定したK、Na、Nbの組成から計算した組成比によって定義している。   This will be described below with reference to examples. The composition of the piezoelectric thin film is defined by the composition ratio calculated from the composition of K, Na, and Nb measured by AES (Auger electron spectroscopy measurement) or XPS (X-ray photoelectron spectroscopy measurement).

[実施例1、比較例]
(圧電薄膜の作製)
実施例1において、(K0.5Na0.5)NbO圧電薄膜を作製した。作製した圧電薄膜体を図2に示した。
基板1にはSi基板((001)面方位、厚さ0.5mm)を用いた。
そのSi基板1上にRFマグネトロンスパッタリング法で、白金下部電極2((111)面単独配向、膜厚0.2μm)を形成した。白金下部電極2は、基板温度600℃、放電パワー200W、導入ガスはAr雰囲気、圧力2.5Pa、成膜時間10分の条件で成膜した。
その上に、(K0.5Na0.5)NbO圧電薄膜5(膜厚3.0μm)をRFマグネトロンスパッタリング法で形成した。(K0.5Na0.5)NbO圧電薄膜5は、スパッタリングターゲットに(K+Na)/Nbの組成比が1.2およびK/(K+Na)の組成比が0.5の(KNa1−x)NbO焼結体を用い、基板温度570℃、放電パワー100W、導入ガスはAr雰囲気、圧力0.4Pa、成膜時間4時間の条件で成膜した。
このように、実施例1における(K0.5Na0.5)NbO圧電薄膜体9を作製した。
また、比較例の圧電薄膜体についても、スパッタリングターゲットに(K+Na)/Nbの組成比が1.0の(KNa1−x)NbO焼結体を用いたこと以外は、実施例1と同様に作製した。
[Example 1, comparative example]
(Preparation of piezoelectric thin film)
In Example 1, a (K 0.5 Na 0.5 ) NbO 3 piezoelectric thin film was produced. The produced piezoelectric thin film body is shown in FIG.
As the substrate 1, a Si substrate ((001) plane orientation, thickness 0.5 mm) was used.
A platinum lower electrode 2 ((111) plane single orientation, film thickness 0.2 μm) was formed on the Si substrate 1 by RF magnetron sputtering. The platinum lower electrode 2 was formed under the conditions of a substrate temperature of 600 ° C., a discharge power of 200 W, an introduced gas in an Ar atmosphere, a pressure of 2.5 Pa, and a film formation time of 10 minutes.
A (K 0.5 Na 0.5 ) NbO 3 piezoelectric thin film 5 (thickness: 3.0 μm) was formed thereon by RF magnetron sputtering. (K 0.5 Na 0.5) NbO 3 piezoelectric thin film 5, a sputtering target (K + Na) / composition ratio of Nb is 1.2 and K / (K + Na) composition ratio of 0.5 in (K x Na A 1-x ) NbO 3 sintered body was used, and the film was formed under the conditions of a substrate temperature of 570 ° C., a discharge power of 100 W, an introduced gas in an Ar atmosphere, a pressure of 0.4 Pa, and a film formation time of 4 hours.
Thus, the (K 0.5 Na 0.5 ) NbO 3 piezoelectric thin film body 9 in Example 1 was produced.
In addition, with respect to the piezoelectric thin film body of the comparative example, Example 1 was used except that a (K x Na 1-x ) NbO 3 sintered body having a (K + Na) / Nb composition ratio of 1.0 was used as the sputtering target. It produced similarly.

(組成分布測定)
実施例1及び比較例の圧電薄膜体9の深さ方向の元素組成分布をAES(オージェ電子分光測定)で測定し、その結果をそれぞれ図3及び図4に示した。図3によれば、実施例1におけるNbの原子濃度は17.5(atomic%、以後at%という)、Kの原子濃度は11.5(at%)、Naの原子濃度は10.0(at%)であった。その結果、実施例1の圧電薄膜5では、(K+Na)/Nbの組成比は約1.37であり、1.15〜1.50の範囲内にあった。
図4によれば、比較例の圧電薄膜5では、Nbの原子濃度は19.5(at%)、Kの原子濃度は10.8(at%)、Naの原子濃度は9.3(at%)であった。その結果
、比較例の圧電薄膜5では、(K+Na)/Nbの組成比は約1.03であり、1.15〜1.50の範囲から外れた。
(Composition distribution measurement)
The elemental composition distribution in the depth direction of the piezoelectric thin film body 9 of Example 1 and Comparative Example was measured by AES (Auger Electron Spectroscopy), and the results are shown in FIGS. 3 and 4, respectively. According to FIG. 3, the atomic concentration of Nb in Example 1 is 17.5 (atomic%, hereinafter referred to as at%), the atomic concentration of K is 11.5 (at%), and the atomic concentration of Na is 10.0 ( at%). As a result, in the piezoelectric thin film 5 of Example 1, the composition ratio of (K + Na) / Nb was about 1.37, which was in the range of 1.15 to 1.50.
According to FIG. 4, in the piezoelectric thin film 5 of the comparative example, the atomic concentration of Nb is 19.5 (at%), the atomic concentration of K is 10.8 (at%), and the atomic concentration of Na is 9.3 (at %)Met. As a result, in the piezoelectric thin film 5 of the comparative example, the composition ratio of (K + Na) / Nb was about 1.03, which was outside the range of 1.15 to 1.50.

(圧電特性評価測定)
圧電特性評価測定を行うために、上記圧電薄膜5の上に白金上部電極4(膜厚0.02μm)をRFマグネトロンスパッタリング法で形成し、図1に示す圧電薄膜素子8を得た。
図5(a)は、圧電特性評価測定を行うためのユニモルフカンチレバー15の概略を示す図である。図5(a)に示すように、上記圧電薄膜素子8から、長さ20mm×幅2.5mmの短冊形試料を切り出し、長手方向の端を除震台22の上に設置されたクランプ20で固定し、簡易的なユニモルフカンチレバー15を構成した。除震台22により、震動がユニモルフカンチレバー15に与える影響を除去することができる。
Si基板11上に形成された白金上下両電極12,14間の(K0.5Na0.5)NbO薄膜13に電圧を印加し、上記薄膜13を伸縮させることで、図5(b)に示すようにユニモルフカンチレバー15全体を屈曲動作させ、それによりユニモルフカンチレバー15の先端を動作させた。その先端最大変位量30(Δt)をレーザードップラ変位計21で測定した。その結果得られた実施例1及び比較例における印加電圧と先端最大変位量(以後、圧電変位量という)との関係を図6に示した。図6より、比較例の圧電薄膜素子と比較して、実施例1の圧電薄膜素子では、圧電によるユニモルフカンチレバー先端の変位量が約3倍になっていることがわかった。
(Piezoelectric property evaluation measurement)
In order to perform the piezoelectric characteristic evaluation measurement, the platinum upper electrode 4 (film thickness: 0.02 μm) was formed on the piezoelectric thin film 5 by the RF magnetron sputtering method, and the piezoelectric thin film element 8 shown in FIG. 1 was obtained.
FIG. 5A is a diagram showing an outline of a unimorph cantilever 15 for performing piezoelectric characteristic evaluation measurement. As shown in FIG. 5 (a), a strip sample having a length of 20 mm × width of 2.5 mm is cut out from the piezoelectric thin film element 8, and a longitudinal end thereof is clamped by a clamp 20 installed on a vibration isolation table 22. A simple unimorph cantilever 15 was constructed. The effect of the vibration on the unimorph cantilever 15 can be removed by the vibration isolation table 22.
By applying a voltage to the (K 0.5 Na 0.5 ) NbO 3 thin film 13 between the platinum upper and lower electrodes 12 and 14 formed on the Si substrate 11 and expanding and contracting the thin film 13, FIG. ), The entire unimorph cantilever 15 was bent, and the tip of the unimorph cantilever 15 was moved. The tip maximum displacement 30 (Δt) was measured with a laser Doppler displacement meter 21. The relationship between the applied voltage and the maximum tip displacement (hereinafter referred to as piezoelectric displacement) in Example 1 and the comparative example obtained as a result is shown in FIG. From FIG. 6, it was found that the amount of displacement of the tip of the unimorph cantilever due to the piezoelectric was about three times that of the piezoelectric thin film element of Example 1 as compared with the piezoelectric thin film element of the comparative example.

(圧電定数)
上記試料の寸法及び印加電圧と圧電変位量との関係から、圧電定数d31を計算した結果、本実施例により作製した圧電薄膜素子の圧電定数d31は92(−pm/V)であった。それに対し、比較例により作製した圧電薄膜素子の圧電定数d31は30(−pm/V)であった。
このことより、本発明を用いることで、従来技術よりも圧電特性の優れた(KNa1−x)NbO圧電薄膜5を作製できることが確認できた。
さらに、(K+Na)/Nbの組成比が異なる(KNa1−x)NbO圧電薄膜を成膜し、上記と同様の方法で、各々の圧電定数d31を計算した。その圧電定数と組成比との関係を図7に示した。図7に示すように、(K+Na)/Nbの組成比が1.15未満では圧電定数d31は40(−pm/V)以下であるが、(K+Na)/Nbの組成比が1.15より大きくなると圧電定数d31の値が急激に向上するのがわかった。
(Piezoelectric constant)
From the relationship between the dimensions and the applied voltage and the amount of piezoelectric displacement of the sample, the result of calculation of the piezoelectric constant d 31, the piezoelectric constant d 31 of the piezoelectric thin film device produced by this example was 92 (-pm / V) . On the other hand, the piezoelectric constant d 31 of the piezoelectric thin film element produced by the comparative example was 30 (−pm / V).
From this, it was confirmed that by using the present invention, the (K x Na 1-x ) NbO 3 piezoelectric thin film 5 having better piezoelectric characteristics than the prior art can be produced.
Further, (K x Na 1-x ) NbO 3 piezoelectric thin films having different composition ratios of (K + Na) / Nb were formed, and the respective piezoelectric constants d 31 were calculated by the same method as described above. The relationship between the piezoelectric constant and the composition ratio is shown in FIG. As shown in FIG. 7, when the composition ratio of (K + Na) / Nb is less than 1.15, the piezoelectric constant d 31 is 40 (−pm / V) or less, but the composition ratio of (K + Na) / Nb is 1.15. It has been found that the value of the piezoelectric constant d 31 increases rapidly as the value increases.

[実施例2、比較例]
(圧電薄膜素子の作製)
実施例2の(K0.5Na0.5)NbO圧電薄膜が実施例1と異なる点は、(K0.5Na0.5)NbO圧電薄膜を単層ではなく2層で形成した点である。実施例2において作製した圧電薄膜体10を図8に示した。
1層目の圧電薄膜6として、組成比(K+Na)/Nb=1.2、K/(K+Na)=0.5の(KNa1−x)NbO焼結体をターゲットに用い、成膜時間50分の条件で、(K+Na)の組成がNbよりリッチな(KNa1−x)NbO薄膜を形成した。
2層目の圧電薄膜7として、組成比(K+Na)/Nb=1.0、K/(K+Na)=0.5の(KNa1−x)NbO焼結体をターゲットに用い、成膜時間3時間10分の条件で、(K+Na)とNbの組成比が等しい(KNa1−x)NbO薄膜を形成した。
これにより上記2層の圧電薄膜6、7の厚さの合計を3.0μmとした。
上下薄膜の成膜時間の関係から、薄膜全体の厚さから見て、1層目の薄膜の占める割合は(K0.5Na0.5)NbO圧電薄膜全体の21%、2層目の薄膜の占める割合は
79%であった。
[Example 2, comparative example]
(Production of piezoelectric thin film element)
The (K 0.5 Na 0.5 ) NbO 3 piezoelectric thin film of Example 2 is different from Example 1 in that the (K 0.5 Na 0.5 ) NbO 3 piezoelectric thin film is formed not by a single layer but by two layers. This is the point. The piezoelectric thin film body 10 produced in Example 2 is shown in FIG.
As the first piezoelectric thin film 6, a (K x Na 1-x ) NbO 3 sintered body having a composition ratio (K + Na) /Nb=1.2 and K / (K + Na) = 0.5 was used as a target. A (K x Na 1-x ) NbO 3 thin film having a composition of (K + Na) richer than Nb was formed under the condition of a film time of 50 minutes.
As a second layer of the piezoelectric thin film 7, using the composition ratio (K + Na) /Nb=1.0,K/ (K + Na) = 0.5 in (K x Na 1-x) NbO 3 sintered body target, formed A (K x Na 1-x ) NbO 3 thin film having the same composition ratio of (K + Na) and Nb was formed under the condition of a film time of 3 hours and 10 minutes.
As a result, the total thickness of the two piezoelectric thin films 6 and 7 was set to 3.0 μm.
From the relationship of the deposition time of the upper and lower thin films, the proportion of the first thin film is 21% of the entire (K 0.5 Na 0.5 ) NbO 3 piezoelectric thin film, as viewed from the thickness of the entire thin film. The proportion of the thin film was 79%.

(組成分布測定)
実施例1と同様に、実施例2における圧電薄膜の深さ方向の元素組成分布を測定した。その結果を図9に示した。図9によれば、実施例2の圧電薄膜体10では、2層構造の(K0.5Na0.5)NbO薄膜のうち、1層目の薄膜6では、Nbの原子濃度は17.5(at%)、Kの原子濃度は11.5(at%)、Naの原子濃度は10.0(at%)であった。したがって、(K+Na)/Nbの組成比は約1.37であり、1.15〜1.50の範囲内にあった。
2層目の薄膜7では、Nbの原子濃度は19.5(at%)、Kの原子濃度は11.0(at%)、Naの原子濃度は9.0(at%)であった。従って、(K+Na)/Nbの組成比は約1.03であり、1.15〜1.50の範囲外になった。
(Composition distribution measurement)
In the same manner as in Example 1, the elemental composition distribution in the depth direction of the piezoelectric thin film in Example 2 was measured. The results are shown in FIG. According to FIG. 9, in the piezoelectric thin film body 10 of Example 2, the Nb atomic concentration is 17 in the first thin film 6 among the two-layered (K 0.5 Na 0.5 ) NbO 3 thin films. 0.5 (at%), the atomic concentration of K was 11.5 (at%), and the atomic concentration of Na was 10.0 (at%). Therefore, the composition ratio of (K + Na) / Nb was about 1.37, which was in the range of 1.15 to 1.50.
In the second thin film 7, the Nb atomic concentration was 19.5 (at%), the K atomic concentration was 11.0 (at%), and the Na atomic concentration was 9.0 (at%). Therefore, the composition ratio of (K + Na) / Nb was about 1.03, which was outside the range of 1.15 to 1.50.

(圧電特性評価測定)
実施例1と同様に、白金上部電極を作製し、実施例2及び比較例において圧電特性評価測定を行った。その結果得られた印加電圧と先端最大変位量との関係を図10に示した。
図10より、従来技術を用いて作製した圧電薄膜素子よりも、本発明を用いた圧電薄膜素子の方が、圧電によるユニモルフカンチレバー先端の変位量が大きかった。
(Piezoelectric property evaluation measurement)
Similarly to Example 1, a platinum upper electrode was prepared, and piezoelectric property evaluation measurement was performed in Example 2 and Comparative Example. The relationship between the applied voltage and the maximum tip displacement obtained as a result is shown in FIG.
From FIG. 10, the amount of displacement of the tip of the unimorph cantilever due to the piezoelectric was larger in the piezoelectric thin film element using the present invention than in the piezoelectric thin film element fabricated using the conventional technique.

(圧電定数)
実施例1と同様に、圧電定数d31を計算した結果、実施例2の圧電薄膜素子の圧電定数d31は64(−pm/V)であった。
このことより、本発明を用いた圧電薄膜が圧電薄膜全体の21%しか占めていなくとも、従来技術よりも圧電特性の優れた(KNa1−x)NbO圧電薄膜を作製できることが確認できた。
(Piezoelectric constant)
As in Example 1, the piezoelectric constant d 31 was calculated. As a result, the piezoelectric constant d 31 of the piezoelectric thin film element of Example 2 was 64 (−pm / V).
This confirms that even if the piezoelectric thin film using the present invention occupies only 21% of the entire piezoelectric thin film, it is possible to produce a (K x Na 1-x ) NbO 3 piezoelectric thin film having better piezoelectric characteristics than the prior art. did it.

本発明の一実施形態における(KNa1−x)NbO圧電薄膜素子の断面図である。Is a cross-sectional view of a (K x Na 1-x) NbO 3 piezoelectric thin film element according to an embodiment of the present invention. 実施例1及び比較例における(K0.5Na0.5)NbO圧電薄膜体の断面図である。It is a cross-sectional view of the Example 1 and Comparative Example (K 0.5 Na 0.5) NbO 3 piezoelectric thin films. 実施例1における(K0.5Na0.5)NbO圧電薄膜の深さ方向の元素組成分布図である。2 is an element composition distribution diagram in the depth direction of a (K 0.5 Na 0.5 ) NbO 3 piezoelectric thin film in Example 1. FIG. 比較例における(K0.5Na0.5)NbO圧電薄膜の深さ方向の元素組成分布図である。Comparison is (K 0.5 Na 0.5) NbO 3 elemental composition distribution diagram of the depth direction of the piezoelectric thin film in the example. 圧電特性評価測定の方法を示す説明図である。It is explanatory drawing which shows the method of a piezoelectric characteristic evaluation measurement. 実施例1及び比較例における印加電圧と先端最大変位量との関係を示した図である。It is the figure which showed the relationship between the applied voltage and the tip maximum displacement amount in Example 1 and a comparative example. (KNa1−x)NbO圧電薄膜の圧電定数d31と、(K+Na)とNbとの組成比との関係を示した図である。And (K x Na 1-x) NbO 3 piezoelectric thin film of the piezoelectric constant d 31, is a diagram showing the relationship between the composition ratio of Nb and (K + Na). 実施例2における(K0.5Na0.5)NbO圧電薄膜体の断面図である。6 is a cross-sectional view of a (K 0.5 Na 0.5 ) NbO 3 piezoelectric thin film body in Example 2. FIG. 実施例2における(K0.5Na0.5)NbO圧電薄膜の深さ方向の元素組成分布図である。6 is an elemental composition distribution diagram in the depth direction of a (K 0.5 Na 0.5 ) NbO 3 piezoelectric thin film in Example 2. FIG. 実施例1及び比較例における印加電圧と先端最大変位量との関係を示した図である。It is the figure which showed the relationship between the applied voltage and the tip maximum displacement amount in Example 1 and a comparative example.

符号の説明Explanation of symbols

1 基板
2 下部電極
3 (KNa1−x)NbO圧電薄膜
4 上部電極
5 (K0.5Na0.5)NbO圧電薄膜
6 1層目の圧電薄膜
7 2層目の圧電薄膜
8 圧電薄膜素子
9 圧電薄膜体
10 圧電薄膜体
11 Si基板
12 白金下部電極
13 (K0.5Na0.5)NbO圧電薄膜
14 白金上部電極
15 ユニモルフカンチレバー
20 クランプ
21 レーザードップラ変位計
22 除震台
30 先端最大変位量
1 substrate 2 lower electrode 3 (K x Na 1-x ) NbO 3 piezoelectric thin film 4 upper electrode 5 (K 0.5 Na 0.5) NbO 3 piezoelectric thin film 6 first layer of the piezoelectric thin film 7 second layer of the piezoelectric thin film 8 Piezoelectric thin film element 9 Piezoelectric thin film body 10 Piezoelectric thin film body 11 Si substrate 12 Platinum lower electrode 13 (K 0.5 Na 0.5 ) NbO 3 Piezoelectric thin film 14 Platinum upper electrode 15 Unimorph cantilever 20 Clamp 21 Laser Doppler displacement meter 22 Removal Shake base 30 Maximum tip displacement

Claims (4)

基板上に少なくとも下部電極、一般式(KNa1−x)NbO(0<x<1)で表されるペロブスカイト構造を有し、膜厚が0.2μm以上かつ10μm以下である圧電薄膜、及び上部電極を配した構造を有する圧電薄膜素子であって、
前記圧電薄膜におけるK、Na及びNbの組成が、1.15<(K+Na)/Nb<1.50の関係を有することを特徴とする圧電薄膜素子。
A piezoelectric thin film having at least a lower electrode, a perovskite structure represented by the general formula (K x Na 1-x ) NbO 3 (0 <x <1), and a film thickness of 0.2 μm or more and 10 μm or less And a piezoelectric thin film element having a structure in which an upper electrode is disposed,
The piezoelectric thin film element, wherein the composition of K, Na, and Nb in the piezoelectric thin film has a relationship of 1.15 <(K + Na) / Nb <1.50.
基板上に少なくとも下部電極、一般式(KNa1−x)NbO(0<x<1)で表されるペロブスカイト構造を有し、膜厚が0.2μm以上かつ10μm以下である圧電薄膜、及び上部電極を配した構造を有する圧電薄膜素子であって、
前記圧電薄膜の一部の層におけるK、Na及びNbの組成が、1.15<(K+Na)/Nb<1.50の関係を有することを特徴とする圧電薄膜素子。
A piezoelectric thin film having at least a lower electrode, a perovskite structure represented by the general formula (K x Na 1-x ) NbO 3 (0 <x <1), and a film thickness of 0.2 μm or more and 10 μm or less And a piezoelectric thin film element having a structure in which an upper electrode is disposed,
A piezoelectric thin film element, wherein the composition of K, Na, and Nb in a part of the piezoelectric thin film has a relationship of 1.15 <(K + Na) / Nb <1.50.
前記圧電薄膜におけるK、Na及びNbの組成が、1.15<(K+Na)/Nb<1.50の範囲内で徐々に変化させた傾斜層であることを特徴とする請求項1に記載の圧電薄膜素子。   The composition of K, Na, and Nb in the piezoelectric thin film is a graded layer that is gradually changed within a range of 1.15 <(K + Na) / Nb <1.50. Piezoelectric thin film element. 前記圧電薄膜の一部の層におけるK、Na及びNbの組成が、1.15<(K+Na)/Nb<1.50の範囲内で徐々に変化させた傾斜層であることを特徴とする請求項2に記載の圧電薄膜素子。
The composition of K, Na, and Nb in a part of the piezoelectric thin film is a graded layer that is gradually changed within a range of 1.15 <(K + Na) / Nb <1.50. Item 3. The piezoelectric thin film element according to Item 2.
JP2007111315A 2007-04-20 2007-04-20 Piezoelectric thin film element Expired - Fee Related JP5056139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007111315A JP5056139B2 (en) 2007-04-20 2007-04-20 Piezoelectric thin film element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007111315A JP5056139B2 (en) 2007-04-20 2007-04-20 Piezoelectric thin film element

Publications (2)

Publication Number Publication Date
JP2008270514A true JP2008270514A (en) 2008-11-06
JP5056139B2 JP5056139B2 (en) 2012-10-24

Family

ID=40049631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007111315A Expired - Fee Related JP5056139B2 (en) 2007-04-20 2007-04-20 Piezoelectric thin film element

Country Status (1)

Country Link
JP (1) JP5056139B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105331A (en) * 2007-10-25 2009-05-14 Panasonic Corp Piezoelectric thin-film element
JP2011109037A (en) * 2009-11-20 2011-06-02 Hitachi Cable Ltd Piezoelectric thin film element, and piezoelectric thin film device
US8063543B2 (en) * 2006-12-22 2011-11-22 Hitachi Cable, Ltd. Piezoelectric thin film element including upper and lower electrodes, and an actuator and a sensor fabricated by using the same
WO2012063642A1 (en) * 2010-11-10 2012-05-18 コニカミノルタホールディングス株式会社 Ferroelectric thin film, method for producing ferroelectric thin film, method for producing piezoelectric element
WO2019167657A1 (en) * 2018-03-01 2019-09-06 Jx金属株式会社 Potassium sodium niobate sputtering target and method for producing same
US10580958B2 (en) 2017-12-13 2020-03-03 Seiko Epson Corporation Piezoelectric element and liquid ejection head
JP2020053557A (en) * 2018-09-27 2020-04-02 セイコーエプソン株式会社 Piezoelectric element and manufacturing method therefor, liquid discharge head, and printer
EP3761383A1 (en) * 2019-07-04 2021-01-06 Sumitomo Chemical Company Limited Piezoelectric laminate, piezoelectric element and method of manufacturing the piezoelectric laminate
US11014357B2 (en) 2019-01-30 2021-05-25 Seiko Epson Corporation Piezoelectric element, liquid discharge head, and printer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002162227A (en) * 2000-11-24 2002-06-07 Matsushita Electric Ind Co Ltd Piezoelectric vibrator, piezoelectric vibration gyro using the same and manufacturing method of the piezoelectric vibrator
JP2007042983A (en) * 2005-08-05 2007-02-15 Seiko Epson Corp Actuator, liquid ejection head, liquid ejector and method for fabricating actuator
JP2007184513A (en) * 2005-12-06 2007-07-19 Seiko Epson Corp Piezoelectric laminate, surface acoustic wave device, thin-film piezoelectric resonator, and piezoelectric actuator
JP2007314378A (en) * 2006-05-26 2007-12-06 Seiko Epson Corp Method for producing piezoelectric layer
JP2008127244A (en) * 2006-11-21 2008-06-05 Hitachi Cable Ltd Piezoelectric ceramics and piezoelectric ceramics element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002162227A (en) * 2000-11-24 2002-06-07 Matsushita Electric Ind Co Ltd Piezoelectric vibrator, piezoelectric vibration gyro using the same and manufacturing method of the piezoelectric vibrator
JP2007042983A (en) * 2005-08-05 2007-02-15 Seiko Epson Corp Actuator, liquid ejection head, liquid ejector and method for fabricating actuator
JP2007184513A (en) * 2005-12-06 2007-07-19 Seiko Epson Corp Piezoelectric laminate, surface acoustic wave device, thin-film piezoelectric resonator, and piezoelectric actuator
JP2007314378A (en) * 2006-05-26 2007-12-06 Seiko Epson Corp Method for producing piezoelectric layer
JP2008127244A (en) * 2006-11-21 2008-06-05 Hitachi Cable Ltd Piezoelectric ceramics and piezoelectric ceramics element

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8063543B2 (en) * 2006-12-22 2011-11-22 Hitachi Cable, Ltd. Piezoelectric thin film element including upper and lower electrodes, and an actuator and a sensor fabricated by using the same
JP2009105331A (en) * 2007-10-25 2009-05-14 Panasonic Corp Piezoelectric thin-film element
JP2011109037A (en) * 2009-11-20 2011-06-02 Hitachi Cable Ltd Piezoelectric thin film element, and piezoelectric thin film device
WO2012063642A1 (en) * 2010-11-10 2012-05-18 コニカミノルタホールディングス株式会社 Ferroelectric thin film, method for producing ferroelectric thin film, method for producing piezoelectric element
JP4998652B2 (en) * 2010-11-10 2012-08-15 コニカミノルタホールディングス株式会社 Ferroelectric thin film, ferroelectric thin film manufacturing method, piezoelectric element manufacturing method
US9705070B2 (en) 2010-11-10 2017-07-11 Konica Minolta, Inc. Ferroelectric thin film, method of manufacturing same and method of manufacturing piezoelectric element
US10580958B2 (en) 2017-12-13 2020-03-03 Seiko Epson Corporation Piezoelectric element and liquid ejection head
JPWO2019167657A1 (en) * 2018-03-01 2020-06-11 Jx金属株式会社 Potassium sodium niobate sputtering target and manufacturing method thereof
WO2019167657A1 (en) * 2018-03-01 2019-09-06 Jx金属株式会社 Potassium sodium niobate sputtering target and method for producing same
US11851747B2 (en) 2018-03-01 2023-12-26 Jx Metals Corporation Potassium sodium niobate sputtering target and production method thereof
JP2020053557A (en) * 2018-09-27 2020-04-02 セイコーエプソン株式会社 Piezoelectric element and manufacturing method therefor, liquid discharge head, and printer
JP7196503B2 (en) 2018-09-27 2022-12-27 セイコーエプソン株式会社 Piezoelectric element and its manufacturing method, liquid ejection head, and printer
CN110957414B (en) * 2018-09-27 2023-05-30 精工爱普生株式会社 Piezoelectric element, method of manufacturing the same, liquid ejection head, and printer
CN110957414A (en) * 2018-09-27 2020-04-03 精工爱普生株式会社 Piezoelectric element, method for manufacturing the same, liquid ejection head, and printer
US11014357B2 (en) 2019-01-30 2021-05-25 Seiko Epson Corporation Piezoelectric element, liquid discharge head, and printer
EP3761383A1 (en) * 2019-07-04 2021-01-06 Sumitomo Chemical Company Limited Piezoelectric laminate, piezoelectric element and method of manufacturing the piezoelectric laminate
JP2021012909A (en) * 2019-07-04 2021-02-04 住友化学株式会社 Piezoelectric laminate, piezoelectric element, and manufacturing method of piezoelectric laminate
JP7464360B2 (en) 2019-07-04 2024-04-09 住友化学株式会社 Piezoelectric laminate, piezoelectric element, and method for manufacturing piezoelectric laminate

Also Published As

Publication number Publication date
JP5056139B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP5056139B2 (en) Piezoelectric thin film element
JP5181649B2 (en) Piezoelectric element
US7323806B2 (en) Piezoelectric thin film element
JP5531635B2 (en) Piezoelectric thin film element and piezoelectric thin film device
JP5515675B2 (en) Piezoelectric thin film element and piezoelectric thin film device
JP5391395B2 (en) Substrate with piezoelectric thin film and piezoelectric element
JP4258530B2 (en) Piezoelectric thin film element
JP5471612B2 (en) Method for manufacturing piezoelectric thin film element and method for manufacturing piezoelectric thin film device
JP2008159807A (en) Piezoelectric thin film element, and actuator and sensor manufactured by using piezoelectric thin film element
JP2007019302A (en) Piezoelectric thin film element and actuator and sensor using the same
JP6091281B2 (en) Piezoelectric thin film multilayer substrate
JP2009200469A (en) Piezoelectric thin film device
JP2013016776A (en) Manufacturing method of piezoelectric film element and manufacturing method of piezoelectric device
JP5093459B2 (en) Method for manufacturing piezoelectric thin film element
JP5157411B2 (en) Piezoelectric thin film element
JP6196797B2 (en) Piezoelectric thin film multilayer substrate and piezoelectric thin film element
JP5103790B2 (en) Piezoelectric thin film, element using piezoelectric thin film, and method for manufacturing piezoelectric thin film element
JP2007294593A (en) Element using piezoelectric thin film
JP5115161B2 (en) Piezoelectric thin film element
JP2010135669A (en) Substrate with thin-film piezoelectric material, thin-film piezoelectric element, thin-film piezoelectric device, and method of manufacturing substrate with thin-film piezoelectric material
JP2009049065A (en) Piezoelectric thin-film element
JP2013251355A (en) Piezoelectric film element-manufacturing method, piezoelectric film element and piezoelectric device
JP2011192736A (en) Piezoelectric thin film element and piezoelectric thin film device
JP5434563B2 (en) Manufacturing method of substrate with piezoelectric thin film
JP7464360B2 (en) Piezoelectric laminate, piezoelectric element, and method for manufacturing piezoelectric laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5056139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees