JPS6052661B2 - magnetic generator - Google Patents

magnetic generator

Info

Publication number
JPS6052661B2
JPS6052661B2 JP5210479A JP5210479A JPS6052661B2 JP S6052661 B2 JPS6052661 B2 JP S6052661B2 JP 5210479 A JP5210479 A JP 5210479A JP 5210479 A JP5210479 A JP 5210479A JP S6052661 B2 JPS6052661 B2 JP S6052661B2
Authority
JP
Japan
Prior art keywords
magnetic
rotor
detection
magnetic detection
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5210479A
Other languages
Japanese (ja)
Other versions
JPS55144762A (en
Inventor
正 前岡
雅一郎 立川
庄司 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5210479A priority Critical patent/JPS6052661B2/en
Publication of JPS55144762A publication Critical patent/JPS55144762A/en
Publication of JPS6052661B2 publication Critical patent/JPS6052661B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/38Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary
    • H02K21/44Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary with armature windings wound upon the magnets

Description

【発明の詳細な説明】 本発明は回転体の回転速度の表示を高精度に行なう場
合や回転体の回転速度の制御を高精度に行なう場合に必
要な速度信号を発生するためのいわゆる周波数発電機等
に用いるに適した磁気発電装置に関するものであり、特
に、回転体の回転速度に比例した周波数信号電圧以外に
変化磁束を発生する外部の起磁部材の作用により発生す
るノイズ電圧を効果的に低減させるようにしたものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a so-called frequency power generation system for generating a speed signal necessary for displaying the rotational speed of a rotating body with high precision or controlling the rotational speed of a rotating body with high precision. This relates to a magnetic power generation device suitable for use in machines, etc., and in particular, it effectively reduces noise voltage generated by the action of an external magnetomotive member that generates changing magnetic flux in addition to the frequency signal voltage proportional to the rotational speed of a rotating body. It was designed to reduce this to .

ます第1図は回転体の回転速度を検出するために従来か
ら用いられている周波数発電機の構成を示す正面断面図
である。
FIG. 1 is a front sectional view showing the configuration of a frequency generator conventionally used for detecting the rotational speed of a rotating body.

第1図において、軟磁性体よりなる回転自在のロータ1
0は該ロータ10の外周に軟磁性体よりなる歯形部12
を有している。さらに上記ロータ10の中心にはロータ
軸14が固着されており、基板16に固着された軸受1
8によつて回転可能に支持されている。上記ロータ10
の外周近傍には同一構成からなる2つの磁気検出部材2
0およびYnが配設されている。上記磁気検出部材20
およびYnは各々軟磁性体よりなる第1の固定部材22
および7了とバイアスマグネット24およびIτと検出
コイル26およびInと軟磁性体よりなる第2の固定部
材28およびY1とで構成されている。上記第1の固定
部材22およびYnは各々歯形部30および了nを有し
、この歯形部30および了nは上記ロータ10の歯形部
12と所要間隙をもつて対向されている。さらに上記第
2の固定部材28およびNnの各々は上記ロータ10の
歯形部12と所要間隙をもつて対向され、かつ上記第1
の固定部材22およびYYと対面する如く配設されてい
る。上記第1の固定部材22および7Yと上記第2の固
定部材28およびYnの各々と上記ロータ10とは1つ
の閉磁気回路を形成し、上記バイアスマグネット24お
よびNiは上記閉磁気回路内で上記第1の固定部材22
およびYYの歯形部30およ−び了nと上記ロータ10
の歯形部12とを通る磁束を発生するための内部起磁部
材として第1の固定部材22および11と第2の固定部
材28および7nとの間に配設されており、そして上記
バイアスグネツト24およびY1から発生する磁束と.
鎖交すべく上記バイアスマグネット24およびnτのま
わりに上記検出コイル26および7nが巻装されている
。一方、基板16には上記ロータ10の回転駆動源であ
るモータ32が配設されており、該モータ・32の回転
軸34は基板16に固着された軸受36によつて回転支
持されている。
In FIG. 1, a rotatable rotor 1 made of soft magnetic material
0 is a toothed portion 12 made of soft magnetic material on the outer periphery of the rotor 10.
have. Furthermore, a rotor shaft 14 is fixed to the center of the rotor 10, and a bearing 1 is fixed to a substrate 16.
It is rotatably supported by 8. The above rotor 10
Two magnetic detection members 2 having the same configuration are located near the outer periphery of the
0 and Yn are arranged. The magnetic detection member 20
and Yn are the first fixing members 22 each made of a soft magnetic material.
7, a bias magnet 24, Iτ, a detection coil 26, In, and a second fixing member 28 made of a soft magnetic material and Y1. The first fixing member 22 and Yn each have a toothed portion 30 and a toothed portion, and the toothed portion 30 and the toothed portion are opposed to the toothed portion 12 of the rotor 10 with a required gap. Further, each of the second fixing members 28 and Nn is opposed to the toothed portion 12 of the rotor 10 with a required gap, and
is arranged so as to face the fixing member 22 and YY. The first fixing members 22 and 7Y, the second fixing members 28 and Yn, and the rotor 10 form one closed magnetic circuit, and the bias magnet 24 and Ni are arranged in the closed magnetic circuit. First fixing member 22
and YY tooth profile 30 and rotor 10.
The bias magnet is disposed between the first fixing members 22 and 11 and the second fixing members 28 and 7n as an internal magnetomotive member for generating magnetic flux passing through the toothed portion 12 of the magnet. 24 and the magnetic flux generated from Y1.
The detection coils 26 and 7n are wound around the bias magnet 24 and nτ so as to be interlinked with each other. On the other hand, a motor 32 serving as a rotational drive source for the rotor 10 is disposed on the substrate 16, and a rotating shaft 34 of the motor 32 is rotationally supported by a bearing 36 fixed to the substrate 16.

上記モータ32の回転軸34と上記ロータ軸14にはそ
れぞれプーリ38および40が取付けられており、ベル
ト42を介してモータ32の回転力がロータ10に伝達
される。次に周波数信号電圧の発生機構について説明す
ると、上記モータ32の回転に応じてロータ10が回転
し、このロータ10の外周に設けた歯形部12と固定部
材22および77の歯形部30および了nとの間の対向
状態がそのロータ10の回転に応じて変わるため、その
歯形部12と歯形部30およびNnとの間の磁気抵抗が
ロータ10の回・転に応じて変化する。
Pulleys 38 and 40 are attached to the rotating shaft 34 of the motor 32 and the rotor shaft 14, respectively, and the rotational force of the motor 32 is transmitted to the rotor 10 via a belt 42. Next, the generation mechanism of the frequency signal voltage will be explained. The rotor 10 rotates in accordance with the rotation of the motor 32, and the toothed part 12 provided on the outer periphery of the rotor 10, the toothed part 30 of the fixed members 22 and 77, and the toothed part 30 of the fixed members 22 and 77. Since the opposing state between the two changes as the rotor 10 rotates, the magnetic resistance between the toothed portion 12 and the toothed portion 30 and Nn changes as the rotor 10 rotates.

したがつて、上記バイアスマグネット24およびIτか
ら発生し、上記第1の固定部材の歯形部30および了n
とロータ10の歯形部12を通り、かつ上記検出コイル
26およびInと鎖交する磁束の大きさも上記ロータ1
0の回転に応じて変化するため、上記検出コイル26お
よびYnに上記ロータ10の歯形部12の数と上記ロー
タ10の回転速度に応じた周波数信号電圧が発生する。
このようにして得られた周波数信号電圧を例えば上記ロ
ータ10の回転速度制御をするための速度信号として用
いる場合に、重要になるのが上記周波数信号電圧の精度
いわゆるS/N比である。ところが上記ロータ10の駆
動源たるモータ32がロータに近接して取り付けられて
いる場合などでは例えばモータ32のスイッチングによ
りその駆動コイルから発生する変化磁束が上記磁気検出
部材20および7nに作用し、その磁気検出部材20お
よびNnに上記ロータ10の回転と直接関係のないノイ
ズ電圧を発生せしめる場合がある。すなわち、上記モー
タ32が上記閉磁気回路の外部にあつて磁気検出部材2
0およびInに上記周波数信号電圧以外のノイズ電圧を
発生せしめる外部起磁部材として作用するのである。こ
こで第1図に示したように2つの磁気検出部材20およ
びNnが設置されている場合には上記2つの磁気検出部
材20およびYnに各々発生するノイズ電圧を互いに相
殺させるようにすることができる。
Therefore, it is generated from the bias magnet 24 and Iτ, and the toothed portion 30 of the first fixing member and the
The magnitude of the magnetic flux that passes through the toothed portion 12 of the rotor 10 and interlinks with the detection coil 26 and In also depends on the rotor 1.
0, a frequency signal voltage corresponding to the number of toothed portions 12 of the rotor 10 and the rotational speed of the rotor 10 is generated in the detection coil 26 and Yn.
When the frequency signal voltage obtained in this manner is used, for example, as a speed signal for controlling the rotational speed of the rotor 10, what is important is the accuracy of the frequency signal voltage, so-called S/N ratio. However, when the motor 32 serving as the drive source for the rotor 10 is installed close to the rotor, for example, when the motor 32 is switched, a changing magnetic flux generated from its drive coil acts on the magnetic detection members 20 and 7n, causing the magnetic flux to change. A noise voltage not directly related to the rotation of the rotor 10 may be generated in the magnetic detection member 20 and Nn. That is, if the motor 32 is located outside the closed magnetic circuit, the magnetic detection member 2
It acts as an external magnetomotive member that generates a noise voltage other than the frequency signal voltage at 0 and In. Here, when two magnetic detection members 20 and Nn are installed as shown in FIG. can.

第2図は第1図に示した周波数発電装置のうち、上記バ
イアスマグネット24およびIτならびに該バイアスマ
グネット24およびIτに巻装された検出コイル26お
よびYnとを取り出し、磁束が上記検出コイル26およ
びYnと同方向に鎖交する場合に上記ノイズ電圧をキャ
ンセルするための検出コイル26および了nの結線の一
例を示したすものである。上記検出コイル26およびY
nは共に左巻きで同一ターン数だけ巻かれており、外乱
磁束の進行方向から見て終端の端子46および50が結
合されている。ここで第2図に示すように外乱磁束φN
が上記検出コイル26およびInの両方に同じ数だけ同
じ下向きに鎖交しようとすると、その検出コイル26お
よび7nには互いに結合されている端子46および50
を共通の同電位とし、端子44および48には上記端子
46および50に対してそれぞれ同一の誘導電圧が発生
することになる。したがつて端子44および48を結ん
だ端子52および54の両端には誘導電圧は生じない。
また上記結線において、上記バイアスマグネット24お
よびYτの極性を逆にして配設することにより、端子5
2および54間に発生する信号電圧は同相で合成された
ものとなる。このようにここに示した従来例は2つの磁
気検出部材20およびInを設けることにより、基体的
にはノイズをキャンセルすることができる構成となつて
おり、また上記外乱磁束が検出コイル26およびYnと
逆方向の鎖交する場合もその検出コイル26およびYn
の結線および上記バイアスマグネット24およびiτの
極性を変えることによつて信号電圧を合成してノイズ電
圧をキャンセルすることができるものである。
FIG. 2 shows that the bias magnet 24 and Iτ and the detection coil 26 and Yn wound around the bias magnet 24 and Iτ are taken out of the frequency power generation device shown in FIG. This figure shows an example of the connection between the detection coil 26 and Yn for canceling the noise voltage when interlinking in the same direction as Yn. The above detection coil 26 and Y
Both windings are left-handed and wound with the same number of turns, and the terminals 46 and 50 at the ends are connected when viewed from the direction of movement of the disturbance magnetic flux. Here, as shown in Figure 2, the disturbance magnetic flux φN
When the same number of terminals 46 and 50 are connected to both the detection coils 26 and In, the detection coils 26 and 7n have terminals 46 and 50 connected to each other.
are at the same common potential, and the same induced voltage is generated at the terminals 44 and 48 with respect to the terminals 46 and 50, respectively. Therefore, no induced voltage is generated across terminals 52 and 54, which connect terminals 44 and 48.
In addition, in the above connection, by arranging the bias magnet 24 and Yτ with opposite polarities, the terminal 5
The signal voltages generated between 2 and 54 are combined in phase. As described above, the conventional example shown here has a structure in which noise can basically be canceled by providing two magnetic detection members 20 and In, and the above-mentioned disturbance magnetic flux is transmitted to the detection coil 26 and Yn. Even when the detection coil 26 and Yn are interlinked in the opposite direction,
By changing the wiring connections and the polarities of the bias magnet 24 and iτ, signal voltages can be synthesized and noise voltages can be canceled.

しかしながら、実際には上述したようなノイズキャンセ
ルの効果が有効に作用しない場合が多い。
However, in reality, the above-described noise canceling effect often does not work effectively.

なぜならば例えば上記磁気検出部材20および7nと上
記外部起磁部材32とが構成上対称な位置にない場合や
例え対称な位置関係にあつてもそれが精度よく保たれて
いない場合や、その他軟磁性体からなるピンやレバー等
のような構造的に非対称となり得る部材が存在する場合
などノイズの発生源たる外部起磁部材32と磁気検出部
材20およびYnとの間の磁路間の磁気抵抗が異なり、
このため外部起磁部材32から検出コイル26およびI
nに作用する外乱磁束の大きさが互いに等しくならず、
検出コイル26および7nに発生するノイズ電圧の大き
さに差が生じるため、上記検出コイル26および7nに
発生するノイズ電圧を互いにキャンセルさせた後にもい
くらかのノイズ電圧が残留するようになるからである。
上記定性的に記述したことを今一つ詳しく説明すると、
周知のように上記ノイズ電圧の大きさは外部起磁部であ
るモータ32を外乱磁束を発生する1つのコイルとみな
した場合、上記外部起磁部材32と上記検出コイル26
およびNiとの間の相互インダクタンスの大きさによつ
て決まる。一般に2つのコイルの自己インダクタンスL
l,L2と相互インダクタンスMとの間には次の(1)
式のような関係がある。ここで、kは結合係数であり、
これは自己インダクタンスL1およびL2の2つのコイ
ル間の距離やその間に存在する物質固有の透磁率ならび
にその物質の大きさ等で与えられる係数であつて、この
kが自己インダクタンスLl,L2の2つのコイル間の
磁気的な結合度を定める尺度となる。
This is because, for example, the magnetic detection members 20 and 7n and the external magnetomotive member 32 are not in symmetrical positions due to their construction, or even if they are in a symmetrical position, they are not maintained accurately, or Magnetic resistance between the magnetic path between the external magnetomotive member 32, which is a source of noise, and the magnetic detection member 20 and Yn, such as when there is a member that may be structurally asymmetric, such as a pin or lever made of a magnetic material. are different,
Therefore, the detection coil 26 and I
The magnitudes of the disturbance magnetic fluxes acting on n are not equal to each other,
This is because there is a difference in the magnitude of the noise voltages generated in the detection coils 26 and 7n, so that some noise voltage remains even after the noise voltages generated in the detection coils 26 and 7n are cancelled. .
To explain in more detail what I described qualitatively above,
As is well known, the magnitude of the noise voltage is determined by the magnitude of the noise voltage between the external magnetomotive member 32 and the detection coil 26 when the motor 32, which is an external magnetomotive member, is regarded as one coil that generates disturbance magnetic flux.
It is determined by the magnitude of the mutual inductance between Ni and Ni. In general, the self-inductance L of two coils
The following (1) exists between l, L2 and mutual inductance M.
There is a relationship like a formula. Here, k is the coupling coefficient,
This is a coefficient given by the distance between the two coils of self-inductance L1 and L2, the inherent magnetic permeability of the material existing between them, and the size of that material, and this k is the distance between the two coils of self-inductance L1 and L2. This is a measure to determine the degree of magnetic coupling between coils.

したがつて本従来例の場合のように透磁率の高い軟磁性
体からなる部材が上記外部起磁部材32と上記検出コイ
ル26およびNnとの間に存在する場合や上記外部起磁
部材32と上記検出コイル26およびYnが対称な位置
関係にない場合には上記結合係数に差が生じ、その結果
発生するノイズ電圧に差が生ずると考えることができる
。上述のように本従来例は基本的にはノイズ電圧をキャ
ンセルできる構造となつているが、実際には上記結合係
数の差によつて検出コイル26およびInに発生するノ
イズ電圧の大きさに差が生じ、このためノイズ電圧をキ
ャンセルする構成を採つても依然としてノイズ電圧が残
留してしまい、信号電圧とノイズ電圧との比いわゆるS
/N・の悪い信号電圧しか得られず、精度の良い回転検
出ができないという欠点を有していた。
Therefore, when a member made of a soft magnetic material with high magnetic permeability exists between the external magnetomotive member 32 and the detection coil 26 and Nn as in the case of this conventional example, or when the external magnetomotive member 32 and If the detection coil 26 and Yn are not in a symmetrical positional relationship, it can be considered that a difference occurs in the coupling coefficient, and as a result, a difference occurs in the generated noise voltage. As mentioned above, this conventional example basically has a structure that can cancel the noise voltage, but in reality, the difference in the coupling coefficient causes a difference in the magnitude of the noise voltage generated in the detection coil 26 and In. Therefore, even if a configuration is adopted to cancel the noise voltage, the noise voltage still remains, and the ratio of the signal voltage to the noise voltage, so-called S
This method has the disadvantage that only a signal voltage of /N· can be obtained, and rotation detection cannot be performed with high precision.

本発明は上記検出コイル26およびNiに発生するノイ
ズ電圧をキャンセルした後の残留ノイズ電圧の低減をは
かり、精度の良い回転検出を可能・にするために検出コ
イル26およびNnの各々に生ずる上記ノイズ電圧のレ
ベルを合わせることのできる調整手段を設け、上記従来
の欠点を除去しようとするものである。
The present invention aims to reduce the residual noise voltage after canceling the noise voltage generated in the detection coil 26 and Ni, and to reduce the noise generated in each of the detection coil 26 and Ni in order to enable highly accurate rotation detection. The present invention attempts to eliminate the above-mentioned drawbacks of the conventional art by providing an adjusting means that can match the voltage level.

第3図は上記調整手段として可変抵抗器56を)用いた
場合の本発明の一実施例を説明するために第1図に示す
周波数発電機の検出コイル26と1nおよび可変抵抗器
56の結線の状態を模式的に示した結線図である。
FIG. 3 shows the connection between the detection coils 26 and 1n and the variable resistor 56 of the frequency generator shown in FIG. FIG. 2 is a wiring diagram schematically showing the state of FIG.

これを説明すると、本実施例は検出コイル26およびY
nに発生するノイズ電圧の出力を直接変化させてノイズ
電圧のレベルを合わせようとするものであり、検出コイ
ル26およびInに発生するノイズ電圧のうち、高いノ
イズ電圧が発生する検出コイル側に可変抵抗器56を接
続し、両検出コイル26およびNnに生ずるノイズ電圧
のレベルを合わせ、もつて残留ノイズ電圧を低下させよ
うとするものであり、外部起磁部材32と検出コイル2
6およびYnとの間の磁気的な結合度の差を検出コイル
26に生じるノイズ電圧の大きさを分割・調整すること
によつて補正しようとするものである。ここで本実施例
を施行するに際して留意すべき点がある。
To explain this, in this embodiment, the detection coil 26 and Y
This is intended to match the level of the noise voltage by directly changing the output of the noise voltage generated at n, and among the noise voltages generated at the detection coil 26 and In, the variable voltage is applied to the detection coil side where the higher noise voltage occurs. The resistor 56 is connected to match the level of the noise voltage generated in both the detection coils 26 and Nn, thereby reducing the residual noise voltage.
6 and Yn by dividing and adjusting the magnitude of the noise voltage generated in the detection coil 26. Here, there are some points to keep in mind when implementing this embodiment.

それは接続された上記検出コイル26側において、その
検出コイル26に発生する電圧と電流とに位相差が生ず
ることである。上記ノイズ電圧の出力が誘導リアクタン
スをもつ検出コイル26と可変抵抗器56とで形成され
る回路においてその可変抵抗器56の端子間に生じる電
圧として得られるため、上記ノイズ出力電圧は検出コイ
ルIn単体の端子間に発生するノイズ電圧と位相差をも
つ。これに対して上記検出コイル26の誘導リアクタン
スに比べて十分大きな抵抗値をもつ可変抵抗器56を設
け、上記検出コイル26がもつ誘導リアクタンスに対し
て可変抵抗器56の抵抗値を十分大きくすることによつ
て上記誘導リアクタンスの影響を小さくすることができ
、したがつて上記可変抵抗器56によつてその大きさが
調整された検出コイル26に生ずるノイズ電圧と上記検
出コイル7nに生ずるノイズ電圧とは充分にキャンセル
することができ、その結果S/Nの良好な信号電圧を得
ることができるため、精度の良い回転検出が可能となる
ものである。次に本発明の他の実施例について説明する
This is because, on the side of the connected detection coil 26, a phase difference occurs between the voltage and current generated in the detection coil 26. Since the output of the noise voltage is obtained as the voltage generated between the terminals of the variable resistor 56 in the circuit formed by the detection coil 26 having an inductive reactance and the variable resistor 56, the noise output voltage is obtained by the detection coil In alone. It has a phase difference with the noise voltage generated between the terminals. In contrast, a variable resistor 56 having a resistance value sufficiently larger than the inductive reactance of the detection coil 26 is provided, and the resistance value of the variable resistor 56 is made sufficiently large with respect to the inductive reactance of the detection coil 26. This makes it possible to reduce the influence of the inductive reactance, thereby reducing the noise voltage generated in the detection coil 26 whose size is adjusted by the variable resistor 56 and the noise voltage generated in the detection coil 7n. can be sufficiently canceled, and as a result, a signal voltage with a good S/N ratio can be obtained, making it possible to detect rotation with high precision. Next, other embodiments of the present invention will be described.

第4図は本発明の他の実施例を示す正面断面図である。
上述のように第1図に示した従来例では.外部起磁部材
32から発生する外乱磁束によつて磁気検出部材20お
よびInに含まれる検出コイル26および71に発生す
るノイズ電圧の大きさに相違が生じるが、この理由は外
部起磁部材32と上記磁気検出部材20およびInとの
距離が異・なるため、上記外部起磁部材32と磁気検出
部材20およびInとの間の磁気抵抗の大きさが異なり
、上述の磁気的な結合係数の大きさが異なるからである
。ここで、上記外部起磁部材32と上記磁気検出部材2
0およびNnのそれぞれの間の磁気抵抗値の差は軟磁性
体からなるロータ10が外部起磁部材32と磁気検出部
材20との間に存在しているためにそのロータ10が存
在しない場合に比べて小さくはなつているが、それでも
上記磁気検出部材20および7nに含まれる検出コイル
26およびYnの各々に誘導されるノイズ電圧の大きさ
を十分に等しくするには至らない場合が多い。
FIG. 4 is a front sectional view showing another embodiment of the present invention.
As mentioned above, in the conventional example shown in Figure 1. The disturbance magnetic flux generated from the external magnetomotive member 32 causes a difference in the magnitude of the noise voltage generated in the magnetic detection member 20 and the detection coils 26 and 71 included in In. Since the distances between the magnetic detection member 20 and In are different, the magnitude of magnetic resistance between the external magnetomotive member 32 and the magnetic detection member 20 and In is different, and the magnitude of the magnetic coupling coefficient described above is different. This is because they are different. Here, the external magnetomotive member 32 and the magnetic detection member 2
The difference in magnetic resistance values between 0 and Nn is due to the fact that the rotor 10 made of a soft magnetic material is present between the external magnetomotive member 32 and the magnetic detection member 20, and therefore when the rotor 10 is not present. Although it is smaller than that, in many cases, the magnitudes of the noise voltages induced in each of the detection coils 26 and Yn included in the magnetic detection members 20 and 7n cannot be made sufficiently equal.

そこで本実施例では第4図に示すごとく外部起磁部材3
2と上記2つの磁気検出部材20およびInとの間の磁
気抵抗の大きさを調整するに当り、上記2つの磁気検出
部材20およびInと上記外部起磁部材32との磁気結
合度、すなわち結・合係数を等しくするために軟磁性体
からなる磁気結合部材58を上記外部起磁部材32と上
記2つの磁気検出部材20およびInの間に設置したも
のである。第4図において、磁気結合部材58は上記外
部起磁部材32の下方位置から磁気検出部・材Inの下
方位置を経由し、磁気検出部材20の下方位置に至るよ
うに設置される。この磁気結合部材58は上述の説明か
らもわかるように外部起磁部材32と該外部起磁部材3
2に対して長い距離離れている磁気検出部材20との間
の磁気抵抗を低減せしめ、両者の磁気結合度を高めるも
のである。ここで、上記磁気結合部材58は上記磁気検
出部材Nnの下方位置をも経由しているため、該磁気検
出部材Inと外部起磁部材32との磁気結合度も同時に
高めることになるが、これに対しては第4図に示すよう
に磁気結合部材58と磁気検出部材20との間隙を磁気
結合部材58と磁気検出部材20との間の間隙よりも大
きくすることによつてその磁気結合部材58による磁気
結合度の変化の度合を上記磁気検出部材20に比して小
さくすることができ、相対的に磁気検出部材Ynと外部
起磁部材32との磁気結合度に対して磁気検出部材20
と外部起磁部材32との磁気結合度を高めることができ
る。したがつて、上述した磁気検出部材20および7n
と磁気結合部材58との間隙を適当に与えることによつ
て上記磁気検出部材20およびInと上記外部起磁部材
32との磁気結合度を略等しくすることができ、その結
果磁気検出部材20およびYσ番?含鷹0る棟出コイル
26およびNnに発生するノイズ電圧の大きさを略等し
くすることができ、検出コイル26および7nの結合に
よつてノイズ電圧を有効に低減することができるのであ
る。なお、第4図で第1図に示した構成と同一部分は説
明を省略している。
Therefore, in this embodiment, as shown in FIG.
In adjusting the magnitude of magnetic resistance between the two magnetic detection members 20 and In and the external magnetomotive member 32, the degree of magnetic coupling between the two magnetic detection members 20 and In and the external magnetomotive member 32 is adjusted. - A magnetic coupling member 58 made of a soft magnetic material is installed between the external magnetomotive member 32 and the two magnetic detection members 20 and In in order to equalize the coupling coefficients. In FIG. 4, the magnetic coupling member 58 is installed so as to extend from the lower position of the external magnetomotive member 32 to the lower position of the magnetic detection member/material In, and then to the lower position of the magnetic detection member 20. As can be seen from the above description, this magnetic coupling member 58 connects the external magnetomotive member 32 and the external magnetomotive member 3.
This reduces the magnetic resistance between the magnetic detection member 20 and the magnetic detection member 20, which is located a long distance away from the magnetic detection member 20, and increases the degree of magnetic coupling between the two. Here, since the magnetic coupling member 58 also passes through the lower position of the magnetic detection member Nn, the degree of magnetic coupling between the magnetic detection member In and the external magnetomotive member 32 is also increased at the same time. 4, the gap between the magnetic coupling member 58 and the magnetic detection member 20 is made larger than the gap between the magnetic coupling member 58 and the magnetic detection member 20. 58 can be made smaller than that of the magnetic detecting member 20, and the magnetic detecting member 20 can be made smaller relative to the degree of magnetic coupling between the magnetic detecting member Yn and the external magnetomotive member 32.
The degree of magnetic coupling between the external magnetomotive member 32 and the external magnetomotive member 32 can be increased. Therefore, the magnetic detection members 20 and 7n described above
By appropriately providing a gap between the magnetic detection member 20 and the magnetic coupling member 58, the degrees of magnetic coupling between the magnetic detection member 20 and In and the external magnetomotive member 32 can be made approximately equal, and as a result, the magnetic detection member 20 and Yσ number? The magnitude of the noise voltage generated in the outgoing coil 26 and Nn can be made substantially equal, and the noise voltage can be effectively reduced by coupling the detection coils 26 and 7n. Note that the explanation of the same parts in FIG. 4 as those shown in FIG. 1 is omitted.

以上のように本実施例では調整手段として軟磁性体から
なる部材を利用することにより、コスト的にも量産的に
も有利な磁気発電装置を得ることができる。
As described above, in this embodiment, by using a member made of soft magnetic material as the adjusting means, a magnetic power generation device that is advantageous in terms of cost and mass production can be obtained.

次に本発明を平面対向型ブラシレスモータに適用した一
実施例について説明する。
Next, an embodiment in which the present invention is applied to a planar brushless motor will be described.

第5図は平面対向型ブラシレスxモータの構造を示す正
面断面図であり、第6図は同モータの後述するステータ
部の平面図である。
FIG. 5 is a front sectional view showing the structure of a planar facing type brushless x-motor, and FIG. 6 is a plan view of a stator portion of the same motor, which will be described later.

第5図および第6図について説明すると、回転自在のロ
ータ60には6極にN極とS極が着磁された円環状のロ
ータマグネット62が固着されており、上記ロータマグ
ネット62の着磁面64と所要間隔をもつて対向するよ
うに保持されたステータ部材72上で上記ロータ軸68
を中心とする略円周上に相互に所要間隔をもつて4個の
駆動コイル66a,66b,66c,66dが配設され
、この駆動コイルと上記ロータマグネット62の着磁極
64との磁気的作用により上記ロータ60が回転駆動さ
れるように配設されている。また、上記ステータ部材7
2上には上記ロータ60のスラスト方向の荷重を支える
ためのスラスト軸受70と上記ロータ60の回転位置を
検出して駆動コイル66a,66b,66c,66dに
流す電流を順次切換えるための位置信号を発生するホー
ル素子74a,74bが取り付けられている。
5 and 6, a rotor magnet 62 having an annular shape with six N and S poles magnetized is fixed to a rotatable rotor 60, and the rotor magnet 62 is magnetized. The rotor shaft 68 is mounted on the stator member 72 held so as to face the surface 64 at a required distance.
Four drive coils 66a, 66b, 66c, and 66d are arranged approximately on the circumference with the center at a required interval from each other, and the magnetic action between these drive coils and the magnetized pole 64 of the rotor magnet 62 is The rotor 60 is arranged so as to be rotationally driven. In addition, the stator member 7
2 has a thrust bearing 70 for supporting the load of the rotor 60 in the thrust direction, and a position signal for detecting the rotational position of the rotor 60 and sequentially switching the current flowing through the drive coils 66a, 66b, 66c, and 66d. Hall elements 74a and 74b are attached to generate the light.

上記2つの磁気検出部材20およびYnは第1図の従来
例の場合と同様に上記ロータ60の外周に設けられた歯
形部12と所要間隙をもつてロータ軸68に関してほぼ
対称位置に配設されている。ところで、上記モータを回
転駆動させる場合、ロータ60の回転位相に対応して上
記駆動コイル66a,66b,66c,66dに流す電
流を順次切換えることが必要なのは周知のことであり、
この電流切換え時に上記駆動コイル66a,66b,6
6c,66dに変化磁束が発生するが、この変化磁束は
上記ロータ60の歯形部12の運動とは関係なく磁気検
出部材20およびInに対する外乱磁束として作用する
ことになる。
The two magnetic detection members 20 and Yn are arranged at substantially symmetrical positions with respect to the rotor axis 68 with a required gap from the toothed portion 12 provided on the outer periphery of the rotor 60, as in the conventional example shown in FIG. ing. By the way, it is well known that when driving the motor to rotate, it is necessary to sequentially switch the current flowing through the drive coils 66a, 66b, 66c, and 66d in accordance with the rotational phase of the rotor 60.
At the time of this current switching, the drive coils 66a, 66b, 6
Although changing magnetic flux is generated at 6c and 66d, this changing magnetic flux acts as a disturbance magnetic flux to the magnetic detection member 20 and In, regardless of the movement of the toothed portion 12 of the rotor 60.

つまり、電流切換え時に上記駆動コイル66a,66b
,66c,66dにより発生する変化磁束が磁気検出部
材20およびYnに外乱磁束として作用し、上記ロータ
60の回転に応じて発生する周波数信号電圧以外に磁気
検出部材20およびYnに上記周波数信号電圧と無関係
のノイズ電圧を発生することになる。上述のように駆動
コイルが外部起磁部材として作用し、ノイズ電圧を発生
するという問題は最近のようにモータが小型化され、上
記駆動コイル66a,66b,66c,66dと上記磁
気検出部材20およびInとが互いに接近して配置され
るようになるにつれ重大な問題となつている。
In other words, when switching the current, the drive coils 66a, 66b
, 66c, and 66d acts on the magnetic detection member 20 and Yn as a disturbance magnetic flux, and in addition to the frequency signal voltage generated in accordance with the rotation of the rotor 60, the magnetic flux generated by the magnetic detection member 20 and Yn is affected by the frequency signal voltage. This will generate extraneous noise voltages. As mentioned above, the problem of the drive coil acting as an external magnetomotive member and generating noise voltage has been solved as motors have become smaller in recent years, and the drive coils 66a, 66b, 66c, 66d and the magnetic detection member 20 and This has become a serious problem as In and In are placed closer to each other.

また、本実施例でも上記従来例の場合と同様に磁気検出
部材20およびInは発生した上記ノイズ電圧をキャン
セルするように構成されているが、上記で説明したよう
に駆動コイル66a,66b,66c,66dと磁気検
出部材20およびInとの間にある上記ステータ部材等
の軟磁性体からなる部材が磁気検出部材20およびIn
と対称な位置関係にない場合や、あるいはこのモータを
テープレコーダ等に利用する際に、軟磁性体からなるレ
バーやピン等が上記磁気検出部材20および7nに近接
して設けられている場合などでは上記駆動コイル66a
,66b,66c,66dと上記磁気検出部材20およ
びYnとの間の結合係数に差が生じ、検出コイル26お
よびYnの各々に発生するノイズ電圧の大きさが異なり
、上”記2つの検出コイル26および7nでキャンセル
した後にも残留ノイズ電圧が生ずることになる。ここで
、第5図に示したような構成の平面対向型ブラシレスD
Cモータでは上述したように外部起磁部材として作用す
る駆動コイル66a,66b,66c,66dは上記ロ
ータ60の下面と対向するように上記ステータ部材72
上に配置されており、かつ上記ロータ60はその外周部
に設けられた歯形部12を介して上記磁気検出部材20
およびInと対向しているため、上記駆動コイル766
a,66b,66c,66dから発生する外乱磁束がス
テータ部材72およびロータ60を包含する磁路を通つ
て上記磁気検出部材20およびYhに作用するというこ
とが考えられる。つまり、第5図に示したようなモータ
では上記ステー夕部材72が外部起磁部材としての駆動
コイル66a,66b,66c,66dと上記磁気検出
部材20およびInとを磁気的に結合せしめる磁気結合
部材として作用していると考えられ、したがつて、該ス
テータ部材72を外部起磁部材である駆動コイル66a
,66b,66c,66dと上記磁気検出部材20およ
びInとの磁気結合度を調整する調整部材として利用す
ることができるのである。例えば第5図および第6図に
示した実施例では磁気検出部材20および7nと対向す
る位置に凸部76および78をステータ部材72に形成
している。
Also, in this embodiment, as in the case of the conventional example, the magnetic detection member 20 and In are configured to cancel the generated noise voltage, but as explained above, the drive coils 66a, 66b, 66c , 66d and the magnetic detection member 20 and In, a member made of soft magnetic material such as the stator member is located between the magnetic detection member 20 and
or when levers, pins, etc. made of soft magnetic material are provided close to the magnetic detection members 20 and 7n when this motor is used in a tape recorder, etc. Now, the drive coil 66a
, 66b, 66c, and 66d and the magnetic detection member 20 and Yn, and the magnitude of the noise voltage generated in each of the detection coils 26 and Yn is different. A residual noise voltage will still be generated even after cancellation by 26 and 7n.
In the C motor, as described above, the drive coils 66a, 66b, 66c, and 66d, which act as external magnetomotive members, are mounted on the stator member 72 so as to face the lower surface of the rotor 60.
The rotor 60 connects to the magnetic detection member 20 via the toothed portion 12 provided on its outer periphery.
and In, the drive coil 766
It is conceivable that the disturbance magnetic flux generated from a, 66b, 66c, and 66d acts on the magnetic detection member 20 and Yh through a magnetic path that includes the stator member 72 and the rotor 60. That is, in the motor shown in FIG. 5, the stator member 72 forms a magnetic coupling that magnetically couples the drive coils 66a, 66b, 66c, and 66d as external magnetomotive members to the magnetic detection member 20 and In. Therefore, the stator member 72 is connected to the drive coil 66a, which is an external magnetomotive member.
, 66b, 66c, and 66d, and the magnetic detection member 20 and In can be used as adjustment members for adjusting the degree of magnetic coupling. For example, in the embodiment shown in FIGS. 5 and 6, protrusions 76 and 78 are formed on the stator member 72 at positions facing the magnetic detection members 20 and 7n.

第6図においてステータ部材として本来必要な部分は2
点鎖線で示すようにロータ60の回転軸68を中心とし
て略円形の外形線を有する形状である。上記凸部76お
よび78は上記2点鎖線で示される形状から突出した付
加部材であり、上記磁気検出部材20およびInとの対
向部分の形状が相互に異なるように設けられている。上
記凸部76および78は外部起磁部材てある駆動コイル
66a,66b,66c,66dと上記磁気検出部材2
0およびInとの磁気結合度を定める上てそれぞれ大き
く関与しており、上記磁気検出部材20およびYnに含
まれる検出コイル26およびInには上記凸部76およ
び78等によつて定められた上記駆動コイル66a,6
6b,66c,66dとの磁気結合度に応じたノイズ電
圧が発生する。ここで、本実施例は上記外部起磁部材で
ある駆動コイル66a,66b,66c,66dと上記
、磁気検出部材20およびYnとの磁気結合度が互いに
等しくなるように上記凸部76および78の面積・形状
を調整することによつて上記2つの検出コイル26およ
びInに発生するノイズ電圧の大きさを互いに等しくし
、2つの検出コイル26およびYnの結合によつて上記
ノイズ電圧を確実にキャンセルするようにしたものであ
る。なお、第6図において2点鎖線で示したような凸部
76,78が設けられていない状態において上記磁気検
出部材20およびInと上記駆動コイ・ル66a,66
b,66c,66dとの磁気結合度が等しい場合には当
然ながら凸部を設ける必要はない。
In Fig. 6, the parts originally required as stator members are 2.
As shown by the dotted chain line, it has a substantially circular outline centered on the rotation axis 68 of the rotor 60. The convex portions 76 and 78 are additional members protruding from the shape indicated by the two-dot chain line, and are provided so that the shapes of the portions facing the magnetic detection member 20 and In differ from each other. The convex portions 76 and 78 are connected to the drive coils 66a, 66b, 66c, and 66d, which are external magnetomotive members, and the magnetic detection member 2.
0 and In, respectively, and the detection coil 26 and In included in the magnetic detection member 20 and Yn have the above-described magnetic coupling degree determined by the convex portions 76 and 78, etc. Drive coil 66a, 6
A noise voltage is generated depending on the degree of magnetic coupling with 6b, 66c, and 66d. Here, in this embodiment, the convex portions 76 and 78 are arranged so that the degrees of magnetic coupling between the drive coils 66a, 66b, 66c, and 66d, which are the external magnetomotive members, and the magnetic detection member 20 and Yn are equal to each other. By adjusting the area and shape, the magnitude of the noise voltage generated in the two detection coils 26 and In is made equal to each other, and the noise voltage is reliably canceled by the coupling of the two detection coils 26 and Yn. It was designed to do so. Note that in a state where the convex portions 76 and 78 as shown by the two-dot chain lines in FIG.
If the degrees of magnetic coupling with the magnetic coupling elements b, 66c, and 66d are equal, it is naturally unnecessary to provide the convex portion.

ところで、実際には凸部を設けずに上述したような2つ
の磁気検出部材20および7hに対する駆動コイル66
a,66b,66c,66dの磁気結合度が互いに等し
くなることはきわめてまれであつて、幾何学的形状にお
いて上記磁気検出部材20およびYnならびに上記駆動
コイル66a,66b,66c,66dが対称性を有し
ている場合にも磁気結合度においては非対称となり、そ
の磁気結合度が異なつているのが通例である。
By the way, in reality, the drive coil 66 for the two magnetic detection members 20 and 7h as described above is used without providing a convex portion.
It is extremely rare that the magnetic coupling degrees of a, 66b, 66c, and 66d are equal to each other, and the magnetic detection members 20 and Yn and the drive coils 66a, 66b, 66c, and 66d have symmetry in their geometric shapes. Even when it has, the degree of magnetic coupling is asymmetrical, and the degree of magnetic coupling is usually different.

したがつて上記磁気結合度を2つの磁気検出部材ノ20
および7nに対して互いに等しくなるように上記凸部7
6および78を設けようとする場合その面積・形状が幾
何学的には互いに異なつたものになることになる。また
、上記2つの凸部76および78を上記2つの磁気検出
部材20および1.nと対向する部分の面積・形状が互
いに異なるように設けることの特別な場合として一方の
凸部例えば凸部78を取り去り、他方の凸部76のみを
設け、該凸部76の面積・形状を調整することによつて
上述の磁気結合度を上記2つの磁気検出部材20および
Inについて互いに等しくなるようにしてもよい。ここ
で、上述したように磁気結合部材を調整手段として用い
るに際し、外部起磁部材である駆動コイル66a,66
b,66c,66dと磁気検出部材20およびInとが
磁気的に強く結合されているほうが調整手段による磁気
結合度の変化の度合が大きく都合がよい。
Therefore, the degree of magnetic coupling can be determined by measuring the degree of magnetic coupling between the two magnetic detection members 20.
and 7n so that the convex portions 7 are equal to each other.
If 6 and 78 are to be provided, their areas and shapes will be geometrically different from each other. Further, the two convex portions 76 and 78 are connected to the two magnetic detection members 20 and 1. As a special case in which the areas and shapes of the portions facing n are different from each other, one of the protrusions, for example, the protrusion 78, is removed, and only the other protrusion 76 is provided, and the area and shape of the protrusion 76 are changed. By adjusting the degree of magnetic coupling, the two magnetic detection members 20 and In may be made to have the same degree of magnetic coupling. Here, when using the magnetic coupling member as an adjustment means as described above, the drive coils 66a, 66 which are external magnetomotive members
It is convenient that the magnetic detection member 20 and In are strongly magnetically coupled to each other, since the degree of change in the degree of magnetic coupling by the adjusting means is large.

第5図に示した構成ては周波数信号電圧を発生するため
の磁束を導くための閉磁気回路を形成する部材の1つと
して作用する第2の固定部材28および7nの存在が駆
動コイル66a,66b,66c,66dと磁気検出部
材20および7nとの磁気結合度を高める効果を有して
いる。
In the configuration shown in FIG. 5, the presence of the second fixed members 28 and 7n, which act as one of the members forming a closed magnetic circuit for guiding the magnetic flux for generating the frequency signal voltage, is due to the drive coil 66a, This has the effect of increasing the degree of magnetic coupling between the magnetic detection members 20 and 7n and the magnetic detection members 66b, 66c, and 66d.

このような構成において、上述したようにステータ部材
72に凸部76を設けることにより上記駆動コイル66
a,66b,66c,66dと磁気検出部材20および
Inとの磁気結合度を変化させることができるのである
が、この場合先にも述べたように凸部76を上記第2の
固定部材28と対向する部分に該第2の固定部材28と
近接して設けるのが上記磁気結合度を大きく変化させる
上で都合が良いことはいうまでもない。以上のように、
本発明は回転自在なロータと該ロータの回転速度に比例
した周波数信号電圧を発生する2つ以上の磁気検出部材
とによつて構成された磁気発電装置において、少なくと
も1つの外部起磁部材の作用て上記磁気検出部材に発生
する上記周波数信号電圧以外のノイズ電圧の大きさを変
化させる調整手段を設けたものであり、この本発明によ
ればノイズ電圧を低減してS/Nの良い周波数信号電圧
を得ることができるもので、その効果は大である。
In such a configuration, by providing the protrusion 76 on the stator member 72 as described above, the drive coil 66
The degree of magnetic coupling between a, 66b, 66c, and 66d and the magnetic detection member 20 and In can be changed, but in this case, as mentioned earlier, the convex portion 76 is connected to the second fixing member 28. Needless to say, it is convenient to provide the second fixing member 28 in the opposing portion in close proximity to the second fixing member 28 in order to greatly change the degree of magnetic coupling. As mentioned above,
The present invention provides a magnetic power generation device constituted by a rotatable rotor and two or more magnetic detection members that generate a frequency signal voltage proportional to the rotational speed of the rotor, in which the action of at least one external magnetomotive member is provided. According to the present invention, an adjustment means is provided for changing the magnitude of noise voltage other than the frequency signal voltage generated in the magnetic detection member.According to the present invention, the noise voltage is reduced and the frequency signal with a good S/N It is possible to obtain voltage, and its effects are great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の構成を示す正面断面図、第2図は同検
出コイルの結線図、第3図は本発明の一実施例として可
変抵抗器を導入した検出コイルの結線図、第4図は本発
明の他の実施例を示す正面断面図、第5図は本発明を平
面対向型ブラシレスモータに適用した場合の正面断面図
、第6図は同ステータ部の平面図である。 10・・・・・・ロータ、12・・・・・・ロータの歯
形部、20,In・・・・磁気検出部材、22,YY・
・・・・・第1の固定部材、24,Y工・・・・・・バ
イアスマグネット、26,nn・・・・検出コイル、2
8,in・・第2の固定部材、32・・・・・・モータ
、56・・・・・・可変抵抗器、58・・・・・調整部
材、62・・・・・ロータマグネット、66a,66b
,66c,66d・・・・・・駆動コイル、72・・・
・・ステータ部材、76,78・・・・ステータ部材の
凸部。
Fig. 1 is a front sectional view showing the configuration of a conventional example, Fig. 2 is a wiring diagram of the same detection coil, Fig. 3 is a wiring diagram of a detection coil incorporating a variable resistor as an embodiment of the present invention, and Fig. 4 The figure is a front cross-sectional view showing another embodiment of the present invention, FIG. 5 is a front cross-sectional view when the present invention is applied to a flat opposed type brushless motor, and FIG. 6 is a plan view of the stator portion of the same. DESCRIPTION OF SYMBOLS 10... Rotor, 12... Rotor tooth profile, 20, In... Magnetic detection member, 22, YY...
...First fixing member, 24, Y-type...Bias magnet, 26,nn...Detection coil, 2
8, in...second fixed member, 32...motor, 56...variable resistor, 58...adjustment member, 62...rotor magnet, 66a ,66b
, 66c, 66d... Drive coil, 72...
... Stator member, 76, 78... Convex portion of the stator member.

Claims (1)

【特許請求の範囲】 1 回転自在なロータと、該ロータを含む閉磁気回路を
各々形成する2つ以上の磁気検出部材と、該磁気検出部
材に含まれ上記閉磁気回路に磁束を供給するために上記
閉磁気回路内に設けられた内部起磁部材を備え、上記ロ
ータの回転に伴つて上記内部起磁部材より上記閉磁気回
路に供給される磁束の大きさが変化するようになすこと
によつて上記2つ以上の磁気検出部材に上記ロータの回
転速度に応じた周波数信号電圧を発生させるように構成
した磁気発電装置であつて、上記閉磁気回路の外部に存
在する外部起磁部材から上記磁気検出部材に作用して上
記周波数信号電圧以外に発生するノイズ電圧のうち少な
くとも1つのノイズ電圧の大きさを他のノイズ電圧に対
して変化せしめる調整手段を設けたことを特徴とする磁
気発電装置。 2 2つ以上の磁気検出部材は各々周波数信号電圧を発
生する検出コイルを具備しており、その2つ以上の検出
コイルのうち少なくとも1つの出力端子に電気抵抗部材
を接続し、該電気抵抗部材を調整手段としたことを特徴
とする特許請求の範囲第1項記載の磁気発電装置。 3 外部起磁部材と少なくとも1つ以上の磁気検出部材
との間の磁気抵抗を変えることによりその外部起磁部材
から磁気検出部材に作用する磁束の大きさを変化させる
ための磁気結合部材を具備し、該磁気結合部材を調整手
段としたことを特徴とする特許請求の範囲第1項または
第2項記載の磁気発電装置。 4 ロータにロータマグネットが固着され、該ロータマ
グネットとの磁気的な作用により上記ロータを回転駆動
させるための駆動コイルが設けられ、該駆動コイルを載
置したステータ部材を具備し、このステータ部材を調整
手段としたことを特徴とする特許請求の範囲第1項また
は第3項記載の磁気発電装置。 5 2つ以上の磁気検出部材にステータ部材と対向する
部分を有する固定部材を具備し、該固定部材がロータと
磁気検出部材とで形成される閉磁気回路内に含まれるよ
うにし、上記2つ以上の磁気検出部材の各々の固定部材
のうち少なくとも1つの固定部材が対向するステータ部
材の部分の面積・形状を他の固定部材が対向するステー
タ部材の部分の面積・形状に対して異ならせたことを特
徴とする特許請求の範囲第4項記載の磁気発電装置。
[Claims] 1. A rotatable rotor, two or more magnetic detection members each forming a closed magnetic circuit including the rotor, and a magnetic detection member included in the magnetic detection member for supplying magnetic flux to the closed magnetic circuit. and an internal magnetomotive member provided in the closed magnetic circuit, and the magnitude of the magnetic flux supplied from the internal magnetomotive member to the closed magnetic circuit changes as the rotor rotates. Therefore, the magnetic power generation device is configured to generate a frequency signal voltage in the two or more magnetic detection members according to the rotational speed of the rotor, and the magnetic power generation device is configured to generate a frequency signal voltage according to the rotational speed of the rotor from an external magnetomotive member existing outside the closed magnetic circuit. Magnetic power generation characterized in that an adjustment means is provided for changing the magnitude of at least one noise voltage among the noise voltages generated in addition to the frequency signal voltage by acting on the magnetic detection member with respect to other noise voltages. Device. 2. The two or more magnetic detection members each include a detection coil that generates a frequency signal voltage, and an electrical resistance member is connected to at least one output terminal of the two or more detection coils, and the electrical resistance member The magnetic power generation device according to claim 1, characterized in that the adjusting means is: . 3. Equipped with a magnetic coupling member for changing the magnitude of magnetic flux acting from the external magnetomotive member on the magnetic detection member by changing the magnetic resistance between the external magnetomotive member and at least one or more magnetic detection member. 3. The magnetic power generating device according to claim 1, wherein the magnetic coupling member is used as an adjusting means. 4. A rotor magnet is fixed to the rotor, a drive coil is provided for rotationally driving the rotor through magnetic interaction with the rotor magnet, a stator member is provided on which the drive coil is mounted, and the stator member is The magnetic power generation device according to claim 1 or 3, characterized in that it is an adjusting means. 5. Two or more magnetic detection members are provided with a fixing member having a portion facing the stator member, and the fixing member is included in a closed magnetic circuit formed by the rotor and the magnetic detection member, and the above two The area and shape of the portion of the stator member that is opposed by at least one of the fixing members of each of the above magnetic detection members is made different from the area and shape of the portion of the stator member that is opposed by the other fixing member. The magnetic power generation device according to claim 4, characterized in that:
JP5210479A 1979-04-26 1979-04-26 magnetic generator Expired JPS6052661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5210479A JPS6052661B2 (en) 1979-04-26 1979-04-26 magnetic generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5210479A JPS6052661B2 (en) 1979-04-26 1979-04-26 magnetic generator

Publications (2)

Publication Number Publication Date
JPS55144762A JPS55144762A (en) 1980-11-11
JPS6052661B2 true JPS6052661B2 (en) 1985-11-20

Family

ID=12905535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5210479A Expired JPS6052661B2 (en) 1979-04-26 1979-04-26 magnetic generator

Country Status (1)

Country Link
JP (1) JPS6052661B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154615A (en) * 1982-03-10 1983-09-14 Copal Co Ltd Magnetic detector
JPS5963151A (en) * 1982-10-01 1984-04-10 Yasukichi Tamura Preparation of perforated cake of unpolished rice having indent pattern

Also Published As

Publication number Publication date
JPS55144762A (en) 1980-11-11

Similar Documents

Publication Publication Date Title
JPS62247750A (en) Brushless dc motor
JPH11304414A (en) Magnetism detecting device
US5705756A (en) Differential torque measuring device
US6711970B2 (en) Device for measuring torque with high accuracy
US4347536A (en) Rotary cylinder apparatus
US4406983A (en) Rotational magnetic transducer
JPH07333083A (en) Temperature characteristic compensation structure of sensor
US4888530A (en) Two-phase gate motor
JPH075189A (en) Inductive sensor
JPS6052661B2 (en) magnetic generator
JP2556383B2 (en) Magnetic resolver
JP2673479B2 (en) Magnetic bearing device
JPH1151694A (en) Revolutions-sensor
JPH0635656Y2 (en) Stepping motor
JP3106873B2 (en) Brushless motor
JPH1189175A (en) Electromagnetic servo actuator
TW202316085A (en) motion detector
JPS6098858A (en) Servo motor
JPH0393450A (en) Rotational position detector in motor
JPH074505Y2 (en) Brushless resolver
JPH048728B2 (en)
JPH08322204A (en) Rotation detector
JPS60170456A (en) Brushless motor having frequency generator
JPH0415517A (en) Magnetic encoder
JPH086262Y2 (en) Magnetic resolver