JPS6052894B2 - Electrical discharge machining method and equipment - Google Patents

Electrical discharge machining method and equipment

Info

Publication number
JPS6052894B2
JPS6052894B2 JP7046879A JP7046879A JPS6052894B2 JP S6052894 B2 JPS6052894 B2 JP S6052894B2 JP 7046879 A JP7046879 A JP 7046879A JP 7046879 A JP7046879 A JP 7046879A JP S6052894 B2 JPS6052894 B2 JP S6052894B2
Authority
JP
Japan
Prior art keywords
machining
electrode
workpiece
auxiliary
feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7046879A
Other languages
Japanese (ja)
Other versions
JPS55164439A (en
Inventor
哲朗 伊東
敏郎 大泉
茂男 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7046879A priority Critical patent/JPS6052894B2/en
Publication of JPS55164439A publication Critical patent/JPS55164439A/en
Publication of JPS6052894B2 publication Critical patent/JPS6052894B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/26Apparatus for moving or positioning electrode relatively to workpiece; Mounting of electrode
    • B23H7/28Moving electrode in a plane normal to the feed direction, e.g. orbiting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】 本発明は放電加工方法及び装置、特に工具電極を被加
工物に対して主たる加工方向(以下Z軸という)に相対
送りするとともに前記z軸に垂直な平面(以下XY平面
という)に沿つて補助的な加工送りを行ないながら工具
電極と被加工物との間で放電加工を行なう改良された方
法及び装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an electric discharge machining method and apparatus, in particular a tool electrode that is fed relative to a workpiece in a main machining direction (hereinafter referred to as the Z axis), and a plane perpendicular to the Z axis (hereinafter referred to as the XY axis). The present invention relates to an improved method and apparatus for performing electric discharge machining between a tool electrode and a workpiece while performing auxiliary machining feed along a plane (referred to as a plane).

工具電極と被加工物との間にZ軸方向の主加工送りと
XY平面に沿つた補助加工送りを与える放電加工が周知
であり、特公昭41−3594号にその一例が示されて
いる。
Electric discharge machining that provides a main machining feed in the Z-axis direction and an auxiliary machining feed along the XY plane between a tool electrode and a workpiece is well known, and an example thereof is shown in Japanese Patent Publication No. 41-3594.

この従来方式によれば単一の工具電極により粗加工、中
加工、中仕上加工、仕上加工及び精仕上加工等の複数段
階の加工を連続的に行なうことができるという利点を有
する。すなわち、一般的に粗加工においてはZ軸方向の
主加工送りのみが与えられ、この時には大電流による放
電加工が行なわれ、この結果、加工間隙は比較的大きい
ことが知られているが、これに対して、以降の精仕上加
工に進む各加工段階においては徐々に放電電流が減少制
御され、これに伴ない加工間隙も減少するが、前述した
XY平面に沿つた補助加工送りを与えることにより単一
の工具電極により加工間隙の減少を補いながら加工面の
平滑化を行なうことができる。また、補助加工送りの与
えられた従来装置によれば、放電間隙に滞留する被加工
物の切削粉あるいは放電時の高温アークによつて熱分解
された絶縁加工液の変性物質等を補助加工送りによる加
工液のポンピング作用により除去することができ、良好
な面アラサを得ることができる。第1図には不等辺三角
形から成る電極10により被加工物12を加工する従来
方式における一般的な加工状態が示され、電極10には
公転軌道運動すなわち円運動から成るXY平面に沿つた
補助加工送りが与えられ、その円運動の半径がRにて示
されている。
This conventional method has the advantage that multiple stages of machining such as rough machining, semi-machining, semi-finishing machining, finishing machining, and fine finishing machining can be performed continuously using a single tool electrode. In other words, generally in rough machining, only the main machining feed in the Z-axis direction is given, and at this time electrical discharge machining is performed using a large current, and as a result, it is known that the machining gap is relatively large. On the other hand, the discharge current is controlled to gradually decrease at each machining stage proceeding to the subsequent fine finishing machining, and the machining gap also decreases accordingly, but by applying the auxiliary machining feed along the XY plane mentioned above, A single tool electrode can smooth the machined surface while compensating for the reduction in the machining gap. In addition, according to the conventional equipment provided with auxiliary machining feed, the auxiliary machining feed removes cutting powder from the workpiece that stays in the discharge gap or denatured substances in the insulation working fluid that are thermally decomposed by the high-temperature arc during the discharge. can be removed by the pumping action of the machining fluid, resulting in good surface roughening. FIG. 1 shows a general machining state in a conventional method in which a workpiece 12 is machined by an electrode 10 formed of a scalene triangle. A machining feed is given and the radius of its circular motion is denoted by R.

この従来方式によれば、電極10より任意に設定された
半径Rだけ大きな電極を用いたと同様の効果を得ること
ができるが、第1図から明らかなように、各角部におい
て半径Rの円弧状電極による加工作用が得られ、この結
果、被加工形状は電極形状とは著しく異つた形状となり
.高精度の放電加工が得られないという欠点があつた。
第1図の公転円運動を用いた補助加工送りの欠点を除去
するためにいくつかの補助加工送り方式が考えられ、第
2図には電極10を各角度に対し。
According to this conventional method, it is possible to obtain the same effect as using an electrode larger than the electrode 10 by an arbitrarily set radius R, but as is clear from FIG. The arc-shaped electrode produces a machining action, and as a result, the shape of the workpiece is significantly different from the shape of the electrode. The drawback was that high-precision electrical discharge machining could not be achieved.
In order to eliminate the drawbacks of the auxiliary machining feed using the revolving circular motion shown in FIG. 1, several auxiliary machining feed methods have been considered, and FIG. 2 shows the electrode 10 at each angle.

て放射状に等距離被加工物12と相対変位させた方式が
示されている。第2図において各角部の放射状変位はベ
クトル言,甘,7で示され、その大きさがRに設定され
ている。しかしながら、第2図の被加工形状から明らか
なように、このような・放射状相対変位によつても各角
部の尖端角の相違により電極10の形状とは著しく異つ
た被加工形状が得られ、高精度の放電加工を得ることは
できなかつた。第3図には従来の他の改良方式が示され
、各辺A,B,Cを相似倍率kの比で相対変位させる補
助加工送りが示されている。
A method is shown in which the workpiece 12 is displaced radially equidistantly relative to the workpiece 12. In FIG. 2, the radial displacement of each corner is indicated by a vector, 7, whose magnitude is set to R. However, as is clear from the shape of the workpiece in FIG. 2, even with such radial relative displacement, a shape of the workpiece that is significantly different from the shape of the electrode 10 can be obtained due to the difference in the point angle of each corner. However, it was not possible to obtain high-precision electrical discharge machining. FIG. 3 shows another improved conventional method, in which auxiliary machining feed is shown in which each side A, B, and C are relatively displaced at a ratio of similarity magnification k.

しかしながら、この従来方式においても、正三角形の場
合を除き電極10と被加工物12との加工隙α,β及び
γはそれぞれ相違した値となり電極10の形状に対応し
た被加工形状を得ることができないという欠点があつた
。すなわち、第3図の従来方式によれば、電極10の実
形状から補助加工送りにより拡大すlる拡大幅α,β及
びγが各辺毎に異なり、このために、粗加工から精加エ
への複数回の放電加工において均一な加工を得ることが
できず、良好な面アラサの高精度な放電加工が得られな
いという欠点が生じていた。本発明者等は上記課題に鑑
み以下の改良した放電加工方式を提案した。
However, even in this conventional method, except in the case of an equilateral triangle, the machining gaps α, β, and γ between the electrode 10 and the workpiece 12 have different values, making it difficult to obtain a workpiece shape corresponding to the shape of the electrode 10. The drawback was that I couldn't do it. That is, according to the conventional method shown in FIG. 3, the expansion widths α, β, and γ that are expanded by the auxiliary machining feed from the actual shape of the electrode 10 are different for each side, and for this reason, it is difficult to perform rough machining to fine machining. A disadvantage has arisen in that uniform machining cannot be obtained in multiple electrical discharge machining operations, and highly accurate electrical discharge machining with good surface roughness cannot be obtained. In view of the above problems, the present inventors proposed the following improved electric discharge machining method.

第4図にはこの改良された方式による電極10の補助加
工送り作用が示されている。第4図において、電極10
により加工される被加工形状は電極10の各辺から距離
R隔たつた各辺と並行の直線A″,B″及びC″にて示
されている。各直線A″,B″及びC″の交点がPl,
P2,P3で、また、電極10の各角部の頂点をQl,
q2,q3でまたその角度をそれぞれ01,θ2,e3
で示す。第4図において、電極10の各辺A,B,Cか
ら均一な拡大幅Rとなるための補助加工送りベクトル言
,甘,7をベクトル言を例にして説明する。今、頂点q
1から直線A″およびB″上に垂線を引きその交点をR
2,rlとすると、その長さは拡大幅Rと等しくなる。
ここで三角形Pl,r2,qlと三角Pl,rl,ql
とは一辺Pl,qlを共有し、他辺R2,qlおよびR
l,qlの長さが等しい直角三角形となるので、両者は
合同となり、直線Pl,qlすなわちベクトル言.は角
Rl,pl,r2の二等分線になる。従つてベクトルイ
の変位があつた時、頂点Q2の軌跡もQ2″へ並行移動
し、平行四辺形Pl,ql,q2,q2″の頂角Q2に
おける角度はIで示され、この事から、ベクトルイはそ
の方位角がθ2+!であり、その大きさがMldrで求
めることができ 叫る。
FIG. 4 shows the auxiliary machining feed action of the electrode 10 according to this improved method. In FIG. 4, the electrode 10
The shape of the workpiece to be machined is shown by straight lines A'', B'' and C'' that are parallel to each side and spaced a distance R from each side of the electrode 10.The straight lines A'', B'' and C'' are respectively parallel to each side. The intersection of is Pl,
P2 and P3, and the apex of each corner of the electrode 10 is Ql,
In q2 and q3, the angles are 01, θ2, and e3, respectively.
Indicated by In FIG. 4, the auxiliary machining feed vector 7, which is used to obtain a uniform enlarged width R from each side A, B, and C of the electrode 10, will be explained using a vector vector as an example. Now, vertex q
From 1, draw a perpendicular line on straight lines A'' and B'' and point their intersection at R.
2,rl, its length is equal to the enlarged width R.
Here, triangle Pl, r2, ql and triangle Pl, rl, ql
shares one side Pl, ql, and the other side R2, ql and R
Since the lengths of l and ql are equal, they are a right triangle, so they are congruent, and the straight lines Pl and ql, that is, the vector word . becomes the bisector of angles Rl, pl, r2. Therefore, when there is a displacement of vector i, the locus of vertex Q2 also moves in parallel to Q2'', and the angle at the apex angle Q2 of parallelogram Pl, ql, q2, q2'' is indicated by I, and from this, vector i The azimuth is θ2+! , and its magnitude can be found by Mldr.

同様に、他の変位ベクトルF.Fも簡単な計算から求め
ることができ、各ベクトルJ,甘,7は第5図に示され
る方位角及び大きさを有することとなる。従つて、電極
10とを被加工物12との相対変位をベクトルイ,百,
7に従つてXY平面に沿つて補助加工送りすれば電極1
0の形状に従いかつ角部の形状も電極形状に対応した良
好な被加工形状を得ることが可能となる。第6図には第
5図のベクトル言,甘,7を互いに連続したベクトルに
変換した補助加工送りベクトルが示され、電極10と被
加工物12との間に第6図のベクトルに従つた相対変位
を与えることにより所望の被加工形状を得ることが可能
となる。
Similarly, other displacement vectors F. F can also be determined by simple calculations, and each vector J, 7, has the azimuth and magnitude shown in FIG. Therefore, the relative displacement between the electrode 10 and the workpiece 12 is expressed as vector i, 10,
If the auxiliary processing feed is performed along the XY plane according to 7, electrode 1
It is possible to obtain a good workpiece shape that conforms to the shape of 0 and whose corners also correspond to the electrode shape. FIG. 6 shows an auxiliary machining feed vector obtained by converting the vectors 7 and 7 in FIG. 5 into mutually continuous vectors. By applying relative displacement, it is possible to obtain a desired shape of the workpiece.

以上のように、前述した本発明者等の提案した方式によ
れば、電極形状に対応した所望の拡大被加工形状を得る
ことが可能となるが、単に第6図のベクトルを補助加工
送りに適用しただけでは実際の放電加工において均一な
加工特に電極10の均一な摩耗を得ることができないと
いう問題が生じてきた。
As described above, according to the method proposed by the present inventors, it is possible to obtain a desired enlarged workpiece shape corresponding to the electrode shape, but it is possible to simply use the vector in FIG. 6 as an auxiliary machining feed. A problem has arisen in that it is not possible to obtain uniform machining, particularly uniform wear of the electrode 10, in actual electrical discharge machining by simply applying the method.

第7図には電極10をベクトルイ,石,及び7に沿つて
順次補助力旺送りした時の被力旺部(取り代)が示され
、まずベクトル言の補助加工送りによれば破線ハンチン
グで示される領域101が加工され、この加工量は全加
工部の半分以上を占めることが理解され、ベクトルaの
補助加工送り時に電極10の領域101に対向する電極
面が著しく損耗することが理解される。また、ベクトル
甘の補助力旺送りては第7図の実線ハンチングで示され
る領域102の加工が行なわれ、この領域102は残り
の加工部の大部分を占めることが理解され、この時に領
域102に対向する電極面が大きな損耗を受ける。そし
て、ベクトル7の補助力旺送り時には無ハンチング部の
領域103のみが加工され、この時の加工量が著しく小
さく領域103に対向する電極面の損耗が小さいことが
理解される。以上のように、第7図の方式においては、
原理的に極めて良好な放電加工を行なうことがてきるが
、実際上、電極損耗あるいは電極の熱影響による変性が
各電極部により著しく相違し、この結果良好な放電加工
を行なうことができないという欠点があつた。
Fig. 7 shows the force-receiving portion (machining allowance) when the electrode 10 is sequentially fed along the vector A, stone, and 7, and first, according to the auxiliary machining feed of the vector, the broken line hunting is shown. It is understood that the area 101 shown is machined, and that this amount of machining occupies more than half of the total machined area, and that the electrode surface of the electrode 10 facing the area 101 is significantly worn during the auxiliary machining feed of vector a. Ru. In addition, when the auxiliary force of the vector is applied, processing is performed in the area 102 shown by the solid line hunting in FIG. The electrode surface facing the electrode is subject to significant wear. It is understood that only the area 103 of the non-hunting portion is processed when the assist force of vector 7 is fed, and the amount of processing at this time is extremely small, and the wear on the electrode surface facing the area 103 is small. As mentioned above, in the method shown in Figure 7,
In principle, it is possible to perform extremely good electrical discharge machining, but in practice, electrode wear or deterioration due to thermal effects of the electrode differs markedly depending on each electrode part, and as a result, it is impossible to perform excellent electrical discharge machining. It was hot.

本発明は上記従来の課題に鑑みなされたものであり、単
一の電極を用いて主加工送りとこれにほぼ垂直な平面に
沿つた補助加工送りを組合わせて電極損耗の均一な良好
な放電加工の得ることのできる改良された放電加工方法
及び装置を提供することにある。
The present invention was made in view of the above-mentioned conventional problems, and uses a single electrode to combine the main machining feed and the auxiliary machining feed along a plane almost perpendicular to the main machining feed to achieve good discharge with uniform electrode wear. It is an object of the present invention to provide an improved electric discharge machining method and apparatus that can perform machining.

上記目的を達成するために、本発明に係る方法は、電極
と被加工物との対向間隙に加工液を介して通電し前記電
極と被加工物との間には主加工方向に沿つた主加工送り
に対してほぼ垂直な平面に沿つた補助加工送りとが与え
られ前記補助加工送り面に対して電極と被加工物との間
隙が放電維持間隙に制御されている放電加工方法におい
て、前記補助加工送りは電極と被加工物とを偏心円運動
に従つて相対送りしながら所望の加工部の大部分を加工
する公転加工工程と、所定のベクトルに沿つて電極と被
加工物とを相対送りして前記公転加工工程の加工残肉を
放電加工するベクトル加工工程とを含む。
In order to achieve the above object, the method according to the present invention supplies electricity through a machining fluid to the opposing gap between an electrode and a workpiece, and there is a main gap between the electrode and the workpiece along the main machining direction. In the electric discharge machining method, an auxiliary machining feed along a plane substantially perpendicular to the machining feed is provided, and a gap between the electrode and the workpiece is controlled to a discharge sustaining gap with respect to the auxiliary machining feed plane. The auxiliary machining feed is a revolution machining process in which most of the desired machining area is machined while relatively feeding the electrode and the workpiece according to an eccentric circular motion, and a revolution machining process in which the electrode and the workpiece are relatively fed along a predetermined vector. It includes a vector machining process in which the machining process is performed by feeding and electrical discharge machining the machining remaining thickness of the revolution machining process.

本発明において、公転加工工程は初期位置から徐々に回
転半径が拡大する偏心円運動から形成することが好適で
あり、又、公転加工工程中異常放電が生じた時に偏心円
運動が初期位置に復帰し異常解消後再び元の加工位置に
戻ることが好ましい。
In the present invention, it is preferable that the revolution machining process is formed by an eccentric circular motion in which the radius of rotation gradually expands from the initial position, and when an abnormal electrical discharge occurs during the revolution machining process, the eccentric circular motion returns to the initial position. However, it is preferable to return to the original processing position after the abnormality is resolved.

本発明に係る装置は、被加工物に対して主加工方向に相
対送りされる電極と、電極と被加工物との間に放電電力
を供給する電源と、電極と被加工物とを前記主加工方向
とほぼ垂直な平面に沿つて補助加工送りする送り装置と
、を含む放電加工装置において、指示角度信号に応じて
正弦波信号及び余弦波信号を出力する関数メモリと、関
数メモリに時間的に変化する角度信号を供給する移動角
度信号供給器と、前記関数メモリに所定ベクトルの方位
角信号を供給する固定角度信号供給器と、補助加工送り
における加工幅を設定する設定器と、電極と被加工物と
の補助加工送り方向の相対位置により前記関数メモリの
正弦波信号及び余弦波信号を補助加工送り装置に供給す
るサーボ制御装置と、を含む。
The apparatus according to the present invention includes an electrode that is relatively fed in the main machining direction with respect to the workpiece, a power source that supplies discharge power between the electrode and the workpiece, and a power source that connects the electrode and the workpiece to the main machining direction. In an electrical discharge machining apparatus including a feeding device that performs auxiliary machining feed along a plane substantially perpendicular to the machining direction, a function memory that outputs a sine wave signal and a cosine wave signal in accordance with an instruction angle signal, and a temporal a moving angle signal supplier that supplies an angular signal that changes to a fixed angle signal supplier that supplies an azimuth signal of a predetermined vector to the function memory, a setting device that sets a machining width in auxiliary machining feed, and an electrode. and a servo control device that supplies the sine wave signal and cosine wave signal of the function memory to the auxiliary processing feed device depending on the relative position in the auxiliary processing feed direction with respect to the workpiece.

以下図面に基づいて本発明の好適な実施例を説明する。Preferred embodiments of the present invention will be described below based on the drawings.

本発明の加工方法は電極をXY平面に沿つて偏心円運動
にて補助加工送りする公転加工工程と電極を所定のベク
トルに沿つて補助加工送りするベクトル加工工程とを含
み、第8図において偏心円運動が符号200にてそして
ベクトル送りが−J,石,7にて示されている。公転加
工工程は偏心回転運動から成るので、電極10の補助加
工送りを制御することが極めて容易であり、この公転加
工工程において必要な放電加工の大部分を行なうことが
でき、この時の電極10の損耗も極めて均一化すること
ができる利点を有する。更に、第8図の偏心円運動20
0から明らかなように、最終的な加工幅Rに対して偏心
円運動200からの回転半径を徐々に自動的に増加させ
ること?よ′t)1回の偏心円運動により加工する量を
制限することができ電極面全体を被加工面に均一に対向
させることができ、電極10の局部的変形を防止するこ
とが可能となる。公転加工工程において偏心円運動20
0の半径が所望の加工幅Rに達すると電極は再び初期位
置に復帰し、次に前述したベクトルイ,甘及び7で示さ
れるベクトル加工工程が行なわれる。ベクトル加工工程
における各ベクトルイ,言及び冫は前述したようにその
力旺幅が電極10の各辺から等距離となるように方位角
及び大きさが決定され、この結果、最終的に第8図で示
される破線で囲まれた所望の被加工形状を得ることが可
能となる。
The machining method of the present invention includes a revolution machining process in which the electrode is auxiliary machining fed along an eccentric circular motion along the XY plane, and a vector machining process in which the electrode is auxiliary machining fed along a predetermined vector. Circular motion is indicated at 200 and vector feed at -J, stone, 7. Since the revolution machining process consists of eccentric rotational movement, it is extremely easy to control the auxiliary machining feed of the electrode 10, and most of the necessary electrical discharge machining can be performed in this revolution machining process, and the electrode 10 at this time It has the advantage that wear and tear can be made extremely uniform. Furthermore, the eccentric circular motion 20 in FIG.
0, to gradually and automatically increase the radius of rotation from the eccentric circular motion 200 with respect to the final machining width R? y't) The amount of machining can be limited by one eccentric circular motion, the entire electrode surface can be uniformly opposed to the surface to be machined, and local deformation of the electrode 10 can be prevented. . Eccentric circular motion 20 in the revolution machining process
When the radius of 0 reaches the desired machining width R, the electrode returns to the initial position again, and then the vector machining steps indicated by vectors A, A, and 7 described above are performed. As mentioned above, the azimuth and size of each vector in the vector processing process are determined so that its force width is equidistant from each side of the electrode 10, and as a result, the final result is as shown in FIG. It is possible to obtain the desired shape of the workpiece surrounded by the broken line shown in FIG.

第9図には本発明に係る公転加工工程の若干変形した実
施例が示され、この実施例によれば公転加工工程中に電
極と被加工物との間に短絡が生じ−た場合に電極を初期
位置に復帰させる状態が示されている。
FIG. 9 shows a slightly modified embodiment of the revolution machining process according to the present invention. According to this embodiment, when a short circuit occurs between the electrode and the workpiece during the revolution machining process, the electrode The state is shown in which it is returned to its initial position.

第8図の実施例と同様に電極は初期位置1アョから公転
加工工程を開始し徐々にその半径を増加する。そして各
軌跡中の1イJ,rOJ,「ハ.,R.−ョにおいて電
極と被加工物との間に短.絡が生じると電極は直ちに初
期位置1アョに向つて退避復帰し、この結果、電極と被
加工物との加工間隙が拡大して短絡を迅速に消滅するこ
とができ、短絡消滅後再び各短絡時の軌跡へ電極が移動
され再び偏心円運動200に沿つた公転加工工程;が続
行される。従つて、第9図の実施例によれば、短絡によ
る電極の損耗及び被加工面の加工痕を著しく小さくする
ことができ、良好な放電加工品質を得ることが可能とな
る。第10図には本発明に好適な放電加工装置の実t施
例が示されている。
Similar to the embodiment shown in FIG. 8, the electrode starts the revolution machining process from the initial position 1 inch and gradually increases its radius. If a short circuit occurs between the electrode and the workpiece at 1J, rOJ, ``C., R.-Yo'' in each locus, the electrode immediately retracts and returns to the initial position 1Ao. As a result, the machining gap between the electrode and the workpiece is expanded, and the short circuit can be quickly eliminated. After the short circuit is eliminated, the electrode is moved again to the locus at the time of each short circuit, and the revolution machining process is resumed along the eccentric circular motion 200. Therefore, according to the embodiment shown in FIG. 9, wear of the electrode due to short circuits and machining marks on the machined surface can be significantly reduced, and it is possible to obtain good electrical discharge machining quality. FIG. 10 shows an embodiment of an electric discharge machining apparatus suitable for the present invention.

第10図において、電極10はテーブル14に固定保持
された被加工物12に対向配置され、Z方向の主加工送
りが与えられている。
In FIG. 10, the electrode 10 is arranged opposite to a workpiece 12 fixedly held on a table 14, and is given main machining feed in the Z direction.

電極10と被加工物12との間には電極16からパルス
状の放電加工電圧Vgが与えられ、両者間の間隙におい
て放電加工が行なわれる。テーブル14にはX軸駆動モ
ータ18及びY軸駆動モータ20が設けられ、両モータ
18,20に本発明に係る公転加工及びベクトル加工に
よる駆動信号を供給することにより電極10と被加工物
12との間に所望の補助加工送りが与えられる。前記モ
ータ18,20に所定の補助加工送り信ノ号を供給する
ために補助加工送り制御回路が設けられ、この補助加工
送り制御回路は正弦関数メモリ22及び余弦関数メモリ
24を含み、両メモリ22,24は正弦関数及び余弦関
数を角度1度毎に記憶したROM(リードオンリーメモ
リ)から成る。
A pulsed electric discharge machining voltage Vg is applied from an electrode 16 between the electrode 10 and the workpiece 12, and electric discharge machining is performed in the gap between the two. The table 14 is provided with an X-axis drive motor 18 and a Y-axis drive motor 20, and by supplying drive signals for revolution machining and vector machining according to the present invention to both motors 18 and 20, the electrode 10 and the workpiece 12 are The desired auxiliary machining feed is applied during this period. An auxiliary machining feed control circuit is provided to supply predetermined auxiliary machining feed signals to the motors 18 and 20, and this auxiliary machining feed control circuit includes a sine function memory 22 and a cosine function memory 24, both memories 22 , 24 consists of a ROM (read only memory) that stores a sine function and a cosine function for each angle.

両関数メモリ22,24へはアドレス線26を介してプ
リセツタブルカウンタ28の計数値が指示角度信号とし
て出力され、カウンタ28の計数作用は移動角度信号供
給器を形成する発振器30のクロック信号により制御さ
れ、時間的に変化する角度信号は359度の計数により
O度に復帰する。発振器30のクロン信号はゲート32
を介してカウンタ28へ供給され、ゲート32の他方の
入力には比較器34の出力が供給されている。プリセツ
タブルカウンタ28には固定角度信号供給器を形成する
デジタルスイッチ36が接続され、所定ベクトルの方位
角信号を供給するために外部からカウンタ28のプリセ
ットが任意に行なわれる。メモリ22,24からはカウ
ンタ28からアドレス線26を介して与えられた角度信
号に応じて正弦関数値及び余弦関数値が出力され、この
出力値はデータバス33,40を介してDAコンバータ
42,44に供給され、アナログ値から成る正弦波信号
VO及び余弦波信号Vyとして比較器46及び48に出
力される。両DAコンバータ42,44の基準電圧E、
は極間電圧V,と基準値■との差が補助加工送り調整用
増幅器50及びダイオード52を介して正値信号として
与えられた電圧から成り、この結果、各DAコンバータ
42,44の正弦波信号Vx及び余弦波信号Vyは以下
の式で示される。なお、Kは増幅器50の増幅定数、そ
してφはカウンタ28により与えられる計数値であり、
0〜359度の値をとる。
The count value of the presettable counter 28 is output as a command angle signal to both function memories 22 and 24 via an address line 26, and the counting action of the counter 28 is performed by a clock signal of an oscillator 30 forming a moving angle signal supplier. The controlled, time-varying angle signal returns to O degrees by counting 359 degrees. The clock signal of the oscillator 30 is connected to the gate 32.
The output of the comparator 34 is supplied to the other input of the gate 32. A digital switch 36 forming a fixed angle signal supplier is connected to the presettable counter 28, and the counter 28 can be arbitrarily preset from the outside in order to supply an azimuth signal of a predetermined vector. The memories 22 and 24 output a sine function value and a cosine function value in accordance with the angle signal applied from the counter 28 via the address line 26, and these output values are sent to the DA converter 42 and DA converter 42 via the data buses 33 and 40, respectively. 44 and output to comparators 46 and 48 as a sine wave signal VO and a cosine wave signal Vy consisting of analog values. Reference voltage E of both DA converters 42, 44,
The difference between the inter-electrode voltage V, and the reference value ■ consists of a voltage given as a positive value signal via the auxiliary processing feed adjustment amplifier 50 and the diode 52, and as a result, the sine wave of each DA converter 42, 44 The signal Vx and the cosine wave signal Vy are expressed by the following equations. Note that K is the amplification constant of the amplifier 50, and φ is the count value given by the counter 28,
It takes a value between 0 and 359 degrees.

比較器46,48にはテーブル14に接続された作動ト
ランスから成る位置検出器54,56からの検出信号が
供給され、この検出信号と正弦波信号■o及び余弦波信
号■8との差電圧が駆動増幅器58,60を介して前記
x軸駆動モータ18及びY軸駆動モータ20に供給され
、電極10と被加工物12とのXY平面に沿つた相対的
な補助加工送りがDAコンバータ42,44の出力に追
従するようにサーボ制御される。
The comparators 46 and 48 are supplied with detection signals from position detectors 54 and 56, which are composed of actuating transformers connected to the table 14, and the difference voltage between this detection signal and the sine wave signal ■o and the cosine wave signal ■8 is supplied to the comparators 46 and 48. is supplied to the x-axis drive motor 18 and the Y-axis drive motor 20 via the drive amplifiers 58 and 60, and the relative auxiliary machining feed between the electrode 10 and the workpiece 12 along the XY plane is controlled by the DA converter 42, Servo control is performed to follow the output of 44.

放電電圧■8と基準値■との差動圧は比較器34に供給
されて零ボルトと比較され、差電圧が零ボルトより大の
場合すなわち正常な放電加工状態においてはゲート32
が開きカウンタ28へ発振器30のクロック信号が供給
され、一方、差動電圧が零ボルトに等しいかもしくはそ
れより低下した場合すなわち極間放電電圧Vgの異常低
下あるいは短絡時においてはゲート32が閉じカウンタ
28の出力ψはその時の値に固定される。
The differential pressure between the discharge voltage ■8 and the reference value ■ is supplied to the comparator 34 and compared with zero volts, and if the differential voltage is greater than zero volts, that is, in a normal electric discharge machining state, the gate 32
The gate 32 is opened and the clock signal of the oscillator 30 is supplied to the counter 28, while the gate 32 is closed when the differential voltage is equal to or lower than zero volts, that is, in the event of an abnormal drop in the interelectrode discharge voltage Vg or a short circuit. The output ψ of 28 is fixed to the value at that time.

゛本発明の実施例は以上の構成から成り、以下にその作
用を説明する。
The embodiment of the present invention has the above configuration, and its operation will be explained below.

偏心円運動を含む公転加工工程を行なうために、増幅器
50の補助器50の補助加工送り設定値Kは所望の拡大
幅Rに対応して設定され、ベクトル加工工程においては
デジタルスイッチ36が無効とされカウンタ28へは発
振器3σからの時間的に変化する角度信号であるクロッ
ク信号が供給される。
In order to perform the revolution machining process including eccentric circular motion, the auxiliary machining feed setting value K of the auxiliary device 50 of the amplifier 50 is set corresponding to the desired enlargement width R, and the digital switch 36 is disabled in the vector machining process. A clock signal, which is a time-varying angle signal, is supplied from the oscillator 3σ to the counter 28.

従つて両メモリ22,24からは発振器30のクロック
信号により計数される正弦波信号Vx及び余弦波信号V
,がコンバータ42,44を介して出力され、この結果
、X軸駆動モータ18及びY軸駆動モータ20により被
加■物12にはXY平面に沿つて所望の偏心円運動が与
えられる。この時の偏心円運動の回転半径は位置検出器
54,56からの検出信号と正弦波信号Vx及び余弦波
信号V,とが平衡する値に設定され、電源16から電極
10と被加工物12との間に供給される極間放電電圧V
gにより最適条件て放電加工が行なわれる間隙長となる
ように偏心円運動の回転半径が設定される。増幅器50
へ供給される差電圧を設定するために実施例において基
準値V,を極間放電電圧V,の最大値に対して90〜8
0%程度に設定することにより良好な公転加工工程を得
ることができ、この公転加■程は電極10の拡大幅Rの
加工が完了するまで継続されるが、この公転加工工程中
何らがの原因で電極10と被加工物12との間に短絡そ
の他の異常が生じた場合には比較器34からゲート32
へのゲートオフ信号が供給され、カウンタ28の計数値
がその時の値に保持される。
Therefore, both memories 22 and 24 output a sine wave signal Vx and a cosine wave signal V which are counted by the clock signal of the oscillator 30.
, are outputted via the converters 42 and 44, and as a result, the X-axis drive motor 18 and the Y-axis drive motor 20 impart a desired eccentric circular motion to the workpiece 12 along the XY plane. The rotation radius of the eccentric circular motion at this time is set to a value that balances the detection signals from the position detectors 54 and 56 with the sine wave signal Vx and the cosine wave signal V, and the power source 16 is connected to the electrode 10 and the workpiece 12. The interelectrode discharge voltage V supplied between
The radius of rotation of the eccentric circular motion is set so that g provides the gap length at which electrical discharge machining can be performed under optimal conditions. amplifier 50
In the embodiment, in order to set the differential voltage supplied to
By setting the value to about 0%, a good revolution machining process can be obtained, and this revolution machining process is continued until the machining of the enlarged width R of the electrode 10 is completed, but nothing happens during this revolution machining process. If a short circuit or other abnormality occurs between the electrode 10 and the workpiece 12 for some reason, the comparator 34 sends a signal to the gate 32.
A gate-off signal is supplied to the counter 28, and the count value of the counter 28 is held at the current value.

同時に、モータ18,20には復帰信号が供給され、被
加工物12は初期位置に一旦復帰して短絡を急速に消滅
させる。この後、被加工物12は再び前述したカウンタ
28の保持値に対応する公転加工位置まで移動し、以下
継続的に前述した公転加工工程が続行される。公転加工
工程が電極10の拡大幅Rに達するまで行なわれた後、
ベクトル加工工程を行なうためにデジタルスイッチ36
からはカウンタ28へ所定ベクトルの方位角信号が供給
され、この時発振器30からのクロック信号の供給は無
効とされる。
At the same time, a return signal is supplied to the motors 18 and 20, and the workpiece 12 returns once to its initial position, quickly eliminating the short circuit. Thereafter, the workpiece 12 moves again to the revolution machining position corresponding to the value held by the counter 28, and the revolution machining process described above continues. After the revolution processing process is performed until the expanded width R of the electrode 10 is reached,
Digital switch 36 to perform vector processing process
An azimuth signal of a predetermined vector is supplied to the counter 28, and at this time, the supply of the clock signal from the oscillator 30 is disabled.

同時に増幅器50の設定値Kも所望のベクトルに対応し
て設定され、例えば第5図のベクトルHの場合にはデジ
タルスイッチ36からカウンタ28へθ2+ル0方位角
信号が供給され、また増幅器の設定値Kはード±に設定
される。この結 SinO−h果、モータ1
8,20はベクトル盲に対応した補助加工送りを被加工
物12に与え、以下同様にベクトルf及び7に沿つて被
加工物12がベクトル加工されることとなる。
At the same time, the setting value K of the amplifier 50 is also set corresponding to the desired vector. For example, in the case of the vector H in FIG. The value K is set to +/-. As a result, SinO-h result, motor 1
8 and 20 give an auxiliary machining feed corresponding to the vector blindness to the workpiece 12, and thereafter the workpiece 12 is subjected to vector machining along the vectors f and 7 in the same manner.

以上説明したように、本発明によれば、偏心円運動を含
む公転加工工程により補助加工送り時の放電加工を行な
いこの公転加工工程は制御の容易な円運動から成るので
正確なかつ高精度の補助加工送りを行なうことができる
As explained above, according to the present invention, electric discharge machining during auxiliary machining feed is performed by a revolution machining process including an eccentric circular motion, and since this revolution machining process consists of an easily controllable circular motion, accurate and high-precision auxiliary work can be achieved. Processing feed can be performed.

この時の公転加工工程はその回転半径を徐々に増加して
複数回転にて所望の放電加工を行なうことが好適であり
、電極を均一に使用することができまた放電間隙に滞留
する被加工粉あるいは変性物質等をポンピング作用によ
り速かに除去することが可能となる。前述した公転加工
工程の後にベクトル加工工程が行なわれ、公転加工によ
る残肉を確実に除去して電極に対応する所望の加工形状
を高精度で得ることができる。なお、実施例によればア
ナログ制御が行なわれているが、数値制御により、あら
かじめ軌跡をプ口グラムし、補助加工送りのディジタル
制御を行なうことも可能である。
In the revolution machining process at this time, it is preferable to gradually increase the radius of rotation and perform the desired electrical discharge machining in multiple rotations. This allows the electrode to be used uniformly, and the workpiece powder that remains in the discharge gap is suitable. Alternatively, denatured substances and the like can be quickly removed by pumping action. A vector machining process is performed after the revolution machining process described above, and the remaining thickness due to the revolution machining can be reliably removed and a desired machining shape corresponding to the electrode can be obtained with high precision. Although analog control is performed in the embodiment, it is also possible to program the locus in advance and digitally control the auxiliary machining feed using numerical control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の公転円運動を用いた補助加工送りによる
放電加工状態を示す説明図、第2図は従来の他の方式に
よる加工状態を示す説明図、第3図は従来の更に他の方
式による加工状態を示す説明図、第4図は本発明に用い
られるベクトル加工を用いた加工原理を示す説明図、第
5図は第4図における相対変位を示すベクトル図、第6
図は第5図の変形したベクトル図、第7図は第4図の原
理を用いた放電加工の欠点を示す説明図、第8図は本発
明に係る放電加工方法の好適な実施例の加工状態を示す
説明図、第9図は第8図の公転加工工程の拡大した他の
実施例を示す説明図、第10図は本発明に係る放電加工
装置の好適な実施例を示すブロック図である。 各図中同一部材には同一符号を示し、10は電極、12
は被加工物、16は電源、18はX軸駆動モータ、20
はY軸駆動モータ、22は正弦関数メモリ、24は余弦
関数モータ、22は正弦関数メモl八24は余弦関数メ
モリ、30は発振器、36はデジタルスイッチである。
Fig. 1 is an explanatory diagram showing the state of electrical discharge machining by conventional auxiliary machining feed using revolving circular motion, Fig. 2 is an explanatory diagram showing the machining state by another conventional method, and Fig. 3 is an explanatory diagram showing the machining state by another conventional method. FIG. 4 is an explanatory diagram showing the machining state using the method, FIG. 4 is an explanatory diagram showing the machining principle using vector machining used in the present invention, FIG. 5 is a vector diagram showing the relative displacement in FIG.
The figure is a modified vector diagram of FIG. 5, FIG. 7 is an explanatory diagram showing the drawbacks of electrical discharge machining using the principle of FIG. 4, and FIG. 8 is a machining of a preferred embodiment of the electrical discharge machining method according to the present invention FIG. 9 is an explanatory diagram showing another embodiment of the revolution machining process shown in FIG. 8, and FIG. 10 is a block diagram showing a preferred embodiment of the electrical discharge machining apparatus according to the present invention. be. The same members in each figure are denoted by the same symbols, 10 is an electrode, 12
is the workpiece, 16 is the power supply, 18 is the X-axis drive motor, 20
22 is a sine function memory, 24 is a cosine function motor, 22 is a sine function memory, 24 is a cosine function memory, 30 is an oscillator, and 36 is a digital switch.

Claims (1)

【特許請求の範囲】 1 電極と被加工物との対向間隙に加工液を介して通電
し前記電極と被加工物との間には主加工方向に沿つた主
加工送りと該主加工送りに対してほぼ垂直な平面に沿つ
た補助加工送りとが与えられ前記補助加工送り面に対し
て電極と被加工物との間隙が放電維持間隙に制御されて
いる放電加工方法において、前記補助加工送りは電極と
被加工物とを偏心円運動に従つて相対送りしながら所望
の加工部の大部分を加工する公転加工工程と、所定のベ
クトルに沿つて電極と被加工物とを相対送りして前記公
転加工工程の加工残肉を放電加工するベクトル加工工程
とを含む放電加工方法。 2 特許請求の範囲1記載の方法において、公転加工工
程は初期位置から徐々に回転半径が拡大する偏心円運動
から成ることを特徴とする放電加工方法。 3 特許請求の範囲1記載の方法において、公転加工工
程中異常放電が生じた時に偏心円運動が初期位置に復帰
し異常解消後再び元の加工位置に戻ることを特徴とする
放電加工方法。 4 被加工物に対して主加工方向に相対送りされる電極
と、電極と被加工物との間に放電電力を供給する電源と
、電極と被加工物とを前記主加工方向とほぼ垂直な平面
に沿つて補助加工送りする送り装置と、を含む放電加工
装置において、指示角度信号に応じて正弦波信号及び余
弦波信号を出力する関数メモリと、関数メモリに時間的
に変化する角度信号を供給する移動角度信号供給器と、
前記関数メモリに所定ベクトルの方位角信号を供給する
固定角度信号供給器と、補助加工送りにおける加工幅を
設定する設定器と、電極と被加工物との補助加工送り方
向の相対位置により前記関数メモリの正弦波信号及び余
弦波信号を補助加工送り装置に供給するサーボ制御装置
と、を含む放電加工装置。
[Claims] 1. Electricity is supplied through a machining fluid to the opposing gap between the electrode and the workpiece, and there is a main machining feed along the main machining direction and a main machining feed between the electrode and the workpiece. In the electrical discharge machining method, an auxiliary machining feed is provided along a plane substantially perpendicular to the auxiliary machining feed surface, and a gap between the electrode and the workpiece is controlled to a discharge maintaining gap with respect to the auxiliary machining feed surface. There is a revolution machining process in which most of the desired machining area is machined while the electrode and the workpiece are fed relative to each other along an eccentric circular motion, and a revolution machining process in which the electrode and the workpiece are fed relative to each other along a predetermined vector. An electric discharge machining method including a vector machining step of performing electric discharge machining on the machining remaining material of the revolution machining step. 2. The electric discharge machining method according to claim 1, wherein the revolution machining step consists of an eccentric circular motion in which the radius of rotation gradually increases from an initial position. 3. The electric discharge machining method according to claim 1, wherein the eccentric circular motion returns to the initial position when an abnormal electric discharge occurs during the revolution machining process, and returns to the original machining position after the abnormality is resolved. 4. An electrode that is fed relative to the workpiece in the main machining direction, a power supply that supplies discharge power between the electrode and the workpiece, and an electrode that is moved approximately perpendicular to the main machining direction between the electrode and the workpiece. An electric discharge machining apparatus including a feeding device for auxiliary machining feeding along a plane, a function memory for outputting a sine wave signal and a cosine wave signal according to a commanded angle signal, and a function memory for outputting an angle signal that changes over time. a moving angle signal supplier for supplying;
A fixed angle signal supply device that supplies an azimuth signal of a predetermined vector to the function memory, a setting device that sets the machining width in the auxiliary machining feed, and a relative position of the electrode and the workpiece in the auxiliary machining feed direction A servo control device that supplies a sine wave signal and a cosine wave signal of a memory to an auxiliary machining feed device.
JP7046879A 1979-06-05 1979-06-05 Electrical discharge machining method and equipment Expired JPS6052894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7046879A JPS6052894B2 (en) 1979-06-05 1979-06-05 Electrical discharge machining method and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7046879A JPS6052894B2 (en) 1979-06-05 1979-06-05 Electrical discharge machining method and equipment

Publications (2)

Publication Number Publication Date
JPS55164439A JPS55164439A (en) 1980-12-22
JPS6052894B2 true JPS6052894B2 (en) 1985-11-21

Family

ID=13432373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7046879A Expired JPS6052894B2 (en) 1979-06-05 1979-06-05 Electrical discharge machining method and equipment

Country Status (1)

Country Link
JP (1) JPS6052894B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851021A (en) * 1981-08-27 1983-03-25 Fanuc Ltd Backing control system in electric discharge machine

Also Published As

Publication number Publication date
JPS55164439A (en) 1980-12-22

Similar Documents

Publication Publication Date Title
Rao et al. Modelling of tooth trajectory and process geometry in peripheral milling of curved surfaces
US4499359A (en) Shape compensating method for wire-out electric discharge machining
JPS62203756A (en) Curved surface machining device
Wang et al. Computer aided contouring operation for traveling wire electric discharge machining (EDM)
JPH01127260A (en) Cylindrical grinding method of work
JPS60101608A (en) Numerical controller
JPS6052894B2 (en) Electrical discharge machining method and equipment
JPH06190637A (en) Electric discharge device, electrode and method
US4811235A (en) Coordinate interpolation in numerical control apparatus
JP4143384B2 (en) EDM method
Ding et al. CNC electrical discharge rough machining of turbine blades
US4675490A (en) Method and apparatus for controlling electrode position in an electric discharge machine by counting feedback pulses and repeatedly adding the count
JPS594252B2 (en) Taper processing method
Wei et al. A new interpolation method of variable period and step size in micro-EDM milling based on square constraint
US4400606A (en) Method and apparatus for discharge machining polygonal contours
JPH0751989A (en) Free-form surface machining device
JPS6137050B2 (en)
JPS6214375B2 (en)
JPH03117519A (en) Wire electric discharge machining
JPS6341698B2 (en)
JP2664896B2 (en) Interpolator for numerical controller
JPH01274928A (en) Electric power applied machining device
JPH0291704A (en) Nc machine tool
JPS60232827A (en) Wire electric discharge machine
EP0098126A2 (en) Method and apparatus for controlling direction reversal in electric discharge machines