JPS6052741B2 - Manufacturing method of hexachloroacetone - Google Patents
Manufacturing method of hexachloroacetoneInfo
- Publication number
- JPS6052741B2 JPS6052741B2 JP4280780A JP4280780A JPS6052741B2 JP S6052741 B2 JPS6052741 B2 JP S6052741B2 JP 4280780 A JP4280780 A JP 4280780A JP 4280780 A JP4280780 A JP 4280780A JP S6052741 B2 JPS6052741 B2 JP S6052741B2
- Authority
- JP
- Japan
- Prior art keywords
- chlorine
- reaction
- acetone
- hexachloroacetone
- mol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
【発明の詳細な説明】
本発明はアセトンと塩素との反応によりヘキサクロルア
セトンを製造する際に、効率よく高純度のヘキサクロル
アセトンを得る方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for efficiently obtaining highly pure hexachloroacetone when producing hexachloroacetone by reacting acetone with chlorine.
ヘキサクロルアセトンは塩基性条件下、加水分解されて
トリクロル酢酸およびクロロホルムを与え、また医薬、
農薬等の中間体として有用であり、更に塩素をふつ素と
置換することによりヘキサフルオロアセトンを製造する
ことができ、工業的に重要な化合物である。アセトンの
塩素化によるヘキサクロルアセトンの合成法は比較的多
く知られており、例えばPo” 、A ゛ A、−ハ同
ハ4Aりlnア丁 /、onA4口、 ユkl工1も勉
許明細書第2199934号(1940年)、H、C、
Cheng、Z。Hexachloroacetone is hydrolyzed under basic conditions to give trichloroacetic acid and chloroform, which can also be used in pharmaceuticals,
It is useful as an intermediate for agricultural chemicals, etc., and hexafluoroacetone can be produced by replacing chlorine with fluorine, making it an industrially important compound. Relatively many methods for synthesizing hexachloroacetone by chlorination of acetone are known. Book No. 2199934 (1940), H, C,
Cheng, Z.
Physlk、Chem、B2捲、308頁(1934
年)等にも記載されているが、これらはいずれも反応時
間が長いか、ヘキサクロルアセトンの収率が低く、効率
のよい方法ではない。これらの改良法として米国特許第
3265740号(196時)が提出されているが、こ
の方法では2段階の初期過程において気相でアセトンと
塩素を反応させることにより、途中で塩化水素とアセト
ンとの脱水縮合反応によつて生成するタンチルオキサイ
ド、ボロン等の副生を避けるとしているが、反応時間が
長く、また最初から加熱も必要となるので必ずしも有利
な方法ではないし、また2段階目の加熱温度が比較的高
いことと、ピリジンの悪臭による環境への影響を考慮す
ると好ましい方法であるとはいえない。Physlk, Chem, B2 roll, 308 pages (1934
However, these methods are not efficient as they require a long reaction time or a low yield of hexachloroacetone. U.S. Patent No. 3,265,740 (196) has been submitted as an improved method of these, but in this method, acetone and chlorine are reacted in the gas phase in a two-step initial process, and hydrogen chloride and acetone are reacted during the process. Although it is said to avoid by-products such as tantyl oxide and boron generated by the dehydration condensation reaction, it is not necessarily an advantageous method as the reaction time is long and heating is required from the beginning. Considering the relatively high temperature and the environmental impact of pyridine's bad odor, this method cannot be said to be preferable.
また特開昭49−249的号公報に記載された改良法で
は反応を3段階で行ない、塩素化度の低い初期過程では
反応を低温で行ない、次いでピリジンJ等の有機塩基ま
たはその塩の存在下に加熱を行ない3〜4、電素化物に
なるまで反応させ、それ以降は上記有機塩基又はその塩
の共存下、加熱および光照射下に塩素と反応させるもの
である。Furthermore, in the improved method described in JP-A-49-249, the reaction is carried out in three stages, in which the reaction is carried out at a low temperature in the initial stage where the degree of chlorination is low, and then the presence of an organic base such as pyridine J or its salt is carried out. The mixture is heated until it becomes an electride (3 to 4), and then reacted with chlorine under heating and light irradiation in the presence of the above-mentioned organic base or its salt.
この方法によれば比較的短時間、かつ低温度で反応は7
進行するが、初期過程における液相での塩化水素とアセ
トンとの接触により副反応が起きる可能性が高く、また
後期過程における光照射は装置の維持管理等が繁雑であ
る等の難点があり、必ずしも工業的に有利な方法とはい
えない。本発明者等はヘキサクロルアセトン製造法にお
ける上記の現状に鑑み、より効率のよい方法を提供すべ
く鋭意検討を重ねた結果、低塩素化アセトンを触媒量の
トリフェニルホスフィンの存在下、加熱しながら塩素を
導入して塩素化することによつて、高純度のヘキサクロ
ルアセトンを高収率で得ることができることを見出し本
発明に到達したものである。According to this method, the reaction takes place in a relatively short time and at a low temperature.
However, there is a high possibility that side reactions will occur due to contact between hydrogen chloride and acetone in the liquid phase in the early process, and light irradiation in the later process has the disadvantages such as complicated equipment maintenance. This is not necessarily an industrially advantageous method. In view of the above-mentioned current state of the hexachloroacetone manufacturing method, the present inventors have conducted intensive studies to provide a more efficient method, and as a result, they have heated low chlorinated acetone in the presence of a catalytic amount of triphenylphosphine. However, by introducing chlorine and carrying out chlorination, it was discovered that highly pure hexachloroacetone can be obtained in high yield, and the present invention was thus achieved.
すなわち、本発明はアセトンと塩素との反応によりヘキ
サクロルアセトンを製造するにあたり、40℃以下に保
つたアセトン中に塩素と少量の窒素の混合気体を導入、
反応させて平均2〜2.!4素化アセトンを製造し、次
いでトリフェニルホスフィンを触媒として加熱しながら
塩素と反応させることを特徴とするヘキサクロルアセト
ンの製造方法に関する。That is, in producing hexachloroacetone by the reaction of acetone and chlorine, the present invention introduces a mixed gas of chlorine and a small amount of nitrogen into acetone kept at 40°C or less,
An average of 2 to 2. ! The present invention relates to a method for producing hexachloroacetone, which is characterized by producing tetraminated acetone and then reacting it with chlorine while heating using triphenylphosphine as a catalyst.
本発明を更に詳細に説明する。The present invention will be explained in more detail.
アセトンを塩素化する初期過程においては、この反応が
発熱反応であるので反応液を冷却して5〜40℃、好ま
しくは10〜30℃において、アセトン中に塩素を少量
の窒素と共に導入する。このとき窒素を導入することに
より、生成する塩化水素は速やかに反応液中から系外に
除かれ、脱水縮合等の副反応を避けることができるが、
窒素の導入量が多すぎる場合には、系外へ排出される気
体に同伴される未反応の塩素および有機物の量が増加す
るため、窒素の流量は容積にして塩素の11100〜1
110が適当である。発熱が止まり、反応が終息して反
応液が黄着色した段階て塩素の導入を止め、窒素を反応
液中に導入して系内の未反応塩素および塩化水素を除去
する。この段階においてもトリフエニルホスフ.インを
触媒量添加することができる。次の段階においては、触
媒としてトリフェニルホスフィンをアセトンに対し0.
1〜5.0モル%、好ましくは0.2〜2.0モル%添
加し、反応温度を70℃以上とし窒素の導入を止め、塩
素のみ導入する。In the initial process of chlorinating acetone, since this reaction is exothermic, the reaction solution is cooled and chlorine is introduced into acetone at a temperature of 5 to 40°C, preferably 10 to 30°C, together with a small amount of nitrogen. By introducing nitrogen at this time, the generated hydrogen chloride can be quickly removed from the reaction solution to the outside of the system, and side reactions such as dehydration condensation can be avoided.
If the amount of nitrogen introduced is too large, the amount of unreacted chlorine and organic matter accompanying the gas discharged to the outside of the system will increase, so the flow rate of nitrogen will be 11,100 to 1 chlorine by volume.
110 is appropriate. When the heat generation stops, the reaction is completed, and the reaction solution turns yellow, the introduction of chlorine is stopped, and nitrogen is introduced into the reaction solution to remove unreacted chlorine and hydrogen chloride in the system. Also at this stage, triphenylphosph. In can be added in catalytic amounts. In the next step, triphenylphosphine is added as a catalyst to acetone at 0.0%.
It is added in an amount of 1 to 5.0 mol%, preferably 0.2 to 2.0 mol%, and the reaction temperature is set at 70° C. or higher to stop the introduction of nitrogen and introduce only chlorine.
この段階での反応速度はトリフェニルホスフィンの添加
量に依存し、反応速度が低下したところでトリフェニル
ホスフィンを遂次添加すれば反応は速かに完了し、高純
度のヘキサクロルアセトンが得られる。この間の反応温
度は70〜160℃が適当である。この反応において、
平均4.5〜5』塩素化アセトンが生成するまでは反応
温度を70〜120℃に保つても塩素化が比較的速かに
進むので、トリフェニルホスフィンの添加量を少くする
か、または塩素の導入量を多くすることができるが、こ
れ以上の塩素化には反応温度を140℃以上とし、塩素
の導入量を調節し、必要ならばトリフェニルホスフィン
を更に添加すれば、塩素の損失を最小限aにすることが
できる。塩素の導入量はほぼ理論量で充分であり、反応
時間は触媒の添加量により調節できる。トリフェニルホ
スフィンの多大な投入は経済的な面からも、残留する触
媒残渣の処理の面からも不要である。トリフェニルホス
フィンは固体のまま添加してもよいが、アセトンまたは
低塩素化アセトンに溶解して行えばポンプにより連続的
に投入することができる。本反応は反応生成物なるヘキ
サクロルアセトンを溶媒として行うこともできる。生成
した粗ヘキサクロルアセトンは″減圧下に単蒸留するこ
とにより用いた触媒と容易に分離可能であり、はぼ10
0%の純度のヘキサクロルアセトンを単離することがで
きる。本反応は後に蒸留分離操作を加えることにより、
連続式、半連続式にできる。金属製反応器を用いた場合
、混入すると考えられるFece3、NiCe2、Sb
C′,、Pce3等はトリフェニルホスフィンと反応し
てジクロル体を生成すると考えられ、むしろ触媒助剤的
な効果が期待されるのでこれらの少量の入は差し支えな
い。The reaction rate at this stage depends on the amount of triphenylphosphine added, and if triphenylphosphine is successively added when the reaction rate decreases, the reaction is quickly completed and highly pure hexachloroacetone is obtained. The reaction temperature during this period is suitably 70 to 160°C. In this reaction,
Average: 4.5~5'' Until chlorinated acetone is produced, chlorination proceeds relatively quickly even if the reaction temperature is kept at 70~120°C, so either reduce the amount of triphenylphosphine added or However, for further chlorination, increase the reaction temperature to 140°C or higher, adjust the amount of chlorine introduced, and add more triphenylphosphine if necessary to reduce the loss of chlorine. It can be set to a minimum of a. Almost the theoretical amount of chlorine introduced is sufficient, and the reaction time can be adjusted by adjusting the amount of catalyst added. A large input of triphenylphosphine is unnecessary both from an economic point of view and from the point of view of disposal of remaining catalyst residues. Triphenylphosphine may be added as a solid, but if it is dissolved in acetone or low chlorinated acetone, it can be added continuously using a pump. This reaction can also be carried out using the reaction product hexachloroacetone as a solvent. The produced crude hexachloroacetone can be easily separated from the catalyst used by simple distillation under reduced pressure.
Hexachloroacetone with 0% purity can be isolated. This reaction can be carried out by adding a distillation separation operation later.
Can be continuous or semi-continuous. When using a metal reactor, Fece3, NiCe2, and Sb that are considered to be mixed in
It is thought that C', Pce3, etc. react with triphenylphosphine to produce a dichloride, and are rather expected to have the effect of a catalyst aid, so there is no problem in adding a small amount of these.
一方、反応系中の水はトリフェニルホスフィンの触媒能
を損うのて原料アセトン中の水分は極力避けるべきであ
り、また装置の腐食を防ぐ意味からも水分を除く必要が
あるが、0.25%以下の水分であれば触媒効果には大
して問題はない。On the other hand, water in the reaction system impairs the catalytic ability of triphenylphosphine, so moisture in the raw material acetone should be avoided as much as possible, and it is necessary to remove moisture to prevent corrosion of the equipment. If the water content is 25% or less, there is no problem with the catalytic effect.
以下、実施例を示して説明する。Examples will be described below.
実施例1
アセトン291y(5.0モル)を、上部に冷却液温度
−10℃の還流冷却器の付いた円筒型ガラス製反応器に
入れ、氷冷して内温を0℃としたところへ、塩素2.5
モル/時間および窒素0.03モル/時間の混合気体を
連続的に導入する。Example 1 Acetone 291y (5.0 mol) was placed in a cylindrical glass reactor equipped with a reflux condenser at the top with a coolant temperature of -10°C, and cooled with ice to bring the internal temperature to 0°C. , chlorine 2.5
A gas mixture of mol/h and 0.03 mol/h of nitrogen is introduced continuously.
反応は速やかに起こり、発熱するため内温を5〜35℃
の間に保ちながら反応を続け、42寺間後に反応液が未
反応塩素によつて黄色を呈したところで塩素の導入を止
めた。このときガスクロマトグラフィーおよび発生した
塩化水素の量から換算して平均2.1塩素化アセトンが
得られた。窒素で反応液中の塩化水素および塩素をとり
除いた後の低塩素化アセトンの収量は632yであつた
。還流温度を水温とし、冷却浴をオイルバスとして、上
記低塩素化アセトン130.5y(1.0モル)にトリ
フェニルホスフィン1.25モル%を添加し、反応温度
を70℃としたところで塩素を0.5モル/時間で導入
し、塩素化反応の進行とともに徐々に反応温度を上昇さ
せることにより100〜155℃として反応を続け、7
.P!1!間後に、ガスクロマトグラフィーで定量した
純度で96.5%のヘキサクロルアセトンを260V得
た。The reaction occurs quickly and generates heat, so keep the internal temperature at 5-35℃.
After 42 hours, the reaction solution turned yellow due to unreacted chlorine, and the introduction of chlorine was stopped. At this time, an average of 2.1 chlorinated acetone was obtained based on gas chromatography and the amount of hydrogen chloride generated. After removing hydrogen chloride and chlorine from the reaction solution with nitrogen, the yield of low chlorinated acetone was 632y. With the reflux temperature set to water temperature and the cooling bath set to an oil bath, 1.25 mol% of triphenylphosphine was added to the above low chlorinated acetone 130.5y (1.0 mol), and when the reaction temperature was set to 70°C, chlorine was removed. The reaction was continued at 100-155°C by introducing at a rate of 0.5 mol/hour and gradually raising the reaction temperature as the chlorination reaction progressed.
.. P! 1! After a while, 260V of hexachloroacetone with a purity of 96.5% as determined by gas chromatography was obtained.
全収率は91.6%であつた。比較例1実施例1と同じ
低塩素化アセトン130.5yを用い、ピリジン1.2
5モル%添加後、70℃まで加温し、塩素0.5モル/
時間導入を続け、反応温度を100〜165℃に保ち、
7名時間反応後、ガスクロマトグラフィーによる純度7
1.5%のヘキサクロルアセトンを229g得た。The overall yield was 91.6%. Comparative Example 1 Using 130.5y of the same low chlorinated acetone as in Example 1, 1.2y of pyridine
After adding 5 mol%, heat to 70°C and add 0.5 mol/chlorine.
Continue the introduction for a period of time and maintain the reaction temperature at 100-165°C.
After 7 hours of reaction, the purity was 7 by gas chromatography.
229 g of 1.5% hexachloroacetone was obtained.
比較例2
実施例1と同じ低塩素化アセトン1yにピリジン1.0
yを添加した後、反応温度を70〜110℃に保ち、塩
素0.4モル/時間で2.峙間反応させたところヘキサ
クロルアセトンの純度は6.2%であつた。Comparative Example 2 Pyridine 1.0 in the same low chlorinated acetone 1y as in Example 1
After adding y, the reaction temperature was kept at 70-110°C and chlorine was added at 0.4 mol/hour for 2. The purity of hexachloroacetone was 6.2% when the mixture was reacted for a while.
その後、反応温度を140℃まで上昇させ、100W高
圧水銀灯を用い紫外線照射を行いながら塩素0.33モ
ル/時間で3時間反応させた。ガスクロマトグラフィー
による純度95.8%のヘキサクロルアセトンを128
g得た。実施例2
実施例1と同じ低塩素化アセトン130.5ダを用い、
トリフェニルホスフィン0.2モル%添加し、反応温度
を70〜140℃として塩素を0.5モル/時間導入し
、5時間反応させるとヘキサク的レアセトンの純度は1
6.8%となり、その後、反応温度を155℃まで上昇
させトリフェニルホスフィンを0.4モル%を遂次的に
添加し塩素を0.5モル/時間導入し、23時間反応さ
せることにより97.6%の純度のヘキサクロルアセト
ンを258gを得た。Thereafter, the reaction temperature was raised to 140° C., and the reaction was carried out at 0.33 mol/hour of chlorine for 3 hours while irradiating ultraviolet light using a 100 W high-pressure mercury lamp. 128% hexachloroacetone with a purity of 95.8% by gas chromatography
I got g. Example 2 Using 130.5 da of the same low chlorinated acetone as in Example 1,
When 0.2 mol% of triphenylphosphine is added, the reaction temperature is set at 70 to 140°C, chlorine is introduced at 0.5 mol/hour, and the reaction is allowed to proceed for 5 hours, the purity of hexagonal rare acetone is 1.
After that, the reaction temperature was raised to 155°C, 0.4 mol% of triphenylphosphine was successively added, chlorine was introduced at 0.5 mol/hour, and the reaction was carried out for 23 hours. 258 g of hexachloroacetone with a purity of .6% was obtained.
このものを単蒸留して106〜10TC/30TmHg
の無色透明で、99.5%の純度のヘキサクロルアセト
ン245yを得た。実施例3
実施例1と同様の反応装置を用いて、アセトン116.
2y(2モル)に対して、トリフェニルホスフィン0.
2モル%添加し、反応温度2〜24℃において、塩素1
.5モル/時および窒素0.02モル/時』を連続的に
アセトン液中に導入して塩素化反応を行なつた。Simple distillation of this product yields 106~10TC/30TmHg.
Hexachloroacetone 245y, which was colorless and transparent and had a purity of 99.5%, was obtained. Example 3 Using the same reactor as in Example 1, acetone 116.
2y (2 moles), triphenylphosphine 0.
2 mol% of chlorine was added at a reaction temperature of 2 to 24°C.
.. The chlorination reaction was carried out by continuously introducing 5 mol/hour of nitrogen and 0.02 mol/hour of nitrogen into the acetone solution.
2時間4紛後に反応液が未反応塩素によつて黄色を呈し
たところで、塩素および窒素の導入を止めた。After stirring for 2 hours and 4 hours, when the reaction solution turned yellow due to unreacted chlorine, the introduction of chlorine and nitrogen was stopped.
この時2.1塩素化アセトンが得られた。この黄着色は
反応液温を70〜90℃とするこ門とにより消え、無色
透明な液となつた。その後、さらにトリフェニルホスフ
ィン0.2モル%を添加し、反応温度を90〜160℃
と保ちながら、塩素を1.0モル/時の速度で導入し、
8時間反応させたところ、淡黄色液体が得られガスクロ
フマトグラフイーによる純度97.6%の粗ヘキサクロ
ルアセトン507yが得られた。At this time, 2.1 chlorinated acetone was obtained. This yellow coloration disappeared by raising the temperature of the reaction solution to 70 to 90°C, and a colorless and transparent solution was obtained. After that, 0.2 mol% of triphenylphosphine was further added, and the reaction temperature was adjusted to 90-160°C.
Introducing chlorine at a rate of 1.0 mol/hour while maintaining
After reacting for 8 hours, a pale yellow liquid was obtained, and crude hexachloroacetone 507y with a purity of 97.6% as determined by gas chromatography was obtained.
Claims (1)
フィンを触媒として加熱しながら塩素と反応させること
を特徴とするヘキサクロルアセトンの製造方法。 2 アセトンと塩素との反応によりヘキサクロルアセト
ンを製造するにあたり、40℃以下に保つたアセトン中
に塩素と少量の窒素の混合気体を導入、反応させて平均
2〜2.5塩素化アセトンを製造し、次いでトリフェニ
ルホスフィンを触媒として加熱しながら塩素と反応させ
ることを特徴とするヘキサクロルアセトンの製造方法。[Scope of Claims] 1. A method for producing hexachloroacetone, which comprises reacting an average of 2 to 2.5 chlorinated acetone with chlorine while heating using triphenylphosphine as a catalyst. 2. To produce hexachloroacetone through the reaction of acetone and chlorine, a mixed gas of chlorine and a small amount of nitrogen is introduced into acetone kept below 40°C, and reacted to produce an average of 2 to 2.5 chlorinated acetones. and then reacting with chlorine while heating using triphenylphosphine as a catalyst.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4280780A JPS6052741B2 (en) | 1980-04-03 | 1980-04-03 | Manufacturing method of hexachloroacetone |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4280780A JPS6052741B2 (en) | 1980-04-03 | 1980-04-03 | Manufacturing method of hexachloroacetone |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56139436A JPS56139436A (en) | 1981-10-30 |
JPS6052741B2 true JPS6052741B2 (en) | 1985-11-21 |
Family
ID=12646224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4280780A Expired JPS6052741B2 (en) | 1980-04-03 | 1980-04-03 | Manufacturing method of hexachloroacetone |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6052741B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009072501A1 (en) | 2007-12-03 | 2009-06-11 | Asahi Glass Co., Ltd. | Method for producing carbonate compound |
WO2009072502A1 (en) | 2007-12-03 | 2009-06-11 | Asahi Glass Co., Ltd. | Method for producing carbonate compound |
WO2011062104A1 (en) | 2009-11-17 | 2011-05-26 | 旭硝子株式会社 | Method for producing polycarbonate |
WO2014024891A1 (en) | 2012-08-10 | 2014-02-13 | 旭硝子株式会社 | Method for producing carbonate compound and method for producing aromatic polycarbonate |
WO2014088029A1 (en) | 2012-12-06 | 2014-06-12 | 旭硝子株式会社 | Method for producing carbonate compound |
KR102690402B1 (en) * | 2023-10-20 | 2024-07-31 | 주식회사 큐원 | Earthquake-proof apparatus with viscoelastic |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103408413B (en) * | 2013-07-29 | 2015-01-07 | 青岛腾龙微波科技有限公司 | Method for preparing deuterated chloroform by using hexachloroacetone as intermediate |
CN105899482B (en) | 2014-01-08 | 2019-01-22 | 旭硝子株式会社 | The manufacturing method of hexachloroacetone |
JP6237862B1 (en) * | 2016-11-16 | 2017-11-29 | セントラル硝子株式会社 | Method for producing hexafluoroisopropanol and fluoromethyl hexafluoroisopropyl ether (sevoflurane) |
CN116396152A (en) * | 2023-04-07 | 2023-07-07 | 故城县渤海化工有限公司 | Preparation method of 1, 3-hexachloro-2-acetone |
-
1980
- 1980-04-03 JP JP4280780A patent/JPS6052741B2/en not_active Expired
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009072501A1 (en) | 2007-12-03 | 2009-06-11 | Asahi Glass Co., Ltd. | Method for producing carbonate compound |
WO2009072502A1 (en) | 2007-12-03 | 2009-06-11 | Asahi Glass Co., Ltd. | Method for producing carbonate compound |
WO2011062104A1 (en) | 2009-11-17 | 2011-05-26 | 旭硝子株式会社 | Method for producing polycarbonate |
WO2014024891A1 (en) | 2012-08-10 | 2014-02-13 | 旭硝子株式会社 | Method for producing carbonate compound and method for producing aromatic polycarbonate |
WO2014088029A1 (en) | 2012-12-06 | 2014-06-12 | 旭硝子株式会社 | Method for producing carbonate compound |
KR102690402B1 (en) * | 2023-10-20 | 2024-07-31 | 주식회사 큐원 | Earthquake-proof apparatus with viscoelastic |
Also Published As
Publication number | Publication date |
---|---|
JPS56139436A (en) | 1981-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112851493B (en) | Preparation method of 2,4, 5-trifluoro phenylacetic acid | |
JPS6052741B2 (en) | Manufacturing method of hexachloroacetone | |
JPWO2009122940A1 (en) | Method for purifying pyridine and method for producing chlorinated pyridine | |
EP1853548A1 (en) | Process for the preparation of benzoic acid derivatives via a new intermediate of synthesis | |
AU2018389809B2 (en) | A process for the preparation of crisaborole | |
US6580002B2 (en) | Process for the preparation of trifluoromethyl-substituted biphenylcarboxylic acids and novel trichloromethyl-and trifluoromethyl-substituted biphenylcarbonitriles | |
JPS6116255B2 (en) | ||
JP2003012646A (en) | Method for distillation of 2-(4-pyridyl)ethanethiol | |
JP2002255954A (en) | METHOD FOR PRODUCING 2-n-BUTYL-5-NITROBENZOFURAN | |
JP5000031B2 (en) | Method for producing aromatic-o-dialdehyde compound | |
JPH0216741B2 (en) | ||
JP3831021B2 (en) | 2-Production method of indanones | |
SU1625866A1 (en) | Method of producing 5-chloropentanoic acid | |
KR900001075B1 (en) | Preparation of alkyl trifluroaceto acetate | |
JPH07196610A (en) | Production of 5-chloro-2-oxyindole | |
JPH07116096B2 (en) | Method for producing high-purity 0-toluic acid | |
JP2657642B2 (en) | Method for producing chloroalkylamine hydrochlorides | |
CN115784856A (en) | Method for synthesizing 4,4' -dihalogenobenzophenone | |
JP2007261991A (en) | Method for producing 4,4"-diformylterphenyls | |
JPH05320093A (en) | Production of biphenyldicarboxylic acid dichloride | |
JPH0327338A (en) | Production of bis(2-hydroxyhexafluoro-2-propyl)-benzene derivative | |
JP2001247509A (en) | Method of producing 2, 3, 5, 6-tetrachloro-1, 4- benzenedicarboxylic acid | |
JPS621938B2 (en) | ||
JPS59139336A (en) | Production of trifluoromethylphenol | |
JPH0499755A (en) | Production of 1,3-dinitro-4-(2',2',2'-trifluoroethoxy)benzene |