JPS6053248B2 - Underwater gas cutting method for ultra-thick plates such as mild steel - Google Patents

Underwater gas cutting method for ultra-thick plates such as mild steel

Info

Publication number
JPS6053248B2
JPS6053248B2 JP4571181A JP4571181A JPS6053248B2 JP S6053248 B2 JPS6053248 B2 JP S6053248B2 JP 4571181 A JP4571181 A JP 4571181A JP 4571181 A JP4571181 A JP 4571181A JP S6053248 B2 JPS6053248 B2 JP S6053248B2
Authority
JP
Japan
Prior art keywords
cutting
oxygen
flow
nozzle
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4571181A
Other languages
Japanese (ja)
Other versions
JPS57159265A (en
Inventor
正信 浜崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP4571181A priority Critical patent/JPS6053248B2/en
Publication of JPS57159265A publication Critical patent/JPS57159265A/en
Publication of JPS6053248B2 publication Critical patent/JPS6053248B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K7/00Cutting, scarfing, or desurfacing by applying flames
    • B23K7/002Machines, apparatus, or equipment for cutting plane workpieces, e.g. plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Description

【発明の詳細な説明】 水中ガス切断においては板厚が厚くなるほど、切断酸素
流も底面にとどきにく)なり、切断中に切断部に水を混
入しやすくなる。
DETAILED DESCRIPTION OF THE INVENTION In underwater gas cutting, the thicker the plate, the more difficult it is for the cutting oxygen flow to reach the bottom surface, making it easier for water to enter the cut portion during cutting.

水を混入すれば、いうまでもないように、切断部の温度
を低下させ、切断を中断させてしまう。この水の混入は
、切断部表面、底面及び後方切断溝よりおこるものであ
る。
Needless to say, if water is mixed in, the temperature of the cutting section will drop and the cutting will be interrupted. This water contamination occurs from the surface of the cut section, the bottom surface, and the rear cut groove.

表面からの混入は、第1図のトーチ1に示すように、ト
ーチをできるだけ母材に近付け、さらに外周に空気を流
し、水の浸入を防止するか、連木用水カーテンを円錐状
に放射し、その水カーテン内の予熱部を予熱炎の燃焼ガ
スで充満し、そのガスを小気泡として外へ出すことによ
り、水の浸入を防止することができる。しかし、これら
の気体、水等により母材表面からの水の浸入を防止する
方法は何ら新規なものでない。問題となる水の浸入は母
材底面及び切断部後方からの浸入である。
To prevent contamination from the surface, as shown in torch 1 in Figure 1, move the torch as close as possible to the base material and let air flow around the outer periphery to prevent water from entering, or use a water curtain for continuous trees to emit water in a conical shape. By filling the preheating section within the water curtain with combustion gas from the preheating flame and letting the gas out in the form of small bubbles, it is possible to prevent water from entering. However, these methods of preventing water from entering from the surface of the base material using gas, water, etc. are not new at all. The problematic water intrusion is from the bottom of the base material and from behind the cut section.

母材5底面とか切断溝9からの浸入は、切断進行中、第
1図に示すように、切断酸素2が後方へ回つて浮上する
とき、切断中の酸素噴流2の後面沿いに上昇し、その流
れが乱れて水を巻込み、切断酸素出口近くにまで水を吹
上げ、水遮断領域内において切断酸素に水を混入させる
。また切断溝9からも水が直接、酸素流2へ混入する。
これが予熱部を冷却させ、また切断酸素中に混入し、切
断を中断してしまう。この現象は板厚が厚くなるほど顕
著になる。本発明は、軟鋼等超厚板の水中ガス切断にお
いて、上述の母材底面側から、また切断溝内から、水が
混入する現象に着目、これを解析し、その防止策を得た
ものである。
Intrusion from the bottom surface of the base material 5 or the cutting groove 9 rises along the rear surface of the oxygen jet 2 during cutting, when the cutting oxygen 2 turns backward and floats up, as shown in FIG. The flow is turbulent, entraining water, blowing the water up close to the cutting oxygen outlet, and mixing the water with the cutting oxygen in the water cutoff area. Water also enters the oxygen stream 2 directly from the cutting groove 9 .
This cools the preheating section and also mixes into the cutting oxygen, interrupting the cutting. This phenomenon becomes more pronounced as the plate thickness increases. The present invention focuses on the above-mentioned phenomenon in which water enters from the bottom side of the base material and from within the cutting groove during underwater gas cutting of ultra-thick plates such as mild steel, analyzes this phenomenon, and develops measures to prevent it. be.

次に図面を用いて詳細説明する。なお、軟鋼等と称する
のは、ガス切断可能な鉄鋼、例えば高張力鋼、硬鋼、ノ
チユラ鋳鉄等を含む。第1図の従来方法に対比させ、第
2図に本発明の実施例説明図を示す。
Next, a detailed explanation will be given using the drawings. Note that mild steel and the like include gas-cuttable steel, such as high-strength steel, hard steel, and nodular cast iron. In contrast to the conventional method shown in FIG. 1, FIG. 2 shows an explanatory diagram of an embodiment of the present invention.

切断地点周辺に保護空気や水カーテンを流す水中ガス切
断トーチは既に周・知であるから、トーチ1はその噴出
口付近のみを示したが、第2図のトーチ7を同様に噴出
口付近のみを示す。もつとも、本発明の場合、切断酸素
、予熱長月ノズル2aと、後述の保護気流用ノズル4a
とを一体にまとめているから、酸素、燃・焼ガスを双方
のノズルヘ送るようになつているが、これも周知技術ゆ
え、その構造を示すトーチ本体の図は略した。この発明
に用いるトーチ7は、加熱部外周を保護空気又は水カー
テンで包む水中切断トーチの切断用ノズル2aの後方に
、切断酸素流2に後続して切断溝9を貫通する保護気流
4を出すノズル4aを加えたものである。
Underwater gas cutting torches that flow protective air or a water curtain around the cutting point are already well known, so torch 1 shows only the vicinity of its spout, but torch 7 in Fig. 2 similarly shows only the vicinity of its spout. shows. However, in the case of the present invention, the cutting oxygen, preheating Nagatsuki nozzle 2a, and the protective air flow nozzle 4a, which will be described later, are
Since these are integrated into one unit, oxygen and combustion gas are sent to both nozzles, but since this is also well known technology, a diagram of the torch body showing its structure has been omitted. The torch 7 used in this invention emits a protective air flow 4 that follows the cutting oxygen flow 2 and passes through the cutting groove 9 behind the cutting nozzle 2a of the underwater cutting torch, which surrounds the outer periphery of the heating part with a protective air or water curtain. This includes a nozzle 4a.

切断用ノズル2aと保護気流用ノズル4aとは夫々、独
立し、ガス供給源も別であつてもよいのであるが、この
実施例のように一体化し、トーチ本体(図略)が共通で
ある方が実用的である。それというのも、この実施例の
保護気流4は酸素流であり、ノズル4aはノズル2a同
様、市販の切断用ノズルを利用しているからである。第
2図の本発明トーチ実施例の横断面を第3図に示す。
Although the cutting nozzle 2a and the protective air flow nozzle 4a may be independent and have separate gas supply sources, they are integrated as in this embodiment and have a common torch body (not shown). It is more practical. This is because the protective air flow 4 in this embodiment is an oxygen flow, and the nozzle 4a, like the nozzle 2a, utilizes a commercially available cutting nozzle. A cross section of the embodiment of the torch according to the invention shown in FIG. 2 is shown in FIG.

二本のノズル2a,4aが連結材10により隣接、固定
され、その外周が保護空気流出用ノズル3aとなつてい
る。上記ノズル2aから切断酸素流2と図示しない予熱
炎を出し、ノズル4aから保護気流牡この例では酸素流
と図示しない予熱用ガスを出し、ノズル3aから保護空
気を流出しつ)トーチ7を図の矢印方向へ進める。
Two nozzles 2a and 4a are adjacent and fixed by a connecting member 10, and the outer periphery thereof serves as a protective air outflow nozzle 3a. A cutting oxygen stream 2 and a preheating flame (not shown) are emitted from the nozzle 2a, a protective air flow (in this example, an oxygen stream and a preheating gas (not shown) are emitted from the nozzle 4a, and protective air flows out from the nozzle 3a). Proceed in the direction of the arrow.

切断現象の説明は略すが、切断酸素流2が軟鋼等超厚板
の母材5に切込んで進み、その後方に切断溝9を作る(
第4図参照)。保護気流4が切断酸素流2の後方になか
つた従来は、第1図に示すように、母材5を突き抜けた
切断酸素流2が切断溝9内を浮上する際、母材下面と切
断溝内の水を混入し気泡群上昇流Aとなつて、切断酸素
流2の上部へも水分を送る。これにより切断酸素は純度
を減じ(切断能力低下)、その通路付近の母材は蒸発熱
を奪われる。本発明によれば、第2図に示すように、切
断酸.素流2が母材5を貫通して浮上する従来の上昇路
には保護気流4があつて通れない。そのため保護気流4
の後方へまわつて、保護気流と共に浮上する上昇流Bと
なる。保護気流4は切断酸素流2の浮上流を後方へ移す
だけでなく、切断溝9内の水!の浸入も、気流カーテン
の作用で遮断する。従つて、切断酸素流2と保護気流4
との間の切断溝9には水分がほとんど入込めず、切断酸
素流2とその付近の母材とは、水の浸入、冷却を免れる
のである。保護気流4に用いる気体は空気でもよいが、
空気を使うど切断酸素流2中に窒素を混入させ、酸素純
度を下げる。
Although the explanation of the cutting phenomenon will be omitted, the cutting oxygen flow 2 cuts into the base material 5 of a very thick plate such as mild steel, and creates a cutting groove 9 behind it (
(See Figure 4). Conventionally, the protective air flow 4 was not located behind the cutting oxygen flow 2. As shown in FIG. The water in the cutting oxygen stream 2 is mixed in, becomes an upward flow A of bubbles, and also sends moisture to the upper part of the cutting oxygen stream 2. As a result, the purity of the cutting oxygen decreases (cutting ability decreases), and the base material near the passage is deprived of heat of evaporation. According to the present invention, as shown in FIG. The protective air flow 4 cannot pass through the conventional ascending path in which the raw flow 2 passes through the base material 5 and rises. Therefore, the protective airflow 4
It turns to the rear of the air and becomes an upward flow B that rises together with the protective airflow. The protective air flow 4 not only moves the floating flow of the cutting oxygen flow 2 to the rear, but also removes the water in the cutting groove 9! The infiltration of air is also blocked by the action of the airflow curtain. Therefore, the cutting oxygen flow 2 and the protective air flow 4
Almost no moisture can enter the cutting groove 9 between the cutting oxygen flow 2 and the base material in the vicinity, and the cutting oxygen stream 2 and the base material in the vicinity are protected from water penetration and cooling. The gas used for the protective airflow 4 may be air, but
When using air, nitrogen is mixed into the cutting oxygen stream 2 to reduce oxygen purity.

その結果、切断能力を低下させるので、上記実施例のよ
うに酸素を保護気流とする方が好ましい。保護気流用ノ
ズル4aには切断溝9を貫通させるための切断酸素チッ
プのみを用いてもよいが、ふつうは予熱炎出口も持つ切
断酸素ノズルを、そのま)使用する方がよい。
As a result, the cutting ability is reduced, so it is preferable to use oxygen as the protective air flow as in the above embodiment. Although only a cutting oxygen tip for penetrating the cutting groove 9 may be used as the protective airflow nozzle 4a, it is usually better to use a cutting oxygen nozzle that also has a preheating flame outlet.

これは母材5表面からの水の浸入を防ぐ保護空気3の被
覆容積が、保護気流ノズル4aが加わつて増大している
ため、保護雰囲気内の燃焼ガス量も増大させねばならな
いことによる。第5図の実施例トーチ8は、母材5の板
厚がさらに増大した場合に対するもので、切断酸素ノズ
ル2aと保護気流ノズル4aとの中間に、切断酸素チッ
プ6をや)傾斜させて加えている。
This is because the volume covered by the protective air 3 that prevents water from entering from the surface of the base material 5 has increased due to the addition of the protective air nozzle 4a, so the amount of combustion gas in the protective atmosphere must also be increased. The embodiment torch 8 shown in FIG. 5 is for a case where the thickness of the base material 5 is further increased, and a cutting oxygen tip 6 is installed at an angle between the cutting oxygen nozzle 2a and the protective airflow nozzle 4a. ing.

先行する切断酸素流2が弱る母材底部へ向け、チップ6
からの新鮮な切断酸素流2″を送り込めるようにしてい
る。この場合においても、保護気流4が効力を発揮する
ことはいうまでもない。〈実験結果〉 母材板厚 150m予熱炎用酸素
流量 50e/分同上用プロパン+メチルア
セチ レン流量 12e/分切断酸素圧力
9kg/c!i上の共通条件で、O従
来(第1図)の切断法による場合、 切断速度10cm/分(酸素流量300e/分)長尺の
切断においては、所々に未切断部やノッチ(不整切込み
)が認められる。
Tip 6 toward the bottom of the base material where the preceding cutting oxygen flow 2 weakens.
It is possible to send in a fresh cutting oxygen flow 2" from the base material. It goes without saying that the protective air flow 4 is effective in this case as well. <Experimental results> Base material plate thickness 150 m Oxygen for preheating flame Flow rate 50e/min Propane + methyl acetylene flow rate 12e/min Cutting oxygen pressure
9kg/c! Under the common conditions above, when using the conventional cutting method (Fig. 1), cutting speed is 10 cm/min (oxygen flow rate 300 e/min), when cutting long lengths, there may be some uncut parts or notches (irregular cuts). is recognized.

O本発明(第2図)の切断法による場合、切断速度15
cm/分 7 (酸素流量50〜150e/分)長尺の
切断においても未切断部やノッチが全く認められない。
O When using the cutting method of the present invention (Fig. 2), the cutting speed is 15
cm/min 7 (oxygen flow rate 50 to 150 e/min) No uncut parts or notches are observed even when cutting long pieces.

即ち本発明により切断能率、切断品質が顕著に増大した
。以上、二実施例トーチを使つて説明したが、本発明の
実施態様は、その要旨を変えることなく、多様に変化、
応用し得ることは、いうまでもない。
That is, the cutting efficiency and cutting quality were significantly increased by the present invention. Although the above description has been made using two embodiment torches, the embodiments of the present invention can be varied in various ways without changing the gist thereof.
Needless to say, it can be applied.

板厚は80jR1!以上を対象とするが、それ以下のも
のに使用しても有効である。水中切断は、特殊な環境に
おいて行われるものであり、切断が中断された場合、そ
の地点より再び開始するのは、きわめてむづかしい。
The plate thickness is 80jR1! Although it is intended for the above, it is also effective for less than that. Underwater cutting is performed in a special environment, and if cutting is interrupted, it is extremely difficult to restart from that point.

したがつて切断が中断されるど作業能率がいちじるしく
低下する。本発明は、軟鋼等超厚板の切断中、しばしば
起る中断の原因が、母材底面及び切断溝内の水の浸入に
ある事を解明した。
As a result, cutting is interrupted and work efficiency is significantly reduced. The present invention has revealed that the cause of interruptions that often occur during cutting of extremely thick plates such as mild steel is due to the intrusion of water into the bottom surface of the base material and into the cutting grooves.

そして、その防止策として、切断酸素流直後の切断溝に
貫通気流を後続させたので、用済み酸素浮上時、母材底
面の水を巻上げて切断酸素流に与える事、また切断溝内
の水が直接、切断酸素流に接する事が、著減した。その
結果、切断中断現象が激減しただけでなく、切断酸素流
の保護、その通路母材の冷却防止により、上述の能率、
品質の向上を得たのである。
As a preventive measure, we installed a through air flow following the cutting groove immediately after the cutting oxygen flow, so when the used oxygen floats up, water on the bottom of the base material is rolled up and given to the cutting oxygen flow, and the water inside the cutting groove is Direct contact with the cutting oxygen flow has been significantly reduced. As a result, not only the cutting interruption phenomenon has been drastically reduced, but also the above-mentioned efficiency has been achieved by protecting the cutting oxygen flow and preventing cooling of the passage base material.
This resulted in an improvement in quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のトーチによる水中切断状況説明図、第2
図は本発明の詳細な説明図、第3図は第2図のトーチの
横断面図、第4図は同じく平面説明図、第5図は本発明
の他の実施例説明図である。 2・・・・・・切断酸素流、2a・・・・・・そのノズ
ル、3・・・・・・保護空気、4・・・・・・保護気流
、4a・・・・・・そのノズル。
Figure 1 is an explanatory diagram of underwater cutting with a conventional torch, Figure 2
3 is a cross-sectional view of the torch shown in FIG. 2, FIG. 4 is an explanatory plan view, and FIG. 5 is an explanatory view of another embodiment of the present invention. 2... Cutting oxygen flow, 2a... Its nozzle, 3... Protective air, 4... Protective air flow, 4a... Its nozzle. .

Claims (1)

【特許請求の範囲】 1 水中切断トーチの切断用ノズル後方に切断酸素流に
後続して切断溝を貫通する保護気流を出すノズルを進め
、上記両ノズルは上記切断酸素流、保護気流間に水分が
入込み難い間隔を保持することを特徴とする軟鋼等超厚
板の水中ガス切断法。 2 特許請求の範囲1記載の切断法において、その保護
気流は酸素噴流である軟鋼等超厚板の水中ガス切断法。
[Scope of Claims] 1. A nozzle is advanced behind the cutting nozzle of the underwater cutting torch to emit a protective air flow that follows the cutting oxygen flow and penetrates the cutting groove, and both of the nozzles are configured to prevent moisture from flowing between the cutting oxygen flow and the protective air flow. An underwater gas cutting method for ultra-thick plates such as mild steel, which is characterized by maintaining a gap where it is difficult for the metal to penetrate. 2. An underwater gas cutting method for ultra-thick plates such as mild steel, in which the protective air stream is an oxygen jet in the cutting method according to claim 1.
JP4571181A 1981-03-27 1981-03-27 Underwater gas cutting method for ultra-thick plates such as mild steel Expired JPS6053248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4571181A JPS6053248B2 (en) 1981-03-27 1981-03-27 Underwater gas cutting method for ultra-thick plates such as mild steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4571181A JPS6053248B2 (en) 1981-03-27 1981-03-27 Underwater gas cutting method for ultra-thick plates such as mild steel

Publications (2)

Publication Number Publication Date
JPS57159265A JPS57159265A (en) 1982-10-01
JPS6053248B2 true JPS6053248B2 (en) 1985-11-25

Family

ID=12726929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4571181A Expired JPS6053248B2 (en) 1981-03-27 1981-03-27 Underwater gas cutting method for ultra-thick plates such as mild steel

Country Status (1)

Country Link
JP (1) JPS6053248B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181873A1 (en) 2017-03-31 2018-10-04 千住金属工業株式会社 Solder alloy, solder paste, and solder joint

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105252104B (en) * 2015-11-18 2017-08-29 辽宁石油化工大学 A kind of flame cutting method of steel plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181873A1 (en) 2017-03-31 2018-10-04 千住金属工業株式会社 Solder alloy, solder paste, and solder joint

Also Published As

Publication number Publication date
JPS57159265A (en) 1982-10-01

Similar Documents

Publication Publication Date Title
US4421970A (en) Height sensing system for a plasma arc cutting tool
EP0615481B1 (en) Method of supplying laser cutting gas and cutting apparatus implementing such a method
CA2182552A1 (en) Laser cutting of materials
JPS6053248B2 (en) Underwater gas cutting method for ultra-thick plates such as mild steel
JP3532223B2 (en) Laser processing machine head
JPS5454932A (en) Combination welding of tig and laser
TW201249563A (en) Impact pad
KR880004890A (en) Scarfing nozzle
JP3291097B2 (en) Processing head of laser processing machine
JP5061630B2 (en) Gas cutting method for slabs being cast by vertical continuous casting machine
GB1396996A (en) Method and apparatus for flame cutting stone- or concrete- like material by jet flame
US3226523A (en) Gas arc welding with argonhydrogen mixture
JPS62130772A (en) Plasma arc cutting torch and method in water and on water surface
JPS56119666A (en) Gas cutting method and device for stainless steel and stainless-clad steel or the like
US2260322A (en) Deseaming and desurfacing apparatus and process
SU824883A3 (en) Method and device for thermochemical grinding
US3852126A (en) Gas cutting method
JPS58217220A (en) Drilling method for thick metal material
US3498848A (en) Method and apparatus for high-speed cutting with oxygen
US4120703A (en) Method and apparatus for reducing smoke and preventing secondary fins during scarfing
US2349902A (en) Deseaming and desurfacing apparatus
US5257732A (en) Laminar barrier inert fluid shield apparatus
US20030000356A1 (en) Method of oxygen cutting a piece of steel, and apparatus for implementing said method
JP2603837B2 (en) Plasma cutting method
JPH054199A (en) Chopping/cutting method and device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term