JPS6137050B2 - - Google Patents

Info

Publication number
JPS6137050B2
JPS6137050B2 JP55000665A JP66580A JPS6137050B2 JP S6137050 B2 JPS6137050 B2 JP S6137050B2 JP 55000665 A JP55000665 A JP 55000665A JP 66580 A JP66580 A JP 66580A JP S6137050 B2 JPS6137050 B2 JP S6137050B2
Authority
JP
Japan
Prior art keywords
workpiece
electrode
machining
discharge machining
electrical discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55000665A
Other languages
Japanese (ja)
Other versions
JPS56102466A (en
Inventor
Tetsuro Ito
Toshiro Ooizumi
Shigeo Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP66580A priority Critical patent/JPS56102466A/en
Publication of JPS56102466A publication Critical patent/JPS56102466A/en
Publication of JPS6137050B2 publication Critical patent/JPS6137050B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は放電加工方法、特に工具電極を被加工
物に対して主たる加工方向(以下Z軸という)に
相対送りするとともに前記Z軸に垂直な平面(以
下XY平面という)に沿つて補助的な加工送りを
行ないながら工具電極と被加工物との間で放電加
工を行なう改良された方法に関するものである。 工具電極と被加工物との間にZ軸方向の主加工
送りとXY平面に沿つた補助加工送りを与える放
電加工が周知であり、特公昭41−3594号公報にそ
の一例が示されている。この従来方式によれば、
単一の工具電極により粗加工、中加工、中仕上加
工、仕上加工及び精仕上加工等の複数段階の加工
を連続的に行なうことができるという利点を有す
る。すなわち、一般的に粗加工においてはZ軸方
向の主加工送りのみが与えられ、この時には大電
流による放電加工が行なわれ、この結果、加工間
隙は比較的大きいことが知られているが、これに
対して、以降の精仕上加工に進む各加工段階にお
いては徐々に放電電流が減少制御され、これに伴
ない加工間隙も減少するが、前述したXY平面に
沿つた補助加工送りを与えることにより単一の工
具電極により加工間隙の減少を補いながら加工面
の平滑化を行なうことができる。また、補助加工
送りの与えられた従来装置によれば、放電間隙に
滞留する被加工物の切削粉あるいは放電時の高温
アークによつて熱分解された絶縁加工液の変性物
質等を補助加工送りによる加工液のポンピング作
用により除去することができ、良好な面アラサを
得ることができる。 第1図には不等辺三角形から成る電極1により
被加工物2を加工する従来方式における一般的な
加工状態が示され、電極1には公転軌道運動すな
わち円運動から成るXY平面に沿つた補助加工送
りが与えられ、その円運動の半径がRにて示され
ている。この従来方式によれば、電極1より任意
に設定された半径Rだけ大きな電極を用いたと同
様の効果を得ることができるが、第1図から明ら
かなように、各角部においては半径Rの円弧状電
極による加工作用が得られ、この結果、被加工形
状は電極形状とは著しく異なつた形状となり、高
精度の放電加工が得られないという欠点があつ
た。 第1図の公転円運動を用いた補助加工送りの欠
点を除去するためにいくつかの補助加工送り方式
が考えられ、第2図には電極1を各角度に対して
放射状に等距離被加工物2と相対変位させた方式
が示されている。第2図において各角度の放射状
変位はベクトルa、b、cで示され、その大きさ
がRに設定されている。しかしながら、第2図の
被加工形状から明らかなように、このような放射
状相対変位によつても各角度の尖端角の相違によ
り電極1の形状とは著しく異なつた被加工形状が
得られ、高精度の放電加工を得ることはできなか
つた。 第3図には従来の他の改良方式が示され、各辺
A,B,Cを相似倍率Kの比で相対変位させる補
助加工送りが示されている。しかしながら、この
従来方式においても、正三角形の場合を除き電極
1と被加工物2との加工間隙α,β及びγはそれ
ぞれ相違した値となり、電極1の形状に対応した
被加工形状を得ることができないという欠点があ
つた。すなわち、第3図の従来方式によれば、電
極1の実形状から補助加工送りにより拡大する拡
大幅α,β及びγが各辺毎に異なり、このために
粗加工から精加工への複数回の放電加工において
均一な加工面を得ることができず、良好な面アラ
サの高精度な放電加工が得られないという欠点が
生じていた。 本発明者等は上記課題に鑑み以下の改良した放
電加工方式を提案した。第4図にはこの改良され
た方式による電極1の補助加工送り作用が示され
ている。第4図において、電極1により加工され
る被加工形状は電極1の各辺から距離R隔たつた
各辺と並行の直線A′,B′及びC′にて示されてい
る。各直線A′,B′及びC′の交点がP1,P2,P3
で、また電極1の各角部の頂点をq1,q2,q3で、
またその角度をそれぞれθ,θ,θで示
す。第4図において、電極1の各辺A,B,Cか
ら均一な拡大幅Rとなるため補加工送りベクトル
a,b,cをベクトルaを例にして説明する。
今、頂点q1から直線A′およびB′上に垂線を引
き、その交点をr2,r1とすると、その長さは拡大
幅Rと等しくなる。ここで三角形p1r2q1と三角形
p1r1q1とは一辺p1q1を共有し、他辺r2q1および
r1q1の長さが等しい直角三角形となるので、両者
は合同となり、直線p1q1、即ちベクトルaは角
r1p1r2の二等分線になる。従つてベクトルaの変
位があつた時、頂点q2の軌跡もq2′へ並行移動
し、平行四辺形P1q1q2q2′の頂角q2における角度
はθ/2で示され、この事からベクトルaはその方 位角がθ+θ/2であり、その大きさが
The present invention relates to an electrical discharge machining method, in particular, to feed a tool electrode relative to a workpiece in the main machining direction (hereinafter referred to as the Z-axis), and to feed an auxiliary tool along a plane perpendicular to the Z-axis (hereinafter referred to as the XY plane). The present invention relates to an improved method for performing electric discharge machining between a tool electrode and a workpiece while performing machining feed. Electrical discharge machining that provides a main machining feed in the Z-axis direction and an auxiliary machining feed along the XY plane between the tool electrode and the workpiece is well known, and an example of this is shown in Japanese Patent Publication No. 3594/1983. . According to this conventional method,
It has the advantage that multiple stages of machining such as rough machining, semi-machining, semi-finishing machining, finishing machining, and fine finishing machining can be performed continuously using a single tool electrode. In other words, generally in rough machining, only the main machining feed in the Z-axis direction is given, and at this time electrical discharge machining is performed using a large current, and as a result, it is known that the machining gap is relatively large. On the other hand, the discharge current is controlled to gradually decrease at each machining stage proceeding to the subsequent fine finishing machining, and the machining gap decreases accordingly, but by applying the auxiliary machining feed along the XY plane as described above A single tool electrode can smooth the machined surface while compensating for the reduction in the machining gap. In addition, according to the conventional equipment provided with auxiliary machining feed, the auxiliary machining feed removes cutting powder from the workpiece that stays in the discharge gap or denatured substances in the insulation working fluid that are thermally decomposed by the high-temperature arc during the discharge. can be removed by the pumping action of the machining fluid, resulting in good surface roughening. Figure 1 shows a general machining situation in a conventional method in which a workpiece 2 is machined by an electrode 1 consisting of a scalene triangle. A machining feed is given and the radius of its circular motion is denoted by R. According to this conventional method, it is possible to obtain the same effect as using an electrode larger than electrode 1 by an arbitrarily set radius R, but as is clear from FIG. A machining action is obtained by the arc-shaped electrode, and as a result, the shape of the workpiece becomes significantly different from the shape of the electrode, resulting in a disadvantage that highly accurate electrical discharge machining cannot be achieved. In order to eliminate the drawbacks of the auxiliary machining feed using the revolving circular motion shown in Figure 1, several auxiliary machining feed methods have been considered. A method in which the object 2 is displaced relative to the object 2 is shown. In FIG. 2, the radial displacement of each angle is indicated by vectors a, b, and c, the magnitude of which is set to R. However, as is clear from the shape of the workpiece in FIG. 2, even with such radial relative displacement, a shape of the workpiece that is significantly different from the shape of the electrode 1 is obtained due to the difference in the tip angle of each angle, resulting in a high It was not possible to obtain accurate electrical discharge machining. FIG. 3 shows another improved conventional method, in which auxiliary machining feed is shown in which each side A, B, and C are relatively displaced at a ratio of similarity magnification K. However, even in this conventional method, except in the case of an equilateral triangle, the machining gaps α, β, and γ between the electrode 1 and the workpiece 2 have different values, making it difficult to obtain a workpiece shape corresponding to the shape of the electrode 1. The drawback was that it was not possible. That is, according to the conventional method shown in FIG. 3, the expansion widths α, β, and γ that are expanded by the auxiliary machining feed from the actual shape of the electrode 1 are different for each side, and for this reason, the process from rough machining to fine machining is repeated multiple times. In electrical discharge machining, it is not possible to obtain a uniform machined surface, resulting in the disadvantage that highly accurate electrical discharge machining with good surface roughness cannot be obtained. In view of the above problems, the present inventors proposed the following improved electric discharge machining method. FIG. 4 shows the auxiliary machining feed action of the electrode 1 according to this improved method. In FIG. 4, the shape of the workpiece to be machined by the electrode 1 is shown by straight lines A', B', and C' that are parallel to each side and spaced apart by a distance R from each side of the electrode 1. The intersection points of each straight line A′, B′ and C′ are P 1 , P 2 , P 3
And, the vertices of each corner of electrode 1 are q 1 , q 2 , q 3 ,
Further, the angles are indicated by θ 1 , θ 2 , and θ 3 , respectively. In FIG. 4, since a uniform enlarged width R is obtained from each side A, B, and C of the electrode 1, the supplementary processing feed vectors a, b, and c will be explained using vector a as an example.
Now, if a perpendicular line is drawn from the vertex q 1 to straight lines A' and B' and their intersection points are r 2 and r 1 , the length will be equal to the enlarged width R. Here triangle p 1 r 2 q 1 and triangle
p 1 r 1 q 1 shares one side p 1 q 1 and the other side r 2 q 1 and
Since r 1 q 1 is a right triangle with the same length, the two are congruent, and the straight line p 1 q 1 , that is, the vector a, is an angle
It becomes the bisector of r 1 p 1 r 2 . Therefore, when the vector a is displaced, the trajectory of the vertex q 2 also moves in parallel to q 2 ', and the angle at the apex angle q 2 of the parallelogram P 1 q 1 q 2 q 2 ' is θ 1 /2. From this, vector a has an azimuth of θ 21 /2 and a magnitude of

【式】で求めることができる。同様に、他 の変位ベクトルb,cも簡単な計算から求めるこ
とができ、各ベクトルa,b,cは第5図に示さ
れる方位角及び大きさを有することとなる。従つ
て、電極1と被加工物2との相対変位をベクトル
a,b,cに従つてXY平面に沿つて補助加工送
りすれば電極1の形状に従いかつ角部の形状も電
極形状に対応した良好な被加工形状を得ることが
可能となる。 第6図には第5図のベクトルa,b,cを互い
に連続したベクトルに変換した補助加工送りベク
トルが示され、電極1と被加工物2との間に第6
図のベクトルに従つた相対変位を与えることによ
り所望の被加工形状を得ることが可能となる。 ところで、以上のようにして放電加工を行なつ
た後の被加工物の加工面は、放電痕の集積である
梨地状になつており、通常はこの面をやすり等の
工具を使用してみがいて仕上げている。しかし乍
ら、加工形状が複雑であるとか、内角部の場合に
は、上記やすり等の工具が被加工物内に入らない
ことが多く、せつかく前記の相対運動による高精
度の放電加工を行なつても加工面のみがきの問題
で実用上欠点があつた。 本発明は上記欠点に鑑みてなされたもので、目
的とする被加工物の放電加工後の加工面のみがき
を高精度にしかも能率よく行うようにした方法を
提供するものである。 本発明の原理について第7図を用いて説明す
る。電極1により被加工物2を周知の放電加工で
加工した後、放電加工後の電極1と被加工物2を
そのまま設置しておき、放電加工液のかわりにみ
がき用の研摩粒子の混入したグリース状の粘性流
体3等を電極1と被加工物2の間隙に投入噴射す
る。そして第7図に示すような主軌跡ベクトルK
に沿つて放電加工の時の相対運動と同じ動きをさ
せながら、この主軌跡に回転ベクトルωを重乗さ
せる。回転ベクトルωは、毎分60〜300回程度の
速い周期で回転している。このベクトルの半径
は、1〜30μm程度になつており、電極1と被加
工物2は常に間隙における接触面が変化し、局部
的に電極が負担を受けることがない。また電極1
と被加工物2の間隙は、間隙に放電による加工が
ない程度の電圧を印加して接触の有無を検出する
ことにより、接触した時には回転ベクトルの半径
を最少にして接触を防ぎ、電極1の直接接触を防
ぐことができる。 次に第8図を用いて本発明の一実施例について
詳細に説明する。即ち、被加工物2は、XY駆動
テーブル4の上に乗せられ、数値制御装置5によ
つてモータ4X,4Yを駆動制御することによ
り、あらかじめプログラムされた第7図における
主軌跡運動を電極1に対して行うことができる。
放電加工時には、相対運動をこの主軌跡に沿つて
行なわせ、周知の方法で被加工物2の放電加工を
行なう。放電加工後、放電加工液(図示せず)を
放電加工液タンク6に移し、次に研摩剤タンク7
に入つている研摩粒子入りの粘性流体3をポンプ
8により間隙にノズル9により噴射する。上記電
極1はクロスヘツド10に取付けられており、こ
のクロスヘツド10はモータ11,12によつて
XY平面内においてテーブル4と平行に運動する
ことができる。更に、クロスヘツド10の変位位
置を検出する検出器13,14が取付けられてお
り、デテクタ15,16を介してクロスヘツド1
0の変位に相当する電圧が加算器17,18に入
力されている。2相発振器19は、互いに位相の
90゜ずれた正弦波信号、すなわちφ=sinω
t、φ=cosωtを発生しており、これ等の信
号φ,φが、上記の加算器17,18に入力
されているため、デテクタ15,16の出力との
誤差電圧が零ボルトになるように、モータ11,
12が増幅器19,20により駆動されるように
なつている。2相発振器19の出力に対応してモ
ータ11,12が動くと、クロスヘツド10は2
相発振器19からの信号φ,φの周期ωtで
偏心運動を行ない、電極1は回転しないで数値制
御装置5による主軌跡運動と、上記偏心回転運動
の重乗した相対変位運動をするため、被加工物2
は放電加工の取代より偏心回転の半径分だけ余分
に研摩される。電極1と被加工物2が接近しすぎ
ると、放電加工用のパルス電源21の出力端の電
圧Vgは低下するので、これを所定の電圧レベル
Vrとコンパレータ22によつて検出し、2相発
振器19の出力電圧を、トランジスタ23,24
によつて零ボルトにし、クロスヘツド10の位置
を偏心回転の半径零の点にもどすと同時に、数値
制御装置5に停止信号Sを入力し、その後上記ト
ランジスタ23,24の入力電圧を徐々に増加す
ることによつて上記偏心回転半径を徐々に拡げ、
所定の半径まで達してから数値制御装置5に出力
していた停止信号Sを解除する。上記の一旦零に
して徐々に拡大していく方法については、コンパ
レータ22の出力を単安定マルチバイブレータ2
5で微分し、NPNトランジスタ26によりコン
デンサ27の電圧を−Vccにし、その後抵抗28
を通して徐々にコンデンサ27の電圧が上がり、
トランジスタ23,24のバイアス電圧を上げ2
相発振器19の出力電圧を増加させていくことに
より行なわれる。 なお、上記実施例では偏心運動を、放電加工時
の変位に重乗させる方式としたが、放電加工時の
変位量を更にわずかずつ増加するだけでもほぼ同
様の効果が得られる。この場合は数値制御装置の
オフセツト補正機能を利用して何回も同じ軌跡を
運動させて放電加工面のみがきを行う。 更に、研摩剤を用いないで電解質の液を間隙に
介在させて電解作用による研摩を行うことも可能
である。水を加工液として用いている放電加工装
置では、装置が防錆構造となつており、研摩剤を
用いるより容易に実施できる。 以上説明したように、この発明によれば、放電
加工後における被加工物の表面は、放電加工の面
より偏心量分だけ研摩され、放電加工からみがき
作業に至る工程を同じ装置で実施でき、しかもみ
がき作業の際に精度を損わないすぐれた利点を有
するものであり、その実施効果に顕著なものがあ
る。
It can be obtained using [Formula]. Similarly, the other displacement vectors b, c can be determined by simple calculations, and each vector a, b, c will have the azimuth and magnitude shown in FIG. Therefore, if the relative displacement between electrode 1 and workpiece 2 is auxiliary machining fed along the XY plane according to vectors a, b, and c, it follows the shape of electrode 1 and the shape of the corner also corresponds to the electrode shape. It becomes possible to obtain a good workpiece shape. FIG. 6 shows an auxiliary machining feed vector obtained by converting the vectors a, b, and c in FIG. 5 into continuous vectors.
By applying a relative displacement according to the vector shown in the figure, it is possible to obtain a desired shape of the workpiece. By the way, the machined surface of the workpiece after electrical discharge machining as described above has a satin-like appearance due to the accumulation of electrical discharge marks, and this surface is usually polished using a tool such as a file. I am finishing it. However, if the machining shape is complex or if the workpiece is an internal corner, tools such as the file mentioned above often cannot enter the workpiece, making it difficult to perform high-precision electrical discharge machining using the above-mentioned relative motion. Even with age, there were practical drawbacks due to the problem of polishing the machined surface. The present invention has been made in view of the above-mentioned drawbacks, and it is an object of the present invention to provide a method for polishing the machined surface of a target workpiece after electrical discharge machining with high precision and efficiency. The principle of the present invention will be explained using FIG. 7. After machining the workpiece 2 using the electrode 1 by well-known electric discharge machining, the electrode 1 and the workpiece 2 after the electric discharge machining are left as they are, and grease mixed with abrasive particles for polishing is used instead of the electric discharge machining fluid. A viscous fluid 3 or the like is injected into the gap between the electrode 1 and the workpiece 2. Then, the main trajectory vector K as shown in Fig. 7
While performing the same relative motion as during electrical discharge machining, the main trajectory is multiplied by the rotation vector ω. The rotation vector ω rotates at a fast cycle of about 60 to 300 times per minute. The radius of this vector is about 1 to 30 .mu.m, and the contact surface between the electrode 1 and the workpiece 2 changes constantly in the gap, so that the electrode is not locally burdened. Also, electrode 1
The gap between the electrode 1 and the workpiece 2 is determined by detecting the presence or absence of contact by applying a voltage to the gap that is sufficient to prevent machining due to electrical discharge.When contact occurs, the radius of the rotation vector is minimized to prevent contact, and Direct contact can be prevented. Next, one embodiment of the present invention will be described in detail using FIG. That is, the workpiece 2 is placed on the XY drive table 4, and the numerical control device 5 drives and controls the motors 4X and 4Y to cause the electrode 1 to move along the main trajectory as shown in FIG. 7, which is programmed in advance. This can be done for
During electric discharge machining, the relative movement is performed along this main trajectory, and the workpiece 2 is subjected to electric discharge machining using a well-known method. After electrical discharge machining, the electrical discharge machining fluid (not shown) is transferred to the electrical discharge machining fluid tank 6, and then to the abrasive tank 7.
A pump 8 injects a viscous fluid 3 containing abrasive particles into the gap through a nozzle 9. The electrode 1 is attached to a crosshead 10, which is driven by motors 11 and 12.
It can move parallel to the table 4 within the XY plane. Furthermore, detectors 13 and 14 are attached to detect the displacement position of the crosshead 10, and the crosshead 1 is detected via detectors 15 and 16.
A voltage corresponding to a displacement of 0 is input to adders 17 and 18. The two-phase oscillators 19 are in phase with each other.
A sinusoidal signal shifted by 90°, i.e. φ 1 = sinω
t, φ 2 = cosωt, and these signals φ 1 and φ 2 are input to the adders 17 and 18, so the error voltage with the outputs of the detectors 15 and 16 is zero volts. The motor 11,
12 are driven by amplifiers 19 and 20. When the motors 11 and 12 move in response to the output of the two-phase oscillator 19, the crosshead 10
Eccentric movement is performed at the period ωt of the signals φ 1 and φ 2 from the phase oscillator 19, and the electrode 1 does not rotate, but performs a relative displacement movement that is a multiplication of the main locus movement by the numerical control device 5 and the eccentric rotation movement. , workpiece 2
is ground more than the machining allowance for electrical discharge machining by the radius of eccentric rotation. If the electrode 1 and the workpiece 2 are too close together, the voltage Vg at the output end of the pulse power source 21 for electrical discharge machining will decrease, so this voltage should be adjusted to a predetermined voltage level.
Vr and the comparator 22 detect the output voltage of the two-phase oscillator 19, which is detected by the transistors 23 and 24.
to zero volts and return the position of the crosshead 10 to the point where the radius of eccentric rotation is zero, at the same time inputting a stop signal S to the numerical control device 5, and then gradually increasing the input voltage of the transistors 23 and 24. By gradually expanding the eccentric rotation radius,
After reaching a predetermined radius, the stop signal S output to the numerical control device 5 is released. Regarding the above method of once zeroing and gradually increasing the output, the output of the comparator 22 is
5, the voltage of the capacitor 27 is set to -Vcc by the NPN transistor 26, and then the voltage of the capacitor 27 is set to -Vcc by the NPN transistor 26.
The voltage of capacitor 27 gradually increases through
Increase the bias voltage of transistors 23 and 24 2
This is done by increasing the output voltage of the phase oscillator 19. In the above embodiment, the eccentric movement is superimposed on the displacement during electrical discharge machining, but substantially the same effect can be obtained by increasing the displacement amount during electrical discharge machining by a small amount. In this case, the offset correction function of the numerical control device is used to move the same trajectory many times to polish the electrical discharge machined surface. Furthermore, it is also possible to perform polishing by electrolytic action without using an abrasive by interposing an electrolyte solution in the gap. Electric discharge machining equipment that uses water as a machining fluid has a rust-proof structure, and can be more easily processed than using an abrasive. As explained above, according to the present invention, the surface of the workpiece after electrical discharge machining is polished by an amount of eccentricity from the surface of the electrical discharge machining, and the steps from electrical discharge machining to polishing work can be performed with the same device. Moreover, it has the excellent advantage of not impairing accuracy during polishing work, and its implementation effects are remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図,第2図は、従来公知の電極と被加工物
に相対変位を与えて加工する際の説明図、第3図
は、電極と相似に被加工物を加工する際の説明
図、第4図は、理想的な相対変位を説明する図、
第5図,第6図は、第4図における相対変位ベク
トル図、第7図は本発明の方法を説明する原理
図、第8図は、本発明の方法を実施するため装置
を示す図である。 図中1は電極、2は被加工物、3は粘性流体、
4はXY駆動テーブル、5は数値制御装置、6は
放電加工液タンク、7は研摩剤タンク、10はク
ロスヘツド、15,16はデテクタ、19は2相
発振器、21は放電加工用のパルス電源である。
なお、図中同一符号は同一又は相当部分を示す。
FIGS. 1 and 2 are explanatory diagrams for machining by applying relative displacement between a conventionally known electrode and a workpiece, and FIG. 3 is an explanatory diagram for machining a workpiece similar to the electrode. FIG. 4 is a diagram illustrating ideal relative displacement;
5 and 6 are relative displacement vector diagrams in FIG. 4, FIG. 7 is a principle diagram explaining the method of the present invention, and FIG. 8 is a diagram showing an apparatus for implementing the method of the present invention. be. In the figure, 1 is an electrode, 2 is a workpiece, 3 is a viscous fluid,
4 is an XY drive table, 5 is a numerical control device, 6 is an electric discharge machining liquid tank, 7 is an abrasive tank, 10 is a crosshead, 15 and 16 are detectors, 19 is a two-phase oscillator, and 21 is a pulse power source for electric discharge machining. be.
Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1 電極と被加工物を所望間隙を介して対向さ
せ、その間隙において放電を行わせて上記被加工
物の加工を行うとともに、上記被加工物の放電加
工後に、上記間隙に研磨剤もしくはこれと同等機
能を有する作用剤を注入し、電極と被加工物の間
に、電極形状より一様に大きくなる軌跡に微少偏
心回転運動を重乗した相対変位を与えて上記被加
工物の放電加工面をみがくことを特徴とする放電
加工方法。 2 電極と被加工物の相対変位量を、電極と被加
工物が直接接触しない様に制御したことを特徴と
する特許請求の範囲第1項記載の放電加工方法。 3 電極と被加工物の相対変位量は、放電加工時
における相対変位量よりも若干多くなるように制
御したことを特徴とする特許請求の範囲第1項記
載の放電加工方法。
[Scope of Claims] 1. An electrode and a workpiece are opposed to each other with a desired gap therebetween, and the workpiece is machined by causing electric discharge to occur in the gap, and after the electric discharge machining of the workpiece is completed, the workpiece is machined. An abrasive or an agent having an equivalent function is injected into the workpiece, and a relative displacement is applied between the electrode and the workpiece by multiplying a trajectory uniformly larger than the electrode shape by a slight eccentric rotational motion. An electrical discharge machining method characterized by polishing the electrical discharge machined surface of the workpiece. 2. The electrical discharge machining method according to claim 1, wherein the relative displacement between the electrode and the workpiece is controlled so that the electrode and the workpiece do not come into direct contact. 3. The electric discharge machining method according to claim 1, wherein the relative displacement between the electrode and the workpiece is controlled to be slightly larger than the relative displacement during electric discharge machining.
JP66580A 1980-01-08 1980-01-08 Method and device for electric discharge machining Granted JPS56102466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP66580A JPS56102466A (en) 1980-01-08 1980-01-08 Method and device for electric discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP66580A JPS56102466A (en) 1980-01-08 1980-01-08 Method and device for electric discharge machining

Publications (2)

Publication Number Publication Date
JPS56102466A JPS56102466A (en) 1981-08-15
JPS6137050B2 true JPS6137050B2 (en) 1986-08-21

Family

ID=11480023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP66580A Granted JPS56102466A (en) 1980-01-08 1980-01-08 Method and device for electric discharge machining

Country Status (1)

Country Link
JP (1) JPS56102466A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534455Y2 (en) * 1987-06-29 1993-08-31

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919670A (en) * 1982-07-24 1984-02-01 Tokiwa Seiki Kogyo Kk Super precision grinding attachment
JPS62152619A (en) * 1985-11-25 1987-07-07 Sodeitsuku:Kk Method of electric discharge machining

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922514A (en) * 1972-06-27 1974-02-28
JPS541495A (en) * 1977-06-07 1979-01-08 Mitsubishi Electric Corp Apparatus for machining by electricity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922514A (en) * 1972-06-27 1974-02-28
JPS541495A (en) * 1977-06-07 1979-01-08 Mitsubishi Electric Corp Apparatus for machining by electricity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534455Y2 (en) * 1987-06-29 1993-08-31

Also Published As

Publication number Publication date
JPS56102466A (en) 1981-08-15

Similar Documents

Publication Publication Date Title
JPS6336524B2 (en)
WO1983002416A1 (en) Numerical control machining system
US4031669A (en) Automatic profiling machine
US4499359A (en) Shape compensating method for wire-out electric discharge machining
JPS6219986B2 (en)
KR100310814B1 (en) Method and apparatus for processing scrolled workpiece
JP2849387B2 (en) Method and apparatus for grinding a workpiece with a conductive grinding tool
JPS6137050B2 (en)
EP0494314B1 (en) Non-contact copy control device
US4827677A (en) Method for grinding plane-parallel circular annular faces on disk-shaped workpieces
JPS594252B2 (en) Taper processing method
JPS6288507A (en) Machining method for scroll parts
US4400606A (en) Method and apparatus for discharge machining polygonal contours
US3609280A (en) Method of making apertures and slots in electrically conductive workpieces by edm
JPS6214375B2 (en)
US4488029A (en) Electro-erosive processing apparatus
Sarkar et al. On the flexible abrasive tool for nanofinishing of complex surfaces
JPH08350B2 (en) Origin setting method for work etc. in machine tools
JPS6341698B2 (en)
JPH1190773A (en) Processing of scroll plate and processing device
JPH0751989A (en) Free-form surface machining device
JP3807189B2 (en) Additional processing method and apparatus by electric discharge
JP7233791B1 (en) Cutting device and positional relationship identification method
JP2660282B2 (en) Non-circular NC machining method
JP2650771B2 (en) Electric discharge machining method and equipment