JPS605265A - Preparation of hot water resistant silane crosslinked polyethylene-coated steel pipe - Google Patents

Preparation of hot water resistant silane crosslinked polyethylene-coated steel pipe

Info

Publication number
JPS605265A
JPS605265A JP11115483A JP11115483A JPS605265A JP S605265 A JPS605265 A JP S605265A JP 11115483 A JP11115483 A JP 11115483A JP 11115483 A JP11115483 A JP 11115483A JP S605265 A JPS605265 A JP S605265A
Authority
JP
Japan
Prior art keywords
silane
polyethylene
steel pipe
hot water
melt index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11115483A
Other languages
Japanese (ja)
Inventor
Tomoo Shiobara
塩原 友雄
Koichi Ishizaki
石崎 光一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP11115483A priority Critical patent/JPS605265A/en
Publication of JPS605265A publication Critical patent/JPS605265A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a silane crosslinked polyethylene film excellent in hot water resistance to the inner surface of a steel pipe, by a method wherein special polyethylene with a specific hot melt index is applied to the inner surface of the steel pipe and succeedingly crosslinked. CONSTITUTION:The inner surface of a heated steel pipe is coated with a polymer which is at least one of a silane grafted polyethylene powder or a silane copolymerized polyethylene powder obtained by copolymerizing the main chain of polyethylene with silane such as vinyltriexthoxysilane and of which the melt index is 2-10. In the next step, a thermal crosslinking catalyst such as zinc stearate or dibutyl tin laurate is used in an amount of 0.1-0.01wt% on the basis of the above mentioned polyethylene to subject the film to silane-crosslinking. By this method, a film reduced in blister generation and having hot water resistance and good adhesiveness is obtained.

Description

【発明の詳細な説明】 本発明は、耐熱水用シラン架橋ポリエチレン塗膜鋼管の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a silane-crosslinked polyethylene coated steel pipe for hot water use.

従来より、鋼管の内面にポリ塩化ビニルやポリエチレン
の塗膜を形成した塗膜鋼管が耐水配管材料として用いら
れているが、それらは耐熱性に乏しく、熱水によって容
易に軟化変形し、塗膜としての用をなさなくなるきいっ
た欠点がある。
Conventionally, coated steel pipes with a polyvinyl chloride or polyethylene coating formed on the inner surface of the steel pipe have been used as water-resistant piping materials, but these have poor heat resistance and are easily softened and deformed by hot water, causing the coating to deteriorate. There are some drawbacks that make it useless as an instrument.

そこで、そのような欠点を解消するものとして。Therefore, as a solution to such shortcomings.

例えば、実開昭57−190980号公報に見られるよ
うな水架橋したポリエチレンを内面に塗布した鋼管や、
また、架橋したPPS樹脂を内面に塗布した鋼管などが
提案されている。
For example, steel pipes coated with water-crosslinked polyethylene on the inner surface as seen in Japanese Utility Model Application Publication No. 57-190980,
Furthermore, steel pipes whose inner surfaces are coated with cross-linked PPS resin have been proposed.

しかしながら、上記前者にあっては塗膜にブリスターが
発生し易いため、耐熱水性に乏しく、鋼管の内面防食を
長期間維持することができないといった欠点がある。ま
た、後者にあっては、厚塗りすることによって耐熱水性
は確保できるもののPPS樹脂はコストが高り、シがも
架橋するのに多大のエネルギーと生産時間を要するため
、安価に供給することができないといった欠点がある。
However, in the former method, blisters are likely to occur in the coating film, resulting in poor hot water resistance and the inability to maintain corrosion protection on the inner surface of the steel pipe for a long period of time. In the case of the latter, although hot water resistance can be ensured by applying a thick coating, PPS resin is expensive and requires a large amount of energy and production time to crosslink, making it difficult to supply it at a low price. There is a drawback that it cannot be done.

本発明者等は、上記のような従来の欠点を解消すべ(、
耐熱水性に優れ、且つ、低コストで供給し得る塗膜鋼管
の製造方法を提供することを目的として鋭意研究を重ね
た結果、メルトインデソクスがある一定範囲にあるシラ
ングラフト化ポリエチレン又はシラン共重合ポリエチレ
ンをシラン架橋したものは、ブリスターが発生しにくく
耐熱水性に優れていることを見い出し、また、それらポ
リエチレン樹脂は、前記PPS樹脂に比ベコストが格段
に低り、シかも、架橋化に要するエネルギーコストと生
産時間が大幅に低いといったことに着目し本発明を完成
した。
The present inventors aimed to eliminate the conventional drawbacks as described above (
As a result of extensive research aimed at providing a manufacturing method for coated steel pipes that have excellent hot water resistance and can be supplied at low cost, we have developed silane-grafted polyethylene or silane copolymerization with a melt index within a certain range. It was discovered that polyethylene cross-linked with silane is less prone to blistering and has excellent hot water resistance.In addition, these polyethylene resins have significantly lower costs than the PPS resins mentioned above, and have a lower cost than the above-mentioned PPS resins. The present invention was completed by focusing on the fact that the cost and production time are significantly lower.

即ち1本発明の要旨は、シラングラフト化ポリエチレン
又はシラン共重合ポリエチレン粉末の少なくとも1種で
そのメルトインデックスが2〜10であるものを、加熱
した鋼管の内面に塗布しついでシラン架橋することを特
徴とする耐熱水用シラン架橋ポリエチレン塗膜鋼管の製
造方法に存する。
That is, 1. The gist of the present invention is that at least one kind of silane-grafted polyethylene or silane-copolymerized polyethylene powder having a melt index of 2 to 10 is applied to the inner surface of a heated steel pipe, and then cross-linked with silane. The present invention relates to a method for manufacturing a silane-crosslinked polyethylene coated steel pipe for hot water use.

本発明に用いられるシラングラフト化ポリエチレンは、
ポリエチレン、エチレンが主たる単量体成分となされた
エチレン系共重合又は塩素化ポリエチレン等のエチレン
系樹脂と一般式RR’ 5iY2(式中Rはケイ素−炭
素結合によってケイ素に結合し、且つ炭素、水素及び場
合により酸素とより成る1価のオレフィン性不飽和基を
表し、各Yはアルコキシ基、アルコキシ−アルコキシ基
、アシロキシ基及びオキシム基から選択された加水分I
N”しうる基を表し、そしてR′は脂肪族性不飽和のな
い1価の炭化水素基、前記R基又はY基を表す。)で表
わされるシランとを遊離ラジカルを発生させる化合物の
存在下で反応させて上記シランをエチレン系樹脂に結合
させることにより得られるものである。尚、グラフト化
されるポリエチレントシTハ、LT−D (1)−0,
90〜0.92>又はI7MD(ρ−0,92〜0.9
4)のポリエチレンが本発明において良い結果をもたら
す。また、ポリエチレンのグラフト化率は、lo〜85
%程度が好ましい。
The silane-grafted polyethylene used in the present invention is
Ethylene-based resins such as polyethylene, ethylene-based copolymers containing ethylene as the main monomer component, or chlorinated polyethylene, and the general formula RR' 5iY2 (wherein R is bonded to silicon through a silicon-carbon bond, and carbon, hydrogen and optionally oxygen, and each Y represents a hydrolyzed I selected from alkoxy, alkoxy-alkoxy, acyloxy and oxime groups.
the presence of a compound that generates free radicals with a silane represented by a monovalent hydrocarbon group having no aliphatic unsaturation, and R' represents a monovalent hydrocarbon group having no aliphatic unsaturation; It is obtained by bonding the above-mentioned silane to an ethylene resin through the reaction described below.It should be noted that the polyethylene to be grafted T, LT-D (1)-0,
90~0.92> or I7MD(ρ-0,92~0.9
4) Polyethylene gives good results in the present invention. In addition, the grafting rate of polyethylene is lo ~ 85
% is preferable.

本発明に用いられるシラン共重合ポリエチレンは、シラ
ンをポリエチレンの主鎖に共重合させて得られるもので
ある。
The silane copolymerized polyethylene used in the present invention is obtained by copolymerizing silane to the main chain of polyethylene.

上記シランとしては2例えば、ビニルトリエ1、キシシ
ラン、ビニルトリメトキシシラン、ビニルメチルジェト
キシシラン、ビニルフェニルジメトキシシラン等が挙げ
られる。
Examples of the silane include vinyltrier 1, xysilane, vinyltrimethoxysilane, vinylmethyljethoxysilane, vinylphenyldimethoxysilane, and the like.

そして、上記シラングラフト化ポリエチレン又はシラン
共重合ポリエチレンは、そのメルトインデックスが2〜
10の範囲にあることが好ましい。
The silane grafted polyethylene or silane copolymerized polyethylene has a melt index of 2 to 2.
It is preferably in the range of 10.

メルトインデックスが2未満であると流れ性が悪いため
に鋼管内面に形成される塗膜に表面凹凸粒子ができ、そ
の結果、ブリスターが短時間の内に発生してしまい、鋼
管内面の防食を長期間維持することが困難となる。また
、逆にメルトインデックスが10より大きいと、架橋に
よって分子鎖が結合されてもその網目構成単位が崩れブ
ロックとなって熱水に対して動き易くなり、その結果、
架橋度を大幅に増加させなければ架橋による効果が、発
現しにくくなり、この場合もまた短時間でブリスターが
発生してしまうという不都合を生じる。
If the melt index is less than 2, the flowability will be poor and surface irregularities will form on the coating film formed on the inner surface of the steel pipe.As a result, blisters will occur within a short period of time, making it difficult to prevent corrosion on the inner surface of the steel pipe. It becomes difficult to maintain for a long period of time. On the other hand, if the melt index is greater than 10, even if the molecular chains are bonded by crosslinking, the network constituent units will collapse into blocks and will move easily against hot water, and as a result,
Unless the degree of crosslinking is significantly increased, the effects of crosslinking will be difficult to develop, and in this case also there will be the disadvantage that blisters will occur in a short period of time.

本発明におけるシラン架橋に用いられる架橋用触媒は、
室温で固体粉末のものが良く1例えば。
The crosslinking catalyst used for silane crosslinking in the present invention is:
For example, one that is a solid powder at room temperature is good.

周期律表第1族のアルカリ、■族のアルカリ土類金属石
ケン類、ジアルキル錫オキサイド等の固形有機錫オキサ
イド等がよい。なかでも特に熱架橋用触媒を用いること
が好ましく、熱架橋用触媒を用いた場合の方が、水架橋
用触媒を用いた場合より架橋プロセスが簡単で架橋度が
高いため、製造コストを低減することができる利点があ
る。ごの熱架橋用触媒としては9例えば、ステアリン酸
亜鉛、ジブチル錫オキサイド等が挙げられる。
Preferred are alkalis of Group 1 of the periodic table, alkaline earth metal soaps of Group 2, and solid organic tin oxides such as dialkyltin oxides. Among these, it is particularly preferable to use a catalyst for thermal crosslinking; when a catalyst for thermal crosslinking is used, the crosslinking process is simpler and the degree of crosslinking is higher than when using a catalyst for water crosslinking, so manufacturing costs are reduced. There is an advantage that it can be done. Examples of the catalyst for thermal crosslinking include zinc stearate, dibutyltin oxide, and the like.

上記架橋用触媒の使用量は、シラングラフト化ポリエチ
レン又はシラン共重合ポリエチレン100重量部に対し
て0.1−0.011重部が適当である。
The appropriate amount of the crosslinking catalyst used is 0.1-0.011 parts by weight per 100 parts by weight of silane-grafted polyethylene or silane-copolymerized polyethylene.

次に1本発明製造方法の一具体例を説明する。Next, a specific example of the manufacturing method of the present invention will be explained.

シラングラフト化ポリエチレン又はシランノい口金ポリ
エチレンを10〜3oメソシュ程度の粉に粉砕し、これ
に上記架橋用触媒の粉末を該ポリエチレン100重量部
に対して0.1〜o、oi重■工部程度を添加、混入し
、予め180〜220 ’cに加熱した鋼管内面に塗布
、溶融を繰り返し塗IIQを形成する。塗膜の厚みは3
00〜700μとすることが好ましい。尚、鋼管の温度
が180 ”c程度のときに塗布を行った場合は、塗布
後鋼管を220℃程度までに一旦昇温させるとよい。
Silane-grafted polyethylene or silane-free base polyethylene is pulverized into a powder of about 10 to 3 o mesh, and to this the powder of the above-mentioned crosslinking catalyst is added to 100 parts by weight of the polyethylene, about 0.1 to 0. Coating IIQ is formed by adding and mixing the mixture, coating it on the inner surface of a steel pipe preheated to 180 to 220'C, and repeating melting. The thickness of the coating film is 3
It is preferable to set it as 00-700 micrometers. In addition, when coating is performed when the temperature of the steel pipe is about 180"C, it is preferable to once raise the temperature of the steel pipe to about 220"C after coating.

尚1本発明製造方法は上記の例に限るものではない。Note that the manufacturing method of the present invention is not limited to the above example.

ところで1本発明において、上記シラングラフト化ポリ
エチレン又はシラン共重合ポリエチレンに2通常のポリ
エチレンを10%以内ブレンドしたものを用いてもよく
1通常のポリエチレンが10%以内であれば、耐熱水性
に余り支障は来さない。
By the way, 1. In the present invention, a blend of 10% or less of normal polyethylene with the silane grafted polyethylene or silane copolymerized polyethylene may be used. 1. If the content of normal polyethylene is 10% or less, the hot water resistance will not be affected too much. It doesn't come.

これは5通常のポリエチレンによって樹脂全体の流れ性
がよくなり、塗膜形成がスムーズに行われるためである
This is because 5 ordinary polyethylene improves the flowability of the resin as a whole, allowing smooth coating film formation.

以上説明したように1本発明製造方法は、シラングラフ
ト化ポリエチレン又はシラン共重合ポリエチレンの少な
くとも1種でそのメルトインデックスが2〜10である
ものをシラン架橋してなるので、耐熱水性に優れ、且つ
、安価な塗膜鋼管を提供することができる。
As explained above, in the manufacturing method of the present invention, at least one type of silane-grafted polyethylene or silane-copolymerized polyethylene having a melt index of 2 to 10 is crosslinked with silane, so it has excellent hot water resistance and , it is possible to provide inexpensive coated steel pipes.

また、シラン架橋に熱架橋用触媒を用いた場合は、架橋
化プロセスが簡単で架橋度が高いため。
In addition, when a thermal crosslinking catalyst is used for silane crosslinking, the crosslinking process is simple and the degree of crosslinking is high.

より一層製造コストの低減化を図ることができる。Manufacturing costs can be further reduced.

以下1本発明の実施例を示す。An example of the present invention will be shown below.

〔実施例1〕 メルトインデックスが2のシラングラフト化ポリエチレ
ンベレットを13メソシユ以下の粉に粉砕し、これに熱
架橋用触媒としてステアリン酸亜鉛粉末を、該ポリエチ
レン100重隈部に対して0、001重量部添加、混合
し、予め200℃に、加熱した鋼管の内面に塗布し、そ
の後5分間200℃を保つ。これを5回繰り返して膜厚
380μの塗膜を形成した。
[Example 1] A silane-grafted polyethylene pellet with a melt index of 2 was ground into a powder of 13 mesosinus or less, and zinc stearate powder was added as a thermal crosslinking catalyst to this powder at a weight of 0.001 weight per 100 weight parts of the polyethylene. The mixture is mixed, applied to the inner surface of a steel pipe that has been heated to 200°C, and then kept at 200°C for 5 minutes. This process was repeated five times to form a coating film with a thickness of 380 μm.

〔実施例2〕 実施例工で用いたメルトインデックスが2のシラングラ
フト化ポリエチレンペレットに代えてメルトインデック
スが2.4のシラングラフト化ポリエチレンペレットを
用い、実施例1と同様の方法にて膜厚380μの塗膜を
形成した。
[Example 2] Silane-grafted polyethylene pellets with a melt index of 2.4 were used in place of the silane-grafted polyethylene pellets with a melt index of 2 used in the example process, and the film thickness was adjusted in the same manner as in Example 1. A coating film of 380 μm was formed.

〔実施例3〕 実施例1で用いたメルトインデックスが2のシラングラ
フト化ポリエチレンペレットに代えてメルトインデック
スが10のシラングラフト化ポリエチレンペレット、及
び実施例1で用いたステアリン酸亜鉛に代えてジブデル
錫オキ号イドを用い。
[Example 3] Silane-grafted polyethylene pellets with a melt index of 10 were used in place of the silane-grafted polyethylene pellets with a melt index of 2 used in Example 1, and dibdeltin was used in place of zinc stearate used in Example 1. Use Oki-go ID.

実施例1と同様の方法にて膜厚380μの塗膜を形成し
た。
A coating film having a thickness of 380 μm was formed in the same manner as in Example 1.

〔実施例4〕 実施例1で用いたメルトインデックスが2のシラングラ
フト化ポリエチレンペレットに代えてメルトインデック
スが2のビニルトリメトキシシラングラフト化ポリエチ
レン90%と通常のポリエチレン10%をブレンドした
ペレットを用い、実施例1と同様の方法にて膜厚380
μの塗膜′を形成した。
[Example 4] Instead of the silane-grafted polyethylene pellets with a melt index of 2 used in Example 1, pellets made by blending 90% vinyltrimethoxysilane-grafted polyethylene with a melt index of 2 and 10% of normal polyethylene were used. , the film thickness was 380 mm using the same method as in Example 1.
A coating film of μ was formed.

次に、上記実施例に対する比較例を示す。Next, a comparative example with respect to the above example will be shown.

〔比較例1〕 実施例1で用いたメルトインデックスが2のシラングラ
フト化ポリエチレンペレットに代えてメルトインデック
スが0.9のシラングラフト化ポリエチレンベレット、
及び実施例1で用いたステアリン酸亜鉛に代えてシフチ
ル錫オキサイドを用い。
[Comparative Example 1] Silane-grafted polyethylene pellets with a melt index of 0.9 were used in place of the silane-grafted polyethylene pellets with a melt index of 2 used in Example 1,
And cyphthyltin oxide was used in place of the zinc stearate used in Example 1.

実施例1と同様の方法にて膜厚380μの塗膜を形成し
た。
A coating film having a thickness of 380 μm was formed in the same manner as in Example 1.

〔比較例2〕 実施例1で用いたメルトインデックスが2のシラングラ
フト化ポリエチレンペレットに代えてメルトインデック
スが1.3のビニルトリメトキシシラングラフト化ポリ
エチレンペレットを用い、実施例1と同様の方法にて膜
厚380μの塗膜を形成した。
[Comparative Example 2] The same method as in Example 1 was carried out except that vinyltrimethoxysilane-grafted polyethylene pellets with a melt index of 1.3 were used in place of the silane-grafted polyethylene pellets with a melt index of 2 used in Example 1. A coating film having a thickness of 380 μm was formed.

〔比較例3〕 実施例1で用いたメルトインデックスが2のシラングラ
フト化ポリエチレンペレソ1弓こ代えてメルトインデッ
クスが15のビニルトリメ1−キジシラングラフト化ポ
リエチレンペレットを用い、実施例1と同様の方法にて
膜厚380μの塗膜を形成した。
[Comparative Example 3] Silane-grafted polyethylene pellets with a melt index of 2 used in Example 1 were replaced with vinyl trime-1-kidisilane-grafted polyethylene pellets with a melt index of 15, and the same method as in Example 1 was used. A coating film with a film thickness of 380 μm was formed by this method.

上記比較例1〜3に加え3通常のポリエチレン塗膜鋼管
を比較例4とした。
In addition to Comparative Examples 1 to 3 above, three ordinary polyethylene coated steel pipes were used as Comparative Example 4.

実施例1〜4と比較例1〜4について、耐熱水性を調べ
るため、鋼管を95°Cの熱水に浸漬し。
Regarding Examples 1 to 4 and Comparative Examples 1 to 4, in order to examine hot water resistance, the steel pipes were immersed in hot water at 95°C.

100時間置きに取り出してブリスターが発4トするま
での時間を測定した。
It was taken out every 100 hours and the time until the blister burst was measured.

また、実施例1・〜4と比較例1〜3について。Also, regarding Examples 1 to 4 and Comparative Examples 1 to 3.

架橋ゲル分率を測定すると共に、塗膜の接着性を調べる
ため180℃ビール剥離力を測定した。
In addition to measuring the crosslinked gel fraction, the beer peel force at 180° C. was also measured to examine the adhesion of the coating film.

上記の各結果を下表に示す。The above results are shown in the table below.

上記の表より1本発明実施例はいずれも比較例に比べて
ブリスターが発生しにくく耐熱水性に優れていると共に
接着性にも優れていることが判る。
From the table above, it can be seen that all of the examples of the present invention are less likely to generate blisters than the comparative examples, and have excellent hot water resistance as well as excellent adhesiveness.

りOQ−riOQ-

Claims (1)

【特許請求の範囲】 1)シラングラフト化ポリエチレン又はシラン共重合ポ
リエチレン粉末の少なくとも1種でそのメルトインデッ
クスが2〜10であるものを。 加熱した鋼管の内面に塗布しついでシラン架橋すること
を特徴とする耐熱水用シラン架橋ポリエチレン塗膜鋼管
の製造方法。 2)シラン架橋が熱架構用触媒によって行われることを
特徴とする特許請求の範囲第1項記載の耐熱水用シラン
架橋ポリエチレン塗膜鋼管の製造方法。
[Scope of Claims] 1) At least one kind of silane-grafted polyethylene or silane-copolymerized polyethylene powder having a melt index of 2 to 10. A method for producing a silane-crosslinked polyethylene coated steel pipe for heat-resistant water use, which comprises coating the inner surface of a heated steel pipe and then crosslinking with silane. 2) The method for producing a silane-crosslinked polyethylene-coated steel pipe for hot water use according to claim 1, wherein the silane crosslinking is carried out using a thermal structure catalyst.
JP11115483A 1983-06-20 1983-06-20 Preparation of hot water resistant silane crosslinked polyethylene-coated steel pipe Pending JPS605265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11115483A JPS605265A (en) 1983-06-20 1983-06-20 Preparation of hot water resistant silane crosslinked polyethylene-coated steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11115483A JPS605265A (en) 1983-06-20 1983-06-20 Preparation of hot water resistant silane crosslinked polyethylene-coated steel pipe

Publications (1)

Publication Number Publication Date
JPS605265A true JPS605265A (en) 1985-01-11

Family

ID=14553831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11115483A Pending JPS605265A (en) 1983-06-20 1983-06-20 Preparation of hot water resistant silane crosslinked polyethylene-coated steel pipe

Country Status (1)

Country Link
JP (1) JPS605265A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015059480A1 (en) * 2013-10-25 2015-04-30 Ge Oil & Gas Uk Limited A flexible pipe body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428386A (en) * 1977-08-04 1979-03-02 Mitsui Petrochem Ind Ltd Production of silane-modified polyolefin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428386A (en) * 1977-08-04 1979-03-02 Mitsui Petrochem Ind Ltd Production of silane-modified polyolefin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015059480A1 (en) * 2013-10-25 2015-04-30 Ge Oil & Gas Uk Limited A flexible pipe body

Similar Documents

Publication Publication Date Title
EP0346101B1 (en) Plastic coated steel tube
JP3088460B2 (en) Moisture curable melt-processed ethylene copolymer adhesive
JPS6063243A (en) Highly adhesive composition
JPH09302257A (en) Composite composed of fine inorganic particle and organic polymer, production thereof, and film-forming composition
CN108728023A (en) Pressure-sensitive adhesive composition and the film formed using the composition
JPS62149764A (en) Fluorine-containing coating agent
EP0619343B1 (en) Process for coating metal pipes with polyolefin materials
US3334008A (en) Glass laminate having an unsaturated polyester resin containing silane adhesive interlayer
JPH03504985A (en) pressure sensitive adhesive composition
EP1636024A1 (en) A metal-cured polyethylene-metal laminate
JPS605265A (en) Preparation of hot water resistant silane crosslinked polyethylene-coated steel pipe
CN112662047B (en) Composition for sealing material film comprising ethylene/alpha-olefin copolymer and sealing material film comprising same
US3637570A (en) Process for producing protective coating of siloxane resin and product produced
US4276390A (en) Flame-spraying coating
CN1711156A (en) Slush molding process
JPH03504986A (en) Silane-graft polymer composition
AU768611B2 (en) Acrylic polymer composition
JPS60224B2 (en) Method for manufacturing adhesive composites
JP2019006873A (en) Curable resin composition, coating agent, and article
JP6933130B2 (en) Adhesive resin compositions, primers, adhesives and articles.
JP3419051B2 (en) Curable composition
JPS5936115A (en) Manufacture of modified propylene resin
JPH07186325A (en) Straight-chain low density polyethylene adhesive
JP6137353B2 (en) Polyethylene resin composition for three-dimensional network structure and method for producing the same
JP2951180B2 (en) Coated steel with excellent secondary adhesion