JP2019006873A - Curable resin composition, coating agent, and article - Google Patents

Curable resin composition, coating agent, and article Download PDF

Info

Publication number
JP2019006873A
JP2019006873A JP2017122206A JP2017122206A JP2019006873A JP 2019006873 A JP2019006873 A JP 2019006873A JP 2017122206 A JP2017122206 A JP 2017122206A JP 2017122206 A JP2017122206 A JP 2017122206A JP 2019006873 A JP2019006873 A JP 2019006873A
Authority
JP
Japan
Prior art keywords
mass
parts
group
resin composition
curable resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017122206A
Other languages
Japanese (ja)
Other versions
JP7062888B2 (en
Inventor
桐澤 理恵
Rie Kirisawa
理恵 桐澤
博 松沢
Hiroshi Matsuzawa
博 松沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2017122206A priority Critical patent/JP7062888B2/en
Publication of JP2019006873A publication Critical patent/JP2019006873A/en
Application granted granted Critical
Publication of JP7062888B2 publication Critical patent/JP7062888B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a curable resin composition that is excellent in storage stability and can form a coating film excellent in various kinds of physical properties such as heat resistance and the like even in a one-pack curing specification excellent in workability.SOLUTION: The curable resin composition comprises (A) a composite resin which has (a1) a polysiloxane having (U1) a structural unit represented by formula (1) or (2) and (U2) a structural unit represented by formula (3) and (a2) a polymer bonded through a linkage represented by formula (4) and which is dissolved or dispersed in a medium. Formula (1): -RSiO-; Formula (2): -RRSiO- (Ris an aromatic hydrocarbon substituent; and Ris an aromatic hydrocarbon substituent or an alkyl group); and Formula (3): -RSiO- (Ris a methyl group or an ethyl group).SELECTED DRAWING: None

Description

本発明は、コーティング剤をはじめとする様々な用途に使用可能な硬化性樹脂組成物に関するものである。   The present invention relates to a curable resin composition that can be used in various applications including a coating agent.

近年、無機材料と有機材料の特性を兼備させた高機能材料の開発が各産業分野で広く行われており、無機材料は耐候性、耐熱性、耐擦傷性等の耐久性に優れ、有機材料は柔軟性・加工性に富んでいることが一般的に知られている。このような中、無機材料と有機材料とを複合化した硬化性樹脂組成物が提案されている(例えば、特許文献1参照。)。この樹脂硬化性組成物の塗膜は、高耐候性を有しているが、より高度な耐熱性が要求される場合には硬化剤を使用することが必須であり、塗装作業性に劣る点が指摘されていた。   In recent years, highly functional materials that combine the characteristics of inorganic and organic materials have been widely developed in various industrial fields. Inorganic materials have excellent durability such as weather resistance, heat resistance, and scratch resistance. It is generally known that is rich in flexibility and workability. Under such circumstances, a curable resin composition in which an inorganic material and an organic material are combined has been proposed (see, for example, Patent Document 1). The coating film of this resin curable composition has high weather resistance, but when higher heat resistance is required, it is essential to use a curing agent, which is inferior in coating workability. Was pointed out.

そこで、作業性に優れる一液硬化仕様で、耐熱性に優れた塗膜を形成可能な材料が求められていた。   Therefore, there has been a demand for a material that can form a coating film excellent in heat resistance with a one-component curing specification excellent in workability.

特許第3521431号公報Japanese Patent No. 3521431

本発明が解決しようとする課題は、保存安定性に優れ、作業性に優れる一液硬化仕様においても耐熱性等の各種物性に優れた塗膜を形成可能である硬化性樹脂組成物、該硬化性樹脂組成物用いたコーティング剤、及び該コーティング剤の塗膜を有する物品を提供することである。   The problem to be solved by the present invention is a curable resin composition capable of forming a coating film excellent in various physical properties such as heat resistance even in a one-component curing specification excellent in storage stability and workability, and the curing It is providing the articles | goods which have the coating agent using an adhesive resin composition, and the coating film of this coating agent.

本発明者等は、上記課題を解決すべく鋭意研究を重ねた結果、特定のポリシロキサン及び特定の重合体セグメントが結合した複合樹脂が、媒体中に溶解又は分散した硬化性樹脂組成物が、保存安定性に優れ、作業性に優れる一液硬化仕様においても耐熱性等の各種物性に優れた塗膜を形成可能であることを見出し、本発明を完成させた。   As a result of intensive studies to solve the above problems, the present inventors have obtained a curable resin composition in which a composite resin in which a specific polysiloxane and a specific polymer segment are bonded is dissolved or dispersed in a medium, The present invention has been completed by finding that a coating film excellent in various physical properties such as heat resistance can be formed even in a one-component curing specification having excellent storage stability and workability.

すなわち、本発明は、一般式(1)又は(2)で表される構造単位(U1)、及び一般式(3)で表される構造単位(U2)を有するポリシロキサン(a1)と重合体(a2)とが一般式(4)で表される結合により結合した複合樹脂(A)が、媒体中に溶解又は分散している硬化性樹脂組成物であって、前記複合樹脂(A)中の前記ポリシロキサン(a1)が75〜99質量%であり、前記ポリシロキサン(a1)中の前記構造単位(U1)が10〜55質量%であることを特徴とする硬化性樹脂組成物に関する。   That is, the present invention relates to a polysiloxane (a1) and a polymer having the structural unit (U1) represented by the general formula (1) or (2) and the structural unit (U2) represented by the general formula (3). (A2) is a curable resin composition in which the composite resin (A) bonded with the bond represented by the general formula (4) is dissolved or dispersed in a medium, and the composite resin (A) The polysiloxane (a1) is 75 to 99% by mass, and the structural unit (U1) in the polysiloxane (a1) is 10 to 55% by mass.

Figure 2019006873
Figure 2019006873

Figure 2019006873
(一般式(1)、(2)中のRは芳香族炭化水素置換基を表し、Rは芳香族炭化水素置換基又はアルキル基を表す。)
Figure 2019006873
(R 1 in the general formulas (1) and (2) represents an aromatic hydrocarbon substituent, and R 2 represents an aromatic hydrocarbon substituent or an alkyl group.)

Figure 2019006873
(一般式(3)中のRはメチル基又はエチル基を表す。)
Figure 2019006873
(R 3 in the general formula (3) represents a methyl group or an ethyl group.)

Figure 2019006873
Figure 2019006873

本発明の硬化性樹脂組成物は、基材密着性、耐熱性、耐候性等に優れた塗膜を形成できることから、各種基材のプライマー層形成用コーティング剤やトップコート層形成用コーティング剤等に好適に使用することができる。   Since the curable resin composition of the present invention can form a coating film excellent in substrate adhesion, heat resistance, weather resistance, etc., a coating agent for forming a primer layer or a coating agent for forming a topcoat layer on various substrates, etc. Can be suitably used.

本発明の硬化性樹脂組成物は、一般式(1)又は(2)で表される構造単位(U1)、及び一般式(3)で表される構造単位(U2)を有するポリシロキサン(a1)と重合体(a2)とが一般式(4)で表される結合により結合した複合樹脂(A)が、媒体中に溶解又は分散している硬化性樹脂組成物であって、前記複合樹脂(A)中の前記ポリシロキサン(a1)が75〜99質量%であり、前記ポリシロキサン(a1)中の前記構造単位(U1)が10〜55質量%であるものである。   The curable resin composition of the present invention includes a polysiloxane (a1) having a structural unit (U1) represented by the general formula (1) or (2) and a structural unit (U2) represented by the general formula (3). ) And the polymer (a2) are bonded to each other by a bond represented by the general formula (4), and the composite resin (A) is dissolved or dispersed in a medium, the composite resin The said polysiloxane (a1) in (A) is 75-99 mass%, and the said structural unit (U1) in the said polysiloxane (a1) is 10-55 mass%.

まず、前記複合樹脂(A)について説明する。前記複合樹脂(A)は、前記ポリシロキサン(a1)と前記重合体(a2)とが前記一般式(4)で表される結合により結合したものである。   First, the composite resin (A) will be described. The composite resin (A) is obtained by bonding the polysiloxane (a1) and the polymer (a2) by a bond represented by the general formula (4).

前記複合樹脂(A)の形態としては、例えば、前記ポリシロキサン(a1)が前記重合体(a2)の側鎖として化学的に結合したグラフト構造を有する複合樹脂や、前記重合体(a2)と前記ポリシロキサン(a1)とが化学的に結合したブロック構造を有する複合樹脂等が挙げられる。   Examples of the form of the composite resin (A) include a composite resin having a graft structure in which the polysiloxane (a1) is chemically bonded as a side chain of the polymer (a2), and the polymer (a2). Examples thereof include composite resins having a block structure in which the polysiloxane (a1) is chemically bonded.

前記一般式(4)で表される結合は、前記ポリシロキサン(a1)が有するシラノール基及び/または加水分解性シリル基と、前記重合体(a2)が有するシラノール基及び/または加水分解性シリル基とが脱水縮合反応することにより生じる。したがって、前記一般式(4)中、炭素原子は前記重合体(a2)の一部分を構成し、酸素原子のみに結合したケイ素原子は、前記ポリシロキサン(a1)の一部分を構成するものとする。   The bond represented by the general formula (4) includes a silanol group and / or hydrolyzable silyl group of the polysiloxane (a1), and a silanol group and / or hydrolyzable silyl group of the polymer (a2). This is caused by a dehydration condensation reaction with a group. Therefore, in the general formula (4), carbon atoms constitute a part of the polymer (a2), and silicon atoms bonded only to oxygen atoms constitute a part of the polysiloxane (a1).

前記複合樹脂(A)中の前記ポリシロキサン(a1)は、75〜99質量%であることが重要であるが、保存安定性に優れ、より耐熱性及び耐候性に優れる塗膜が得られることから、80〜98質量%であることが好ましく、85〜95質量%であることがより好ましい。   Although it is important that the polysiloxane (a1) in the composite resin (A) is 75 to 99% by mass, a coating film having excellent storage stability and more excellent heat resistance and weather resistance can be obtained. Therefore, it is preferable that it is 80-98 mass%, and it is more preferable that it is 85-95 mass%.

なお、前記ポリシロキサン(a1)の質量割合は、前記複合樹脂(A)の製造に使用する原料の仕込み割合に基づき、加水分解縮合反応によって生成しうるメタノールやエタノール等の副生成物の生成を考慮し算出した値である。   In addition, the mass ratio of the polysiloxane (a1) is based on the charged ratio of the raw materials used for the production of the composite resin (A), and generates by-products such as methanol and ethanol that can be generated by hydrolysis condensation reaction. This is a value calculated in consideration.

前記ポリシロキサン(a1)は、ケイ素原子と酸素原子とからなる鎖状構造を有するものであって、加水分解性シリル基及び/又はシラノール基等を有するものである。   The polysiloxane (a1) has a chain structure composed of silicon atoms and oxygen atoms, and has a hydrolyzable silyl group and / or a silanol group.

前記加水分解性シリル基は、加水分解性基が前記ケイ素原子に直接結合した原子団であって、例えば、下記一般式(5)に示される構造からなるものである。   The hydrolyzable silyl group is an atomic group in which the hydrolyzable group is directly bonded to the silicon atom, and has, for example, a structure represented by the following general formula (5).

Figure 2019006873
(式中、Rはアルキル基、アリール基またはアラルキル基等の1価の有機基を、Rはハロゲン原子、アルコキシ基、アシロキシ基、フェノキシ基、アリールオキシ基、メルカプト基、アミノ基、アミド基、アミノオキシ基、イミノオキシ基またはアルケニルオキシ基である。また、nは0〜2の整数である。)
Figure 2019006873
Wherein R 4 is a monovalent organic group such as an alkyl group, aryl group or aralkyl group, and R 5 is a halogen atom, alkoxy group, acyloxy group, phenoxy group, aryloxy group, mercapto group, amino group, amide A group, an aminooxy group, an iminooxy group or an alkenyloxy group, and n is an integer of 0 to 2.)

前記加水分解性基は、水の影響により水酸基を形成しうるものであって、例えば、ハロゲン原子、アルコキシ基、置換アルコキシ基、アシロキシ基、フェノキシ基、メルカプト基、アミノ基、アミド基、アミノオキシ基、イミノオキシ基、アルケニルオキシ基等が挙げられ、なかでもアルコキシ基や置換アルコキシ基であることが好ましい。   The hydrolyzable group is capable of forming a hydroxyl group under the influence of water. For example, a halogen atom, an alkoxy group, a substituted alkoxy group, an acyloxy group, a phenoxy group, a mercapto group, an amino group, an amide group, an aminooxy group Group, iminooxy group, alkenyloxy group and the like, among which an alkoxy group and a substituted alkoxy group are preferable.

前記シラノール基は、水酸基が前記ケイ素原子に直接結合した原子団を示すものであって、前記加水分解性シリル基が加水分解した際に形成される。   The silanol group represents an atomic group in which a hydroxyl group is directly bonded to the silicon atom, and is formed when the hydrolyzable silyl group is hydrolyzed.

前記ポリシロキサン(a1)は、保存安定性及び塗膜物性の観点から、前記一般式(1)又は(2)で表される構造単位(U1)を10〜55質量%有することが重要であるが、より耐熱性及び耐候性に優れる塗膜が得られることから、10〜40質量%有することがより好ましい。   It is important that the polysiloxane (a1) has 10 to 55% by mass of the structural unit (U1) represented by the general formula (1) or (2) from the viewpoints of storage stability and physical properties of the coating film. However, since the coating film which is more excellent in heat resistance and a weather resistance is obtained, it is more preferable to have 10-40 mass%.

また、前記ポリシロキサン(a1)は、塗膜の耐候性の観点から、前記一般式(3)で表される構造単位(U2)を10質量%以上有することが重要であり、15質量%以上有することが好ましい。   Moreover, it is important that the polysiloxane (a1) has 10% by mass or more of the structural unit (U2) represented by the general formula (3) from the viewpoint of the weather resistance of the coating film, and 15% by mass or more. It is preferable to have.

前記ポリシロキサン(a1)は、前記構造単位(U1)、前記構造単位(U2)以外の構造単位として、例えば、下記一般式(6)又は(7)で表される構造単位(U3)等を有することができる。   The polysiloxane (a1) includes, for example, a structural unit (U3) represented by the following general formula (6) or (7) as a structural unit other than the structural unit (U1) and the structural unit (U2). Can have.

Figure 2019006873
Figure 2019006873

Figure 2019006873
(一般式(6)、(7)中のRは芳香族炭化水素置換基以外の炭素原子数が3〜12の有機基を表し、R及びRはそれぞれ独立してメチル基又はエチル基を表す。)
Figure 2019006873
(R 6 in the general formulas (6) and (7) represents an organic group having 3 to 12 carbon atoms other than the aromatic hydrocarbon substituent, and R 7 and R 8 are each independently a methyl group or an ethyl group. Represents a group.)

前記ポリシロキサン(a1)としては、例えば、後述するシラン化合物を完全にまたは部分的に加水分解縮合して得られるものを使用することができる。   As said polysiloxane (a1), what is obtained by hydrolyzing and condensing the silane compound mentioned later completely or partially can be used, for example.

前記ポリシロキサン(a1)の有する前記構造単位(U1)は、例えば、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジフェニルジメトキシシラン、メチルフェニルジメトキシシラン、フェニルトリクロロシラン、ジフェニルジクロロシラン等の芳香環を有するシラン化合物や、それらの部分加水分解縮合物などを使用することにより、前記ポリシロキサン(a1)中に容易に導入することができるが、これらの中でも、保存安定性がより向上し、得られる塗膜の外観、密着性、及び耐熱性がより向上することから、フェニルトリメトキシシラン又はジフェニルジメトキシシランを使用することが好ましい。   The structural unit (U1) of the polysiloxane (a1) has an aromatic ring such as phenyltrimethoxysilane, phenyltriethoxysilane, diphenyldimethoxysilane, methylphenyldimethoxysilane, phenyltrichlorosilane, and diphenyldichlorosilane. By using a silane compound or a partially hydrolyzed condensate thereof, it can be easily introduced into the polysiloxane (a1), but among these, the storage stability is further improved and the resulting coating is obtained. Since the appearance, adhesion, and heat resistance of the film are further improved, it is preferable to use phenyltrimethoxysilane or diphenyldimethoxysilane.

また、前記構造単位(U2)は、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ−n−ブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、メチルトリクロロシラン、エチルトリクロロシラン等のシラン化合物や、それらの部分加水分解縮合物などを使用することにより、前記ポリシロキサン(a1)中に容易に導入することができる。   The structural unit (U2) is, for example, a silane compound such as methyltrimethoxysilane, methyltriethoxysilane, methyltri-n-butoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, methyltrichlorosilane, and ethyltrichlorosilane. Alternatively, they can be easily introduced into the polysiloxane (a1) by using a partially hydrolyzed condensate thereof.

また、前記構造単位(U3)は、例えば、n−プロピルトリメトキシシラン、iso−ブチルトリメトキシシラン、シクロヘキシルトリメトキシシラン、ビニルトリメトキシシラン、3−(メタ)アクリロイルオキシプロピルトリメトキシシラン、3−(メタ)アクリロイルオキシプロピルトリエトキシシラン、3−(メタ)アクリロイルオキシプロピルトリクロロシラン、ビニルトリクロロシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジ−n−ブトキシシラン、ジエチルジメトキシシラン、メチルシクロヘキシルジメトキシシラン、ジメチルジクロロシラン、ジエチルジクロロシラン等のシラン化合物や、それらの部分加水分解縮合物などを使用することにより、前記ポリシロキサン(a1)中に容易に導入することができる。   The structural unit (U3) includes, for example, n-propyltrimethoxysilane, iso-butyltrimethoxysilane, cyclohexyltrimethoxysilane, vinyltrimethoxysilane, 3- (meth) acryloyloxypropyltrimethoxysilane, 3- (Meth) acryloyloxypropyltriethoxysilane, 3- (meth) acryloyloxypropyltrichlorosilane, vinyltrichlorosilane, dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldi-n-butoxysilane, diethyldimethoxysilane, methylcyclohexyldimethoxysilane, Easily introduced into the polysiloxane (a1) by using silane compounds such as dimethyldichlorosilane and diethyldichlorosilane, and partial hydrolysis condensates thereof. Rukoto can.

これらのシラン化合物は、単独で使用してもよいし、2種類以上の併用でもよい。   These silane compounds may be used alone or in combination of two or more.

前記重合体(a2)は、前記ポリシロキサン(a1)と反応しうる加水分解性シリル基及び/又はシラノール基を有するものである。   The polymer (a2) has a hydrolyzable silyl group and / or silanol group that can react with the polysiloxane (a1).

前記重合体(a2)としては、得られる塗膜の耐熱性及び耐候性等の塗膜物性がより向上することから、3,000〜100,000の数平均分子量を有するものを使用することが好ましく、5,000〜25,000の数平均分子量を有するものを使用することがより好ましい。ここで、数平均分子量はゲル浸透クロマトグラフィー(以下、「GPC」と略記する。)測定に基づきポリスチレン換算した値である。   As said polymer (a2), since the coating-film physical properties, such as heat resistance of a coating film obtained and a weather resistance, improve more, using what has a number average molecular weight of 3,000-100,000 is used. Preferably, those having a number average molecular weight of 5,000 to 25,000 are more preferably used. Here, the number average molecular weight is a value converted to polystyrene based on gel permeation chromatography (hereinafter abbreviated as “GPC”) measurement.

前記重合体(a2)としては、例えば、アクリル重合体、フルオロオレフィン重合体、ビニルエステル重合体、芳香族ビニル重合体等のビニル重合体;ポリエステル樹脂、アルキド樹脂、ポリウレタン樹脂などが挙げられるが、保存安定性に優れ、得られる塗膜の外観、密着性に優れることからビニル重合体が好ましい。   Examples of the polymer (a2) include vinyl polymers such as acrylic polymers, fluoroolefin polymers, vinyl ester polymers, and aromatic vinyl polymers; polyester resins, alkyd resins, polyurethane resins, and the like. A vinyl polymer is preferable because of excellent storage stability and excellent appearance and adhesion of the resulting coating film.

前記ビニル重合体は、例えば、有機溶剤中、各種ビニル単量体を重合開始剤の存在下で重合することによって製造したものを使用することができる。   As the vinyl polymer, for example, a polymer produced by polymerizing various vinyl monomers in the presence of a polymerization initiator in an organic solvent can be used.

前記加水分解性シリル基は、例えば、加水分解性シリル基を有するビニル単量体を重合することによって、前記ビニル重合体中に容易に導入することができる。   The hydrolyzable silyl group can be easily introduced into the vinyl polymer, for example, by polymerizing a vinyl monomer having a hydrolyzable silyl group.

前記加水分解性シリル基を有するビニル単量体としては、例えば、ビニルトリメトキシシラン、3−(メタ)アクリロイルオキシプロピルトリメトキシシラン、3−(メタ)アクリロイルオキシプロピルトリエトキシシランもしくは3−(メタ)アクリロイルオキシプロピルメチルジメトキシシラン等を使用することができ、なかでも、3−(メタ)アクリロイルオキシプロピルトリメトキシシランを使用することが好ましい。   Examples of the vinyl monomer having a hydrolyzable silyl group include vinyltrimethoxysilane, 3- (meth) acryloyloxypropyltrimethoxysilane, 3- (meth) acryloyloxypropyltriethoxysilane, and 3- (meta ) Acryloyloxypropylmethyldimethoxysilane and the like can be used, and among them, 3- (meth) acryloyloxypropyltrimethoxysilane is preferably used.

前記加水分解性シリル基を有するビニル単量体以外の前記ビニル重合体の原料としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等の(メタ)アクリル酸エステル化合物;2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、ポリエチレングリコール−ポリプロピレングリコール(メタ)アクリレート、グリセロールモノ(メタ)アクリレート等の水酸基を有するビニル単量体;メトキシポリエチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、メトキシポリエチレングリコール−ポリプロピレングリコール(メタ)アクリレートフェノキシポリエチレングリコール−ポリプロピレングリコール(メタ)アクリレート等の末端がアルコキシ基又はフェノキシ基で封止されたポリオキシアルキレン基を有するビニル単量体;N,N−ジメチルアミノエチル(メタ)アクリレート等の三級アミノ基を有するビニル単量体;N−メチルアミノエチル(メタ)アクリレート等の二級アミノ基を有するビニル単量体;アミノメチルアクリレート等の一級アミノ基を有するビニル単量体等の塩基性窒素原子を有する基を有するビニル単量体;2,2,2−トリフルオロエチル(メタ)アクリレート等のフッ素原子を有するビニル単量体;酢酸ビニル等のビニルエステル化合物;メチルビニルエーテル等のビニルエーテル化合物;(メタ)アクリロニトリル等の不飽和カルボン酸のニトリル化合物;スチレン等の芳香族環を有するビニル化合物;イソプレン等のα−オレフィン化合物、グリシジル(メタ)アクリレート等のエポキシ基を有するビニル単量体;(メタ)アクリルアミド等のアミド基を有するビニル単量体;N−メチロール(メタ)アクリルアミド等のメチロールアミド基及びそのアルコキシ化物を有するビニル単量体;2−アジリジニルエチル(メタ)アクリレート等のアジリジニル基を有するビニル単量体;(メタ)アクリロイルイソシアナート等のイソシアナート基及び/またはブロック化イソシアナート基を有するビニル単量体;2−イソプロペニル−2−オキサゾリン等のオキサゾリン基を有するビニル単量体;ジシクロペンテニル(メタ)アクリレート等のシクロペンテニル基を有するビニル単量体;アクロレイン等のカルボニル基を有するビニル単量体;アセトアセトキシエチル(メタ)アクリレート等のアセトアセチル基を有するビニル単量体;(メタ)アクリル酸、イタコン酸、マレイン酸、もしくはこれらの半エステルまたはこれらの塩等のカルボキシル基を有する単量体などを使用することができる。   Examples of the raw material for the vinyl polymer other than the vinyl monomer having a hydrolyzable silyl group include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, 2-ethylhexyl (meta ) (Meth) acrylic acid ester compounds such as acrylate and cyclohexyl (meth) acrylate; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) ) Vinyl monomers having a hydroxyl group such as acrylate, polypropylene glycol (meth) acrylate, polyethylene glycol-polypropylene glycol (meth) acrylate, glycerol mono (meth) acrylate; methoxypolyethylene Glycol (meth) acrylate, ethoxy polyethylene glycol (meth) acrylate, phenoxy polyethylene glycol (meth) acrylate, methoxy polypropylene glycol (meth) acrylate, methoxy polyethylene glycol-polypropylene glycol (meth) acrylate phenoxy polyethylene glycol-polypropylene glycol (meth) acrylate Vinyl monomers having a polyoxyalkylene group whose ends are blocked with alkoxy groups or phenoxy groups; vinyl monomers having a tertiary amino group such as N, N-dimethylaminoethyl (meth) acrylate; N -Vinyl monomer having a secondary amino group such as methylaminoethyl (meth) acrylate; Vinyl monomer having a primary amino group such as aminomethyl acrylate Vinyl monomers having a group having a basic nitrogen atom such as; vinyl monomers having a fluorine atom such as 2,2,2-trifluoroethyl (meth) acrylate; vinyl ester compounds such as vinyl acetate; methyl vinyl ether Vinyl ether compounds such as: nitrile compounds of unsaturated carboxylic acids such as (meth) acrylonitrile; vinyl compounds having an aromatic ring such as styrene; α-olefin compounds such as isoprene; vinyl having an epoxy group such as glycidyl (meth) acrylate Monomer; Vinyl monomer having an amide group such as (meth) acrylamide; Vinyl monomer having a methylolamide group such as N-methylol (meth) acrylamide and an alkoxy product thereof; 2-aziridinylethyl (meta ) Vinyl monomers having an aziridinyl group such as acrylate; A) Vinyl monomers having isocyanate groups such as acryloyl isocyanate and / or blocked isocyanate groups; vinyl monomers having oxazoline groups such as 2-isopropenyl-2-oxazoline; dicyclopentenyl (meth) Vinyl monomers having a cyclopentenyl group such as acrylate; vinyl monomers having a carbonyl group such as acrolein; vinyl monomers having an acetoacetyl group such as acetoacetoxyethyl (meth) acrylate; (meth) acrylic acid, A monomer having a carboxyl group such as itaconic acid, maleic acid, or a half ester thereof, or a salt thereof can be used.

前記ビニル重合体を製造する際に使用可能な有機溶剤としては、例えば、ヘキサン、ヘプタン、オクタン、シクロヘキサン、シクロペンタン、シクロオクタン等の脂肪族系ないしは脂環族系の炭化水素化合物;トルエン、キシレンもしくはエチルベンゼン等の芳香族炭化水素化合物;酢酸エチル、酢酸ブチル、酢酸アミル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート等のエステル化合物;メタノール、エタノール、n−プロパノール、i−プロパノール、n−ブタノール、i−ブタノール、sec−ブタノール、tert−ブタノール、n−アミルアルコール、i−アミルアルコール、tert−アミルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル等のアルコール化合物;アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルアミルケトン、シクロヘキサノン等のケトン化合物;ジメトキシエタン、テトラヒドロフラン、ジオキサン、ジイソプロピルエーテル、ジ−n−ブチルエーテル等のエーテル化合物;クロロホルム、メチレンクロライド、四塩化炭素、トリクロロエタン、テトラクロロエタン等の塩素化炭化水素化合物;N−メチルピロリドン、ジメチルフォルムアミド、ジメチルアセトアミド、エチレンカーボネートなどを使用することができる。これらの有機溶剤は、単独で使用してもよいし、2種類以上の併用でもよい。   Examples of the organic solvent that can be used for producing the vinyl polymer include aliphatic or alicyclic hydrocarbon compounds such as hexane, heptane, octane, cyclohexane, cyclopentane, and cyclooctane; toluene, xylene Or an aromatic hydrocarbon compound such as ethylbenzene; ester compounds such as ethyl acetate, butyl acetate, amyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate; methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, tert-butanol, n-amyl alcohol, i-amyl alcohol, tert-amyl alcohol, ethylene Alcohol compounds such as recall monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether; ketone compounds such as acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl amyl ketone, cyclohexanone; dimethoxyethane, tetrahydrofuran, dioxane, diisopropyl ether, di-n -Ether compounds such as butyl ether; Chlorinated hydrocarbon compounds such as chloroform, methylene chloride, carbon tetrachloride, trichloroethane, tetrachloroethane; N-methylpyrrolidone, dimethylformamide, dimethylacetamide, ethylene carbonate, and the like can be used. These organic solvents may be used alone or in combination of two or more.

前記ビニル重合体を製造する際に使用可能な重合開始剤としては、例えば、過硫酸塩、有機過酸化物、過酸化水素等のラジカル重合開始剤や、4,4’−アゾビス(4−シアノ吉草酸)、2,2’−アゾビス(2−アミジノプロパン)二塩酸塩等のアゾ開始剤を使用することができる。また、前記ラジカル重合開始剤は、例えば、アスコルビン酸等の還元剤と併用しレドックス重合開始剤として使用してもよい。これらの重合開始剤は、単独で使用してもよいし、2種類以上の併用でもよい。   Examples of the polymerization initiator that can be used for producing the vinyl polymer include radical polymerization initiators such as persulfate, organic peroxide, and hydrogen peroxide, and 4,4′-azobis (4-cyano). An azo initiator such as valeric acid) or 2,2′-azobis (2-amidinopropane) dihydrochloride can be used. The radical polymerization initiator may be used as a redox polymerization initiator in combination with a reducing agent such as ascorbic acid. These polymerization initiators may be used alone or in combination of two or more.

前記重合開始剤の代表的なものである過硫酸塩としては、例えば、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等が挙げられ、有機過酸化物として、具体的には、例えば、過酸化ベンゾイル、ラウロイルパーオキサイド、デカノイルパーオキサイド等のジアシルパーオキサイド、t−ブチルクミルパーオキサイド、ジクミルパーオキサイド等のジアルキルパーオキサイド、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシラウレート、t−ブチルパーオキシベンゾエート等のパーオキシエステル、クメンハイドロパーオキサイド、パラメンタンハイドロパーオキサイド、t−ブチルハイドロパーオキサイド等のハイドロパーオキサイド等を使用することができる。   Examples of the persulfate that is a representative of the polymerization initiator include potassium persulfate, sodium persulfate, ammonium persulfate, and the like. Specific examples of the organic peroxide include benzoyl peroxide. , Diacyl peroxides such as lauroyl peroxide and decanoyl peroxide, dialkyl peroxides such as t-butylcumyl peroxide and dicumyl peroxide, t-butylperoxy-2-ethylhexanoate, t-butylperoxy Peroxyesters such as laurate and t-butylperoxybenzoate, hydroperoxides such as cumene hydroperoxide, paramentane hydroperoxide, and t-butyl hydroperoxide can be used.

重合開始剤の使用量は、重合が円滑に進行する量を使用すれば良いが、ビニル重合体(a2)の製造に使用するビニル単量体の全量に対して、10質量%以下とすることが好ましい。   The polymerization initiator may be used in an amount that allows the polymerization to proceed smoothly, but should be 10% by mass or less based on the total amount of vinyl monomers used in the production of the vinyl polymer (a2). Is preferred.

前記ビニル重合体のガラス転移温度は、得られる塗膜の耐熱性及び耐候性等の塗膜物性がより向上することから、−50〜90℃の範囲内であることが好ましい。なお、本発明において、ガラス転移温度(Tg)とは、下記のFOXの式で計算されるガラス転移温度いう。
FOXの式:1/Tg=W1/Tg1+W2/Tg2+・・・
(Tg:求めるべきガラス転移温度、W1:成分1の重量分率、Tg1:成分1のホモポリマーのガラス転移温度)
The glass transition temperature of the vinyl polymer is preferably in the range of −50 to 90 ° C. because the coating film properties such as heat resistance and weather resistance of the coating film obtained are further improved. In the present invention, the glass transition temperature (Tg) refers to a glass transition temperature calculated by the following FOX equation.
Formula of FOX: 1 / Tg = W1 / Tg1 + W2 / Tg2 +
(Tg: glass transition temperature to be obtained, W1: weight fraction of component 1, Tg1: glass transition temperature of homopolymer of component 1)

また、前記ポリシロキサン(a1)は、前記複合樹脂(A)を製造する工程において、2段階の反応工程を経ることによって形成することが好ましい。具体的には、前記ビニル重合体(a1)の有する加水分解性基等に、フェニルトリメトキシシラン等の比較的低分子量のシラン化合物を反応させることでポリシロキサン構造を形成し、次いで、該反応物と、メチルトリメトキシシランやエチルトリメトキシシラン等の縮合物とを反応させることによって、ポリシロキサン(a1)からなる構造を形成することができる。これにより、より一層、耐熱性及び耐候性等の耐久性に優れた塗膜を形成可能な硬化性樹脂組成物を得ることができる。   Moreover, it is preferable to form the said polysiloxane (a1) by passing through a two-step reaction process in the process of manufacturing the said composite resin (A). Specifically, a polysiloxane structure is formed by reacting a hydrolyzable group or the like of the vinyl polymer (a1) with a relatively low molecular weight silane compound such as phenyltrimethoxysilane, and then the reaction. By reacting a product with a condensate such as methyltrimethoxysilane or ethyltrimethoxysilane, a structure composed of polysiloxane (a1) can be formed. Thereby, the curable resin composition which can form the coating film excellent in durability, such as heat resistance and a weather resistance, can be obtained further.

前記複合樹脂(A)は、例えば、以下の(I)〜(II)の工程によって製造することができる。   The composite resin (A) can be produced, for example, by the following steps (I) to (II).

(I)の工程は、有機溶剤中で、前記したビニル単量体を前記重合開始剤の存在下で重合することによってビニル重合体(a2)の有機溶剤溶液を得る工程である。   The step (I) is a step of obtaining an organic solvent solution of the vinyl polymer (a2) by polymerizing the above vinyl monomer in the presence of the polymerization initiator in an organic solvent.

かかる重合反応は、例えば、重合開始剤を含む有機溶剤中に、前記ビニル単量体を逐次供給または一括供給し、次いで、攪拌下、20〜120℃の範囲で0.5〜24時間程度行うことが好ましい。   Such a polymerization reaction is performed, for example, by sequentially or collectively supplying the vinyl monomer in an organic solvent containing a polymerization initiator, and then stirring at a temperature of 20 to 120 ° C. for about 0.5 to 24 hours. It is preferable.

また、(II)の工程は、前記ビニル重合体(a2)の有機溶剤溶液下で前記ビニル重合体(a2)の有する加水分解性シリル基等の反応性官能基と、シラン化合物の有する加水分解性シリル基またはシラノール基との反応と、前記シラン化合物間の加水分解縮合反応とを進行させることによって、前記ビニル重合体(a2)と前記ポリシロキサン(a1)とが結合した前記複合樹脂(A)の有機溶剤溶液を得る工程である。   In the step (II), a reactive functional group such as a hydrolyzable silyl group possessed by the vinyl polymer (a2) and a hydrolysis possessed by the silane compound under an organic solvent solution of the vinyl polymer (a2). The composite resin (A) in which the vinyl polymer (a2) and the polysiloxane (a1) are bonded to each other by advancing a reaction with a functional silyl group or a silanol group and a hydrolysis condensation reaction between the silane compounds. ) To obtain an organic solvent solution.

かかる反応は、例えば、(I)の工程に引き続き、前記ビニル重合体(a2)の有機溶剤溶液中に、前記ポリシロキサン(a1)を形成しうる前記シラン化合物を逐次供給または一括供給し、次いで、攪拌下、20〜120℃の範囲で0.5〜24時間程度行うことが好ましい。   In this reaction, for example, following the step (I), the silane compound capable of forming the polysiloxane (a1) is sequentially supplied or collectively supplied into the organic solvent solution of the vinyl polymer (a2), and then Under stirring, it is preferably performed in the range of 20 to 120 ° C. for about 0.5 to 24 hours.

(II)の工程は、更に2段階の反応工程を経ることが好ましい。具体的には前記ビニル重合体(a2)の有する加水分解性シリル基またはシラノール基と、前記したフェニルトリメトキシシラン等の比較的低分子量のシラン化合物とを反応させる工程と、次いで、該反応物と、メチルトリメトキシシランやエチルトリメトキシシラン等のメチルトリアルコキシシラン及びエチルトリアルコキシシランを予め縮合させた縮合物とを反応させる工程とを経ることが好ましい。ポリシロキサン(a1)の構造形成を上記のような2段階で行うことで、一層、耐熱性及び耐候性等の耐久性に優れた塗膜を形成可能な硬化性樹脂組成物を得ることができる。   The step (II) preferably further undergoes a two-step reaction step. Specifically, a step of reacting the hydrolyzable silyl group or silanol group of the vinyl polymer (a2) with a relatively low molecular weight silane compound such as phenyltrimethoxysilane, and then the reaction product And a step of reacting a methyltrialkoxysilane such as methyltrimethoxysilane or ethyltrimethoxysilane and a condensate obtained by condensing ethyltrialkoxysilane in advance. By performing the polysiloxane (a1) structure formation in the above two steps, a curable resin composition capable of forming a coating film having excellent durability such as heat resistance and weather resistance can be obtained. .

本発明の硬化性樹脂組成物は、前記複合樹脂(A)が、媒体中に溶解又は分散しているものであるが、前記媒体としては、例えば、前記ビニル重合体を製造する際に使用可能なものとして列挙した各種の有機溶剤等が挙げられる。   The curable resin composition of the present invention is one in which the composite resin (A) is dissolved or dispersed in a medium. The medium can be used, for example, when producing the vinyl polymer. And various organic solvents listed as examples.

本発明の硬化性樹脂組成物には、必要に応じて熱硬化性樹脂を含有させることも可能である。かかる熱硬化性樹脂としては、ビニル系樹脂、ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、エポキシエステル樹脂、アクリル樹脂、フェノール樹脂、石油樹脂、ケトン樹脂、シリコン樹脂、あるいはこれらの変性樹脂等が挙げられる。   The curable resin composition of the present invention can contain a thermosetting resin as necessary. Examples of such thermosetting resins include vinyl resins, polyester resins, polyurethane resins, epoxy resins, epoxy ester resins, acrylic resins, phenol resins, petroleum resins, ketone resins, silicon resins, or modified resins thereof.

本発明の硬化性樹脂組成物には、必要に応じて粘土鉱物、金属、金属酸化物、ガラス等の各種の無機粒子を使用することができる。金属の種類としては、金、銀、銅、白金、チタン、亜鉛、ニッケル、アルミニウム、鉄、シリコン、ゲルマニウム、アンチモン、それらの金属酸化物等が挙げられる。   In the curable resin composition of the present invention, various inorganic particles such as clay mineral, metal, metal oxide, and glass can be used as necessary. Examples of the metal include gold, silver, copper, platinum, titanium, zinc, nickel, aluminum, iron, silicon, germanium, antimony, and metal oxides thereof.

本発明の硬化性樹脂組成物には、必要に応じて光触媒性化合物や無機顔料、有機顔料、体質顔料、ワックス、界面活性剤、安定剤、流動調整剤、染料、レベリング剤、レオロジーコントロール剤、紫外線吸収剤、酸化防止剤、可塑剤等の各種の添加剤等を使用することができる。   The curable resin composition of the present invention includes a photocatalytic compound, inorganic pigment, organic pigment, extender pigment, wax, surfactant, stabilizer, flow regulator, dye, leveling agent, rheology control agent, if necessary. Various additives such as an ultraviolet absorber, an antioxidant, and a plasticizer can be used.

本発明の硬化性樹脂組成物は、保存安定性に優れることからコーティング剤や接着剤等の各種用途に使用することができる。なかでも、本発明の硬化性樹脂組成物は、耐熱性及び耐候性に優れた塗膜を形成できることから、コーティング剤に使用することが好ましく、トップ層形成用コーティング剤やプライマー層形成用コーティング剤に使用することがより好ましい。   Since the curable resin composition of the present invention is excellent in storage stability, it can be used for various applications such as a coating agent and an adhesive. Especially, since the curable resin composition of this invention can form the coating film excellent in heat resistance and a weather resistance, it is preferable to use it for a coating agent, the coating agent for top layer formation, and the coating agent for primer layer formation It is more preferable to use it.

前記コーティング剤を塗布し塗膜を形成可能な基材としては、例えば、無機質基材、金属基材、プラスチック基材、ガラス基材、紙や木材基材、繊維質基材等が挙げられる。   As a base material which can apply | coat the said coating agent and can form a coating film, an inorganic base material, a metal base material, a plastic base material, a glass base material, paper, a wood base material, a fiber base material etc. are mentioned, for example.

本発明のコーティング剤は、例えば、それを前記基材表面に直接、塗布し、次いで乾燥、硬化させることによって、曝露試験後の塗膜外観、耐久性及び耐候性等に優れた塗膜を形成することができる。   The coating agent of the present invention forms, for example, a coating film excellent in appearance, durability, weather resistance and the like after the exposure test by directly applying the coating agent to the surface of the substrate, followed by drying and curing. can do.

前記したような種々の基材上に、前記コーティング剤を塗装し、硬化させることによって、塗装物を得ることができる。その際に、(1)前記コーティング剤を基材に直接塗装する、(2)予め基材上に下塗り塗料を塗装してから、前記コーティング剤を上塗り塗料として塗装する、(3)基材に下塗り塗料として前記コーティング剤を塗装し、次いで別の上塗り塗料を塗装し塗膜を形成させる等の塗装方法により塗装物を得ることができる。   A coated product can be obtained by applying and curing the coating agent on various substrates as described above. At that time, (1) the coating agent is directly applied to the substrate, (2) the primer coating is applied on the substrate in advance, and then the coating agent is applied as the top coating. (3) the substrate A coated product can be obtained by a coating method such as applying the coating agent as a base coat and then applying another top coat to form a coating film.

本発明のコーティング剤を塗装する方法としては、例えば、刷毛塗り、ローラー塗装、スプレー塗装、浸漬塗装、フロー・コーター塗装、ロール・コーター塗装、電着塗装等が挙げられる。   Examples of the method for applying the coating agent of the present invention include brush coating, roller coating, spray coating, dip coating, flow coater coating, roll coater coating, and electrodeposition coating.

また、前記(2)または(3)の塗装方法で前記コーティング剤からなる塗膜を有する塗装物を得る場合、下塗り塗料や、上塗り塗料として、従来から知られているアクリル樹脂系塗料、ポリエステル樹脂系塗料、アルキド樹脂系塗料、エポキシ樹脂系塗料、脂肪酸変性エポキシ樹脂系塗料、シリコーン樹脂系塗料、ポリウレタン樹脂系塗料等を使用することができる。   Moreover, when obtaining the coating material which has the coating film which consists of the said coating agent with the coating method of said (2) or (3), conventionally known acrylic resin-type paint and polyester resin as undercoat paint and topcoat paint Paints, alkyd resin paints, epoxy resin paints, fatty acid-modified epoxy resin paints, silicone resin paints, polyurethane resin paints, and the like can be used.

前記乾燥し硬化を進行させる方法としては、常温下で1〜10日程度養生する方法であってもよいが、硬化を迅速に進行させる観点から、50〜250℃の温度で、1〜600秒程度加熱する方法が好ましい。また、比較的高温で変形や変色をしやすいプラスチック基材を用いる場合には、30〜100℃程度の比較的低温下で養生を行うことが好ましい。   The method for drying and curing may be a method of curing for about 1 to 10 days at room temperature. From the viewpoint of rapidly curing, the temperature is 50 to 250 ° C. for 1 to 600 seconds. A method of heating to a certain extent is preferred. Moreover, when using the plastic base material which deform | transforms and discolors easily at comparatively high temperature, it is preferable to perform curing at comparatively low temperature of about 30-100 degreeC.

本発明のコーティング剤を用いて形成する塗膜の膜厚は、基材の使用される用途等に応じて、0.5〜1,000μmとすることができる。   The film thickness of the coating film formed using the coating agent of the present invention can be set to 0.5 to 1,000 μm depending on the use of the substrate.

上記のような方法により、本発明のコーティング剤を用いて形成された塗膜を有する物品としては、例えば、外壁、屋根、ガラス、化粧板等の建築物の内外装材;防音壁、排水溝等の土木部材;テレビ、冷蔵庫、洗濯機、エアコン等の家電製品の筐体;パソコン、スマートフォン、携帯電話、デジタルカメラ、ゲーム機等の電子機器の筐体;プリンター、ファクシミリ等のOA機器の筐体;自動車、鉄道車輌等の各種車輌の内外装材;産業機械等が挙げられる。   As an article having a coating film formed by using the coating agent of the present invention by the method as described above, for example, interior / exterior materials of buildings such as outer walls, roofs, glass, decorative boards; soundproof walls, drainage grooves Civil engineering materials such as: Housings for home appliances such as TVs, refrigerators, washing machines, and air conditioners; Housings for electronic devices such as personal computers, smartphones, mobile phones, digital cameras, and game machines; Housings for OA devices such as printers and facsimiles Body: Interior and exterior materials of various vehicles such as automobiles and railway vehicles; industrial machinery and the like.

次に、本発明を、実施例及び比較例により具体的に説明をする。なお、樹脂の平均分子量は、下記のGPC測定条件で測定したものである。   Next, the present invention will be specifically described with reference to examples and comparative examples. The average molecular weight of the resin is measured under the following GPC measurement conditions.

[GPC測定条件]
測定装置:高速GPC装置(東ソー株式会社製「HLC−8220GPC」)
カラム:東ソー株式会社製の下記のカラムを直列に接続して使用した。
「TSKgel G5000」(7.8mmI.D.×30cm)×1本
「TSKgel G4000」(7.8mmI.D.×30cm)×1本
「TSKgel G3000」(7.8mmI.D.×30cm)×1本
「TSKgel G2000」(7.8mmI.D.×30cm)×1本
検出器:RI(示差屈折計)
カラム温度:40℃
溶離液:テトラヒドロフラン(THF)
流速:1.0mL/分
注入量:100μL(試料濃度4mg/mLのテトラヒドロフラン溶液)
標準試料:下記の単分散ポリスチレンを用いて検量線を作成した。
[GPC measurement conditions]
Measuring device: High-speed GPC device (“HLC-8220GPC” manufactured by Tosoh Corporation)
Column: The following columns manufactured by Tosoh Corporation were connected in series.
"TSKgel G5000" (7.8 mm ID x 30 cm) x 1 "TSKgel G4000" (7.8 mm ID x 30 cm) x 1 "TSKgel G3000" (7.8 mm ID x 30 cm) x 1 “TSKgel G2000” (7.8 mm ID × 30 cm) × 1 detector: RI (differential refractometer)
Column temperature: 40 ° C
Eluent: Tetrahydrofuran (THF)
Flow rate: 1.0 mL / min Injection amount: 100 μL (tetrahydrofuran solution with a sample concentration of 4 mg / mL)
Standard sample: A calibration curve was prepared using the following monodisperse polystyrene.

(単分散ポリスチレン)
東ソー株式会社製「TSKgel 標準ポリスチレン A−500」
東ソー株式会社製「TSKgel 標準ポリスチレン A−1000」
東ソー株式会社製「TSKgel 標準ポリスチレン A−2500」
東ソー株式会社製「TSKgel 標準ポリスチレン A−5000」
東ソー株式会社製「TSKgel 標準ポリスチレン F−1」
東ソー株式会社製「TSKgel 標準ポリスチレン F−2」
東ソー株式会社製「TSKgel 標準ポリスチレン F−4」
東ソー株式会社製「TSKgel 標準ポリスチレン F−10」
東ソー株式会社製「TSKgel 標準ポリスチレン F−20」
東ソー株式会社製「TSKgel 標準ポリスチレン F−40」
東ソー株式会社製「TSKgel 標準ポリスチレン F−80」
東ソー株式会社製「TSKgel 標準ポリスチレン F−128」
東ソー株式会社製「TSKgel 標準ポリスチレン F−288」
東ソー株式会社製「TSKgel 標準ポリスチレン F−550」
(Monodispersed polystyrene)
"TSKgel standard polystyrene A-500" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-1000" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-2500" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-5000" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-1" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-2" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-4" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-10" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-20" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-40" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-80" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-128" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-288" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-550" manufactured by Tosoh Corporation

(合成例1:メチルトリメトキシシランの縮合物(a1’−1)の合成)
攪拌機、温度計、滴下ロート、冷却管及び窒素ガス導入口を備えた反応容器に、メチルトリメトキシシラン(以下、「MTMS」と略記する。)1,421質量部を仕込んで、60℃まで昇温した。次いで、前記反応容器中にiso−プロピルアシッドホスフェート(SC有機化学株式会社製「Phoslex A−3」)0.17質量部と脱イオン水207質量部との混合物を5分間で滴下した後、80℃の温度で4時間撹拌して加水分解縮合反応させた。
上記の加水分解縮合反応によって得られた縮合物を、温度40〜60℃及び40〜1.3kPaの減圧下(メタノールの留去開始時の減圧条件が40kPaで、最終的に1.3kPaとなるまで減圧する条件をいう。以下、同様。)で蒸留し前記反応過程で生成したメタノール及び水を除去することによって、数平均分子量1,000のMTMSの縮合物(a1’−1)を含有する液(有効成分70質量%)1,000質量部を得た。
なお、前記有効成分とは、MTMS等のシランモノマーのメトキシ基が全て縮合反応した場合の理論収量(質量部)を、縮合反応後の実収量(質量部)で除した値〔シランモノマーのメトキシ基が全て縮合反応した場合の理論収量(質量部)/縮合反応後の実収量(質量部)〕により算出したものである。
(Synthesis Example 1: Synthesis of condensate (a1′-1) of methyltrimethoxysilane)
Into a reaction vessel equipped with a stirrer, a thermometer, a dropping funnel, a cooling tube and a nitrogen gas inlet, 1,421 parts by mass of methyltrimethoxysilane (hereinafter abbreviated as “MTMS”) was charged, and the temperature was raised to 60 ° C. Warm up. Next, a mixture of 0.17 parts by mass of iso-propyl acid phosphate (“Phoslex A-3” manufactured by SC Organic Chemical Co., Ltd.) and 207 parts by mass of deionized water was dropped into the reaction vessel over 5 minutes. The mixture was stirred at a temperature of 4 ° C. for 4 hours to cause hydrolysis and condensation reaction.
The condensate obtained by the above hydrolysis condensation reaction is subjected to a temperature of 40 to 60 ° C. and a reduced pressure of 40 to 1.3 kPa (the reduced pressure condition at the start of the distillation of methanol is 40 kPa, and finally becomes 1.3 kPa) (Hereinafter the same shall apply)), and the methanol and water produced in the reaction process are removed to contain the MTMS condensate (a1′-1) having a number average molecular weight of 1,000. 1,000 parts by weight of a liquid (70% by mass of active ingredient) was obtained.
The effective component is a value obtained by dividing the theoretical yield (parts by mass) when all the methoxy groups of silane monomers such as MTMS undergo a condensation reaction by the actual yield (parts by mass) after the condensation reaction [the methoxy of the silane monomer. The theoretical yield when all the groups undergo a condensation reaction (parts by mass) / the actual yield after the condensation reaction (parts by mass)] is calculated.

(実施例1:硬化性樹脂組成物(1)の製造)
攪拌機、温度計、滴下ロート、冷却管及び窒素ガス導入口を備えた反応容器に、n−ブタノール(以下、「BuOH」と略記する。)150質量部、フェニルトリメトキシシラン(以下、「PTMS」と略記する。)88質量部、ジメチルジメトキシシラン(以下、「DMDMS」と略記する。)233質量部を仕込んで80℃まで昇温した。
次いで、同温度でメチルメタクリレート(以下、「MMA」と略記する。)84質量部、ブチルメタクリレート(以下、「BMA」と略記する。)16質量部、ブチルアクリレート(以下、「BA」と略記する。)13質量部、3−メタクリルオキシプロピルトリメトキシシラン(以下、「MPTS」と略記する。)7質量部、BuOH12質量部及びtert−ブチルパーオキシ−2−エチルヘキサノエート(以下、「TBPEH」と略記する。)2.4質量部を含有する混合物を、前記反応容器中へ4時間で滴下し、滴下終了後、更に同温度で20時間反応させて加水分解性シリル基を有する数平均分子量が10,200のビニル重合体(a2−1)の有機溶剤溶液を得た。
次いで、iso−プロピルアシッドホスフェート(SC有機化学株式会社製「Phoslex A−3」、以下「A−3」と略記する。)0.04質量部と脱イオン水94質量部との混合物を、5分間で滴下し、更に同温度で10時間攪拌して加水分解縮合反応させることで、ビニル重合体(a2−1)の有する加水分解性シリル基と、前記PTMS及びDMDMS由来のポリシロキサンの有する加水分解性シリル基及びシラノール基とが結合した複合樹脂を含有する液を得た。
次いで、この液に合成例1で得られたMTMSの縮合物(a1’−1)398質量部、脱イオン水 67質量部を添加し、同温度で10時間攪拌して加水分解縮合反応させたものを、合成例1と同様の条件で蒸留することによって生成したメタノール及び水を除去し、次いで、BuOH 250質量部を添加し、不揮発分が60.1質量%の硬化性樹脂組成物(1)を1,000質量部得た。
(Example 1: Production of curable resin composition (1))
In a reaction vessel equipped with a stirrer, thermometer, dropping funnel, condenser and nitrogen gas inlet, 150 parts by mass of n-butanol (hereinafter abbreviated as “BuOH”), phenyltrimethoxysilane (hereinafter “PTMS”). 88 parts by mass and 233 parts by mass of dimethyldimethoxysilane (hereinafter abbreviated as “DMDMS”) were charged and the temperature was raised to 80 ° C.
Next, 84 parts by mass of methyl methacrylate (hereinafter abbreviated as “MMA”), 16 parts by mass of butyl methacrylate (hereinafter abbreviated as “BMA”), and butyl acrylate (hereinafter abbreviated as “BA”) at the same temperature. .) 13 parts by mass, 3-methacryloxypropyltrimethoxysilane (hereinafter abbreviated as “MPTS”), 7 parts by mass, 12 parts by mass of BuOH, and tert-butylperoxy-2-ethylhexanoate (hereinafter, “TBPEH”) The mixture containing 2.4 parts by mass of the mixture was dropped into the reaction vessel over 4 hours, and after completion of the addition, the mixture was further reacted at the same temperature for 20 hours to have a number average having a hydrolyzable silyl group. An organic solvent solution of a vinyl polymer (a2-1) having a molecular weight of 10,200 was obtained.
Then, a mixture of 0.04 parts by mass of iso-propyl acid phosphate (“Phoslex A-3” manufactured by SC Organic Chemical Co., Ltd., hereinafter abbreviated as “A-3”) and 94 parts by mass of deionized water is added to 5 parts. The mixture was added dropwise for 1 minute, and further stirred at the same temperature for 10 hours to cause a hydrolytic condensation reaction, so that the hydrolyzable silyl group possessed by the vinyl polymer (a2-1) and the hydrolyzate possessed by the polysiloxane derived from PTMS and DMDMS were obtained. A liquid containing a composite resin in which a decomposable silyl group and a silanol group were bonded was obtained.
Subsequently, 398 parts by mass of the MTMS condensate (a1′-1) obtained in Synthesis Example 1 and 67 parts by mass of deionized water were added to this liquid, and the mixture was stirred at the same temperature for 10 hours to cause a hydrolysis and condensation reaction. The product was distilled under the same conditions as in Synthesis Example 1 to remove methanol and water, then 250 parts by weight of BuOH was added, and a curable resin composition (1 ) Was obtained at 1,000 parts by mass.

(実施例2:硬化性樹脂組成物(2)の製造)
攪拌機、温度計、滴下ロート、冷却管及び窒素ガス導入口を備えた反応容器に、BuOH 150質量部、PTMS 99質量部、DMDMS 263質量部を仕込んで80℃まで昇温した。
次いで、同温度でMMA 42質量部、BMA 8質量部、BA 7質量部、MPTS 4質量部、BuOH 6質量部及びTBPEH 1.2質量部を含有する混合物を、前記反応容器中へ5時間で滴下し、滴下終了後、更に同温度で20時間反応させて加水分解性シリル基を有する数平均分子量が10,300のビニル重合体(a2−2)の有機溶剤溶液を得た。
次いで、A−3 0.04質量部と脱イオン水 106質量部との混合物を、5分間で滴下し、更に同温度で10時間攪拌して加水分解縮合反応させることで、ビニル重合体(a2−2)の有する加水分解性シリル基と、前記PTMS及びDMDMS由来のポリシロキサンの有する加水分解性シリル基及びシラノール基とが結合した複合樹脂を含有する液を得た。
次いで、この液に合成例1で得られたMTMSの縮合物(a1’−1)447質量部、脱イオン水 76質量部を添加し、同温度で10時間攪拌して加水分解縮合反応させたものを、合成例1と同様の条件で蒸留することによって生成したメタノール及び水を除去し、次いで、BuOH 250質量部を添加し、不揮発分が60.0質量%の硬化性樹脂組成物(2)を1,000質量部得た。
(Example 2: Production of curable resin composition (2))
In a reaction vessel equipped with a stirrer, thermometer, dropping funnel, condenser and nitrogen gas inlet, 150 parts by mass of BuOH, 99 parts by mass of PTMS, and 263 parts by mass of DMDMS were charged and heated to 80 ° C.
Next, a mixture containing 42 parts by mass of MMA, 8 parts by mass of BMA, 7 parts by mass of BA, 4 parts by mass of MPTS, 6 parts by mass of BuOH and 1.2 parts by mass of TBPEH at the same temperature was added into the reaction vessel in 5 hours. The solution was added dropwise, and after completion of the addition, the reaction was further carried out at the same temperature for 20 hours to obtain an organic solvent solution of a vinyl polymer (a2-2) having a hydrolyzable silyl group and a number average molecular weight of 10,300.
Next, a mixture of 0.04 part by mass of A-3 and 106 parts by mass of deionized water was added dropwise over 5 minutes, and the mixture was further stirred at the same temperature for 10 hours to cause a hydrolysis condensation reaction, whereby a vinyl polymer (a2 -2) and a liquid containing a composite resin in which the hydrolyzable silyl group and silanol group of the polysiloxane derived from PTMS and DMDMS are combined.
Next, 447 parts by mass of the MTMS condensate (a1′-1) obtained in Synthesis Example 1 and 76 parts by mass of deionized water were added to this solution, and the mixture was stirred at the same temperature for 10 hours to cause a hydrolysis and condensation reaction. Methanol and water produced by distillation of the product under the same conditions as in Synthesis Example 1 were removed, 250 parts by weight of BuOH was added, and a curable resin composition (2% with a nonvolatile content of 60.0% by weight) was added. ) Was obtained at 1,000 parts by mass.

(実施例3:硬化性樹脂組成物(3)の製造)
攪拌機、温度計、滴下ロート、冷却管及び窒素ガス導入口を備えた反応容器に、BuOH 150質量部、PTMS 105質量部、DMDMS 277質量部を仕込んで80℃まで昇温した。
次いで、同温度でMMA 21質量部、BMA 4質量部、BA 3質量部、MPTS 2質量部、BuOH 3質量部及びTBPEH 0.6質量部を含有する混合物を、前記反応容器中へ6時間で滴下し、滴下終了後、更に同温度で20時間反応させて加水分解性シリル基を有する数平均分子量が10,000のビニル重合体(a2−3)の有機溶剤溶液を得た。
次いで、A−3 0.04質量部と脱イオン水 112質量部との混合物を、5分間で滴下し、更に同温度で10時間攪拌して加水分解縮合反応させることで、ビニル重合体(a2−3)の有する加水分解性シリル基と、前記PTMS及びDMDMS由来のポリシロキサンの有する加水分解性シリル基及びシラノール基とが結合した複合樹脂を含有する液を得た。
次いで、この液に合成例1で得られたMTMSの縮合物(a1’−1)472質量部、脱イオン水 80質量部を添加し、同温度で10時間攪拌して加水分解縮合反応させたものを、合成例1と同様の条件で蒸留することによって生成したメタノール及び水を除去し、次いで、BuOH 250質量部を添加し、不揮発分が60.1質量%の硬化性樹脂組成物(3)を1,000質量部得た。
(Example 3: Production of curable resin composition (3))
In a reaction vessel equipped with a stirrer, a thermometer, a dropping funnel, a condenser tube and a nitrogen gas inlet, 150 parts by mass of BuOH, 105 parts by mass of PTMS, and 277 parts by mass of DMDMS were charged and heated to 80 ° C.
Next, a mixture containing 21 parts by mass of MMA, 4 parts by mass of BMA, 3 parts by mass of BA, 2 parts by mass of MPTS, 3 parts by mass of BuOH and 0.6 parts by mass of TBPEH at the same temperature was added into the reaction vessel in 6 hours. After dropping, the reaction was further continued at the same temperature for 20 hours to obtain an organic solvent solution of a vinyl polymer (a2-3) having a hydrolyzable silyl group and a number average molecular weight of 10,000.
Next, a mixture of 0.04 parts by mass of A-3 and 112 parts by mass of deionized water was added dropwise over 5 minutes, and the mixture was further stirred at the same temperature for 10 hours to cause a hydrolysis condensation reaction, whereby a vinyl polymer (a2 -3) and a liquid containing a composite resin in which the hydrolyzable silyl group and silanol group of the polysiloxane derived from PTMS and DMDMS are combined.
Next, 472 parts by weight of the MTMS condensate (a1′-1) obtained in Synthesis Example 1 and 80 parts by weight of deionized water were added to this liquid, and the mixture was stirred at the same temperature for 10 hours to cause a hydrolysis and condensation reaction. Methanol and water produced | generated by distilling a thing on the conditions similar to the synthesis example 1 are removed, Then, 250 mass parts of BuOH is added, The volatile resin composition (3% of non-volatile content is 60.1 mass%) ) Was obtained at 1,000 parts by mass.

(実施例4:硬化性樹脂組成物(4)の製造)
攪拌機、温度計、滴下ロート、冷却管及び窒素ガス導入口を備えた反応容器に、BuOH 150質量部、PTMS 108質量部、DMDMS 286質量部を仕込んで80℃まで昇温した。
次いで、同温度でMMA 8質量部、BMA 2質量部、BA 1質量部、MPTS 1質量部、BuOH 2質量部及びTBPEH 0.3質量部を含有する混合物を、前記反応容器中へ6時間で滴下し、滴下終了後、更に同温度で20時間反応させて加水分解性シリル基を有する数平均分子量が10,300のビニル重合体(a2−4)の有機溶剤溶液を得た。
次いで、A−3 0.05質量部と脱イオン水 115質量部との混合物を、5分間で滴下し、更に同温度で10時間攪拌して加水分解縮合反応させることで、ビニル重合体(a2−4)の有する加水分解性シリル基と、前記PTMS及びDMDMS由来のポリシロキサンの有する加水分解性シリル基及びシラノール基とが結合した複合樹脂を含有する液を得た。
次いで、この液に合成例1で得られたMTMSの縮合物(a1’−1)487質量部、脱イオン水 82質量部を添加し、同温度で10時間攪拌して加水分解縮合反応させたものを、合成例1と同様の条件で蒸留することによって生成したメタノール及び水を除去し、次いで、BuOH 250質量部を添加し、不揮発分が60.2質量%の硬化性樹脂組成物(4)を1,000質量部得た。
(Example 4: Production of curable resin composition (4))
In a reaction vessel equipped with a stirrer, a thermometer, a dropping funnel, a condenser tube and a nitrogen gas inlet, 150 parts by mass of BuOH, 108 parts by mass of PTMS, and 286 parts by mass of DMDMS were charged and heated to 80 ° C.
Next, a mixture containing 8 parts by mass of MMA, 2 parts by mass of BMA, 1 part by mass of BA, 1 part by mass of MPTS, 2 parts by mass of BuOH and 0.3 part by mass of TBPEH at the same temperature was added into the reaction vessel in 6 hours. The solution was added dropwise, and after completion of the addition, the reaction was further carried out at the same temperature for 20 hours to obtain an organic solvent solution of a vinyl polymer (a2-4) having a hydrolyzable silyl group and a number average molecular weight of 10,300.
Next, a mixture of 0.05 part by mass of A-3 and 115 parts by mass of deionized water was added dropwise over 5 minutes, and the mixture was further stirred at the same temperature for 10 hours to cause a hydrolysis condensation reaction, whereby a vinyl polymer (a2 -4) and a liquid containing a composite resin in which the hydrolyzable silyl group and silanol group of the polysiloxane derived from PTMS and DMDMS are combined.
Next, 487 parts by mass of the MTMS condensate (a1′-1) obtained in Synthesis Example 1 and 82 parts by mass of deionized water were added to this solution, and the mixture was stirred at the same temperature for 10 hours to cause a hydrolysis and condensation reaction. The product was distilled under the same conditions as in Synthesis Example 1 to remove methanol and water, and then 250 parts by weight of BuOH was added, and a curable resin composition (4%) with a nonvolatile content of 60.2% by weight was added. ) Was obtained at 1,000 parts by mass.

(実施例5:硬化性樹脂組成物(5)の製造)
実施例2で使用した、MMA 42質量部、BMA 8質量部、BA 7質量部、MPTS 4質量部、BuOH 6質量部及びTBPEH 1.2質量部を含有する混合物の代わりに、MMA 18質量部、BMA 14質量部、BA 7質量部、アクリル酸(以下、「AA」と略記する。)1質量部、MPTS 2質量部、BuOH 6質量部及びTBPEH 0.9質量部を含有する混合物を使用した以外は、実施例2と同様の操作を行い、不揮発分が60.0%の硬化性樹脂組成物(5)を1,000質量部得た。
(Example 5: Production of curable resin composition (5))
Instead of the mixture containing 42 parts by weight of MMA, 8 parts by weight of BMA, 7 parts by weight of BA, 4 parts by weight of MPTS, 6 parts by weight of BuOH and 1.2 parts by weight of TBPEH used in Example 2, 18 parts by weight of MMA , 14 parts by mass of BMA, 7 parts by mass of BA, 1 part by mass of acrylic acid (hereinafter abbreviated as “AA”), 2 parts by mass of MPTS, 6 parts by mass of BuOH, and 0.9 part by mass of TBPEH are used. Except for this, the same operation as in Example 2 was performed to obtain 1,000 parts by mass of a curable resin composition (5) having a nonvolatile content of 60.0%.

(実施例6:硬化性樹脂組成物(6)の製造)
実施例2で使用した、MMA 42質量部、BMA 8質量部、BA 7質量部、MPTS 4質量部、BuOH 6質量部及びTBPEH 1.2質量部を含有する混合物の代わりに、MMA 12質量部、シクロヘキシルメタクリレート 15質量部、2−エチルヘキシルアクリレート 32質量部、MPTS 1質量部、BuOH 6質量部及びTBPEH 0.6質量部を含有する混合物を使用した以外は、実施例2と同様の操作を行ない、不揮発分が60.2%の硬化性樹脂組成物(6)を1,000質量部得た。
(Example 6: Production of curable resin composition (6))
Instead of the mixture containing 42 parts by weight of MMA, 8 parts by weight of BMA, 7 parts by weight of BA, 4 parts by weight of MPTS, 6 parts by weight of BuOH and 1.2 parts by weight of TBPEH used in Example 2, 12 parts by weight of MMA , Except that a mixture containing 15 parts by mass of cyclohexyl methacrylate, 32 parts by mass of 2-ethylhexyl acrylate, 1 part by mass of MPTS, 6 parts by mass of BuOH and 0.6 part by mass of TBPEH was used. 1,000 parts by mass of a curable resin composition (6) having a nonvolatile content of 60.2% was obtained.

(実施例7:硬化性樹脂組成物(7)の製造)
攪拌機、温度計、滴下ロート、冷却管及び窒素ガス導入口を備えた反応容器に、BuOH 150質量部、ジフェニルジメトキシシラン(以下、「DPDMS」と略記する。)133質量部、DMDMS 350質量部を仕込んで80℃まで昇温した。
次いで、同温度でMMA 18質量部、BMA 14質量部、BA 7質量部、AA 1質量部、MPTS 2質量部、BuOH 6質量部及びTBPEH 0.9質量部を含有する混合物を、前記反応容器中へ5時間で滴下し、滴下終了後、更に同温度で10時間反応させて加水分解性シリル基を有する数平均分子量が20,000のビニル重合体(a2−7)の有機溶剤溶液を得た。
次いで、A−3 0.05質量部と脱イオン水 134質量部との混合物を、5分間で滴下し、更に同温度で10時間攪拌して加水分解縮合反応させることで、ビニル重合体(a2−7)の有する加水分解性シリル基と、前記DPDMS及びDMDMS由来のポリシロキサンの有する加水分解性シリル基及びシラノール基とが結合した複合樹脂を含有する液を得た。
次いで、この液に合成例1で得られたMTMSの縮合物(a1’−1)309質量部、脱イオン水 52質量部を添加し、同温度で15時間攪拌して加水分解縮合反応させたものを、合成例1と同様の条件で蒸留することによって生成したメタノール及び水を除去し、次いで、BuOH 250質量部を添加し、不揮発分が60.0質量%の硬化性樹脂組成物(7)を1,000質量部得た。
(Example 7: Production of curable resin composition (7))
In a reaction vessel equipped with a stirrer, a thermometer, a dropping funnel, a condenser tube and a nitrogen gas inlet, 150 parts by mass of BuOH, 133 parts by mass of diphenyldimethoxysilane (hereinafter abbreviated as “DPDMS”), and 350 parts by mass of DMDMS are added. The temperature was raised to 80 ° C.
Subsequently, a mixture containing 18 parts by mass of MMA, 14 parts by mass of BMA, 7 parts by mass of BA, 1 part by mass of AA, 2 parts by mass of MPTS, 6 parts by mass of BuOH and 0.9 part by mass of TBPEH at the same temperature was added to the reaction vessel. The solution was added dropwise in 5 hours, and after completion of the addition, the mixture was further reacted at the same temperature for 10 hours to obtain an organic solvent solution of a vinyl polymer (a2-7) having a hydrolyzable silyl group and a number average molecular weight of 20,000. It was.
Next, a mixture of 0.05 part by mass of A-3 and 134 parts by mass of deionized water was added dropwise over 5 minutes, and the mixture was further stirred at the same temperature for 10 hours to cause a hydrolysis condensation reaction, whereby a vinyl polymer (a2 The liquid containing the composite resin which the hydrolyzable silyl group which -7) has, and the hydrolyzable silyl group and silanol group which the polysiloxane derived from said DPDMS and DMDMS have couple | bonded was obtained.
Next, 309 parts by mass of the MTMS condensate (a1′-1) obtained in Synthesis Example 1 and 52 parts by mass of deionized water were added to this liquid, and the mixture was stirred at the same temperature for 15 hours to cause a hydrolysis and condensation reaction. Methanol and water produced | generated by distilling a thing on the conditions similar to the synthesis example 1 are removed, Then, 250 mass parts of BuOH is added, The curable resin composition (7% of a non volatile matter is 60.0 mass%) ) Was obtained at 1,000 parts by mass.

(実施例8:硬化性樹脂組成物(8)の製造)
攪拌機、温度計、滴下ロート、冷却管及び窒素ガス導入口を備えた反応容器に、BuOH 150質量部、PTMS 249質量部、DMDMS 263質量部を仕込んで80℃まで昇温した。
次いで、同温度でMMA 18質量部、BMA 14質量部、BA 7質量部、AA 1質量部、MPTS 2質量部、BuOH 6質量部及びTBPEH 0.9質量部を含有する混合物を、前記反応容器中へ5時間で滴下し、滴下終了後、更に同温度で10時間反応させて加水分解性シリル基を有する数平均分子量が20,100のビニル重合体(a2−8)の有機溶剤溶液を得た。
次いで、A−3 0.05質量部と脱イオン水 147質量部との混合物を、5分間で滴下し、更に同温度で10時間攪拌して加水分解縮合反応させることで、ビニル重合体(a2−8)の有する加水分解性シリル基と、前記PTMS及びDMDMS由来のポリシロキサンの有する加水分解性シリル基及びシラノール基とが結合した複合樹脂を含有する液を得た。
次いで、この液に3−グリシドキシプロピルトリメトキシシラン 76質量部、合成例1で得られたMTMSの縮合物(a1’−1)231質量部、脱イオン水 56質量部を添加し、同温度で15時間攪拌して加水分解縮合反応させたものを、合成例1と同様の条件で蒸留することによって生成したメタノール及び水を除去し、次いで、BuOH 250質量部を添加し、不揮発分が60.0質量%の硬化性樹脂組成物(8)を1,000質量部得た。
(Example 8: Production of curable resin composition (8))
In a reaction vessel equipped with a stirrer, a thermometer, a dropping funnel, a condenser tube and a nitrogen gas inlet, 150 parts by mass of BuOH, 249 parts by mass of PTMS, and 263 parts by mass of DMDMS were charged and heated to 80 ° C.
Subsequently, a mixture containing 18 parts by mass of MMA, 14 parts by mass of BMA, 7 parts by mass of BA, 1 part by mass of AA, 2 parts by mass of MPTS, 6 parts by mass of BuOH and 0.9 part by mass of TBPEH at the same temperature was added to the reaction vessel. The solution was added dropwise in 5 hours, and after completion of the addition, the mixture was further reacted at the same temperature for 10 hours to obtain an organic solvent solution of a vinyl polymer (a2-8) having a hydrolyzable silyl group and a number average molecular weight of 20,100. It was.
Next, a mixture of 0.05 part by mass of A-3 and 147 parts by mass of deionized water was added dropwise over 5 minutes, and the mixture was further stirred at the same temperature for 10 hours to cause a hydrolysis condensation reaction, whereby a vinyl polymer (a2 A liquid containing a composite resin in which the hydrolyzable silyl group possessed by -8) and the hydrolyzable silyl group and silanol group possessed by the polysiloxane derived from PTMS and DMDMS were combined was obtained.
Next, 76 parts by mass of 3-glycidoxypropyltrimethoxysilane, 231 parts by mass of the MTMS condensate (a1′-1) obtained in Synthesis Example 1, and 56 parts by mass of deionized water were added to this solution. Methanol and water produced by distillation under the same conditions as in Synthesis Example 1 were removed by stirring for 15 hours at a temperature to remove methanol and water, and then 250 parts by mass of BuOH was added. 1,000 mass parts of 60.0 mass% curable resin composition (8) were obtained.

(実施例9:硬化性樹脂組成物(9)の製造)
攪拌機、温度計、滴下ロート、冷却管及び窒素ガス導入口を備えた反応容器に、BuOH 150質量部、PTMS 414質量部、DMDMS 263質量部を仕込んで80℃まで昇温した。
次いで、同温度でMMA 18質量部、BMA 14質量部、BA 7質量部、AA 1質量部、MPTS 2質量部、BuOH 6質量部及びTBPEH 0.9質量部を含有する混合物を、前記反応容器中へ6時間で滴下し、滴下終了後、更に同温度で10時間反応させて加水分解性シリル基を有する数平均分子量が19,600のビニル重合体(a2−9)の有機溶剤溶液を得た。
次いで、A−3 0.07質量部と脱イオン水 192質量部との混合物を、5分間で滴下し、更に同温度で10時間攪拌して加水分解縮合反応させることで、ビニル重合体(a2−9)の有する加水分解性シリル基と、前記PTMS及びDMDMS由来のポリシロキサンの有する加水分解性シリル基及びシラノール基とが結合した複合樹脂を含有する液を得た。
次いで、この液に合成例1で得られたMTMSの縮合物(a1’−1)154質量部、脱イオン水 26質量部を添加し、同温度で5時間攪拌して加水分解縮合反応させたものを、合成例1と同様の条件で蒸留することによって生成したメタノール及び水を除去し、次いで、BuOH 250質量部を添加し、不揮発分が60.1質量%の硬化性樹脂組成物(9)を1,000質量部得た。
(Example 9: Production of curable resin composition (9))
In a reaction vessel equipped with a stirrer, a thermometer, a dropping funnel, a condenser tube and a nitrogen gas inlet, 150 parts by mass of BuOH, 414 parts by mass of PTMS and 263 parts by mass of DMDMS were charged and heated to 80 ° C.
Subsequently, a mixture containing 18 parts by mass of MMA, 14 parts by mass of BMA, 7 parts by mass of BA, 1 part by mass of AA, 2 parts by mass of MPTS, 6 parts by mass of BuOH and 0.9 part by mass of TBPEH at the same temperature was added to the reaction vessel. The solution was added dropwise in 6 hours, and after completion of the addition, the mixture was further reacted at the same temperature for 10 hours to obtain an organic solvent solution of a vinyl polymer (a2-9) having a hydrolyzable silyl group and a number average molecular weight of 19,600. It was.
Next, a mixture of 0.07 parts by mass of A-3 and 192 parts by mass of deionized water was added dropwise over 5 minutes, and the mixture was further stirred at the same temperature for 10 hours to cause a hydrolysis condensation reaction, whereby a vinyl polymer (a2 The liquid containing the composite resin which the hydrolyzable silyl group which -9) has, and the hydrolyzable silyl group and silanol group which the polysiloxane derived from said PTMS and DMDMS have couple | bonded was obtained.
Next, 154 parts by mass of the MTMS condensate (a1′-1) obtained in Synthesis Example 1 and 26 parts by mass of deionized water were added to this liquid, and the mixture was stirred at the same temperature for 5 hours to cause a hydrolysis and condensation reaction. Methanol and water produced | generated by distilling a thing on the conditions similar to the synthesis example 1 are removed, Then, 250 mass parts of BuOH is added, Non-volatile content is 60.1 mass% curable resin composition (9 ) Was obtained at 1,000 parts by mass.

(比較例1:硬化性樹脂組成物(R−1)の製造)
攪拌機、温度計、滴下ロート、冷却管及び窒素ガス導入口を備えた反応容器に、BuOH 150質量部、PTMS 33質量部、DMDMS 88質量部を仕込んで80℃まで昇温した。
次いで、同温度でMMA 294質量部、BMA 55質量部、BA 46質量部、MPTS 25質量部、BuOH 42質量部及びTBPEH 8.4質量部を含有する混合物を、前記反応容器中へ3時間で滴下し、滴下終了後、更に同温度で20時間反応させて加水分解性シリル基を有する数平均分子量が11,000のビニル重合体(Ra2−1)の有機溶剤溶液を得た。
次いで、A−3 0.01質量部と脱イオン水 35質量部との混合物を、5分間で滴下し、更に同温度で10時間攪拌して加水分解縮合反応させることで、ビニル重合体(Ra2−1)の有する加水分解性シリル基と、前記PTMS及びDMDMS由来のポリシロキサンの有する加水分解性シリル基及びシラノール基とが結合した複合樹脂を含有する液を得た。
次いで、この液に合成例1で得られたMTMSの縮合物(a1’−1)149質量部、脱イオン水 25質量部を添加し、同温度で10時間攪拌して加水分解縮合反応させたものを、合成例1と同様の条件で蒸留することによって生成したメタノール及び水を除去し、次いで、BuOH 250質量部を添加し、不揮発分が60.0質量%の硬化性樹脂組成物(R−1)を1,000質量部得た。
(Comparative Example 1: Production of curable resin composition (R-1))
In a reaction vessel equipped with a stirrer, a thermometer, a dropping funnel, a condenser tube and a nitrogen gas inlet, 150 parts by mass of BuOH, 33 parts by mass of PTMS, and 88 parts by mass of DMDMS were charged and heated to 80 ° C.
Next, a mixture containing 294 parts by mass of MMA, 55 parts by mass of BMA, 46 parts by mass of BA, 25 parts by mass of MPTS, 42 parts by mass of BuOH and 8.4 parts by mass of TBPEH at the same temperature was added into the reaction vessel in 3 hours. After the dropwise addition, the reaction was further continued at the same temperature for 20 hours to obtain an organic solvent solution of a vinyl polymer (Ra2-1) having a hydrolyzable silyl group and a number average molecular weight of 11,000.
Next, a mixture of 0.01 part by mass of A-3 and 35 parts by mass of deionized water was added dropwise over 5 minutes, and the mixture was further stirred at the same temperature for 10 hours to cause a hydrolysis condensation reaction, whereby a vinyl polymer (Ra2 A liquid containing a composite resin in which the hydrolyzable silyl group possessed by -1) and the hydrolyzable silyl group and silanol group possessed by the polysiloxane derived from PTMS and DMDMS were obtained.
Next, 149 parts by mass of the MTMS condensate (a1′-1) obtained in Synthesis Example 1 and 25 parts by mass of deionized water were added to this liquid, and the mixture was stirred at the same temperature for 10 hours to cause a hydrolysis and condensation reaction. The methanol and water produced | generated by distilling a thing on the conditions similar to the synthesis example 1 are removed, Then, 250 mass parts of BuOH is added, The curable resin composition (R) whose non volatile matter is 60.0 mass% 1,000 parts by weight of -1) was obtained.

(比較例2:硬化性樹脂組成物(R−2)の製造)
攪拌機、温度計、滴下ロート、冷却管及び窒素ガス導入口を備えた反応容器に、BuOH 150質量部、PTMS 66質量部、DMDMS 175質量部を仕込んで80℃まで昇温した。
次いで、同温度でMMA 168質量部、BMA 31質量部、BA 26質量部、MPTS 14質量部、BuOH 24質量部及びTBPEH 4.8質量部を含有する混合物を、前記反応容器中へ4時間で滴下し、滴下終了後、更に同温度で20時間反応させて加水分解性シリル基を有する数平均分子量が10,200のビニル重合体(Ra2−2)の有機溶剤溶液を得た。
次いで、A−3 0.03質量部と脱イオン水 70質量部との混合物を、5分間で滴下し、更に同温度で10時間攪拌して加水分解縮合反応させることで、ビニル重合体(Ra2−2)の有する加水分解性シリル基と、前記PTMS及びDMDMS由来のポリシロキサンの有する加水分解性シリル基及びシラノール基とが結合した複合樹脂を含有する液を得た。
次いで、この液に合成例1で得られたMTMSの縮合物(a1’−1)298質量部、脱イオン水 50質量部を添加し、同温度で10時間攪拌して加水分解縮合反応させたものを、合成例1と同様の条件で蒸留することによって生成したメタノール及び水を除去し、次いで、BuOH 250質量部を添加し、不揮発分が60.0質量%の硬化性樹脂組成物(R−2)の溶液1,000質量部を得た。
(Comparative Example 2: Production of curable resin composition (R-2))
In a reaction vessel equipped with a stirrer, thermometer, dropping funnel, condenser and nitrogen gas inlet, 150 parts by mass of BuOH, 66 parts by mass of PTMS, and 175 parts by mass of DMDMS were charged and heated to 80 ° C.
Next, a mixture containing 168 parts by mass of MMA, 31 parts by mass of BMA, 26 parts by mass of BA, 14 parts by mass of MPTS, 24 parts by mass of BuOH and 4.8 parts by mass of TBPEH at the same temperature was added into the reaction vessel in 4 hours. The solution was added dropwise, and after completion of the addition, the reaction was further carried out at the same temperature for 20 hours to obtain an organic solvent solution of a vinyl polymer (Ra2-2) having a hydrolyzable silyl group and a number average molecular weight of 10,200.
Next, a mixture of 0.03 parts by mass of A-3 and 70 parts by mass of deionized water was added dropwise over 5 minutes, and the mixture was further stirred for 10 hours at the same temperature to cause a hydrolysis condensation reaction, whereby a vinyl polymer (Ra2 -2) and a liquid containing a composite resin in which the hydrolyzable silyl group and silanol group of the polysiloxane derived from PTMS and DMDMS are combined.
Next, 298 parts by mass of the MTMS condensate (a1′-1) obtained in Synthesis Example 1 and 50 parts by mass of deionized water were added to this solution, and the mixture was stirred at the same temperature for 10 hours to cause a hydrolysis and condensation reaction. The methanol and water produced | generated by distilling a thing on the conditions similar to the synthesis example 1 are removed, Then, 250 mass parts of BuOH is added, The curable resin composition (R) whose non volatile matter is 60.0 mass% -2) of 1,000 parts by mass was obtained.

(比較例3:硬化性樹脂組成物(R−3)の製造)
攪拌機、温度計、滴下ロート、冷却管及び窒素ガス導入口を備えた反応容器に、BuOH 150質量部、PTMS 111質量部、DMDMS 292質量部を仕込んで80℃まで昇温した。
次いで、同温度でA−3 0.05質量部と脱イオン水 118質量部との混合物を、5分間で滴下し、更に同温度で10時間攪拌して加水分解縮合反応させることで、前記PTMS及びDMDMS由来のポリシロキサンを含有する液を得た。
次いで、この液に合成例1で得られたMTMSの縮合物(a1’−1)497質量部、脱イオン水 84質量部を添加し、同温度で10時間攪拌して加水分解縮合反応させたものを、合成例1と同様の条件で蒸留することによって生成したメタノール及び水を除去し、次いで、BuOH 250質量部を添加し、不揮発分が60.0質量%の硬化性樹脂組成物(R−3)の溶液1,000質量部を得た。
(Comparative Example 3: Production of curable resin composition (R-3))
In a reaction vessel equipped with a stirrer, a thermometer, a dropping funnel, a cooling pipe and a nitrogen gas inlet, 150 parts by mass of BuOH, 111 parts by mass of PTMS, and 292 parts by mass of DMDMS were charged and heated to 80 ° C.
Next, at the same temperature, a mixture of 0.05 part by mass of A-3 and 118 parts by mass of deionized water was added dropwise over 5 minutes, and the mixture was further stirred for 10 hours at the same temperature to cause a hydrolysis condensation reaction. And a liquid containing DMDMS-derived polysiloxane was obtained.
Next, 497 parts by mass of the MTMS condensate (a1′-1) obtained in Synthesis Example 1 and 84 parts by mass of deionized water were added to this solution, and the mixture was stirred at the same temperature for 10 hours to cause a hydrolysis and condensation reaction. The methanol and water produced | generated by distilling a thing on the conditions similar to the synthesis example 1 are removed, Then, 250 mass parts of BuOH is added, The curable resin composition (R) whose non volatile matter is 60.0 mass% -3) 1,000 parts by mass of solution was obtained.

(比較例4:硬化性樹脂組成物(R−4)の製造)
攪拌機、温度計、滴下ロート、冷却管及び窒素ガス導入口を備えた反応容器に、BuOH 150質量部、PTMS 41質量部、DMDMS 263質量部を仕込んで80℃まで昇温した。
次いで、同温度でMMA 42質量部、BMA 8質量部、BA 7質量部、MPTS 4質量部、BuOH 6質量部及びTBPEH 1.2質量部を含有する混合物を、前記反応容器中へ5時間で滴下し、滴下終了後、更に同温度で20時間反応させて加水分解性シリル基を有する数平均分子量が10,400のビニル重合体(Ra2−4)の有機溶剤溶液を得た。
次いで、A−3 0.04質量部と脱イオン水 90質量部との混合物を、5分間で滴下し、更に同温度で10時間攪拌して加水分解縮合反応させることで、ビニル重合体(Ra2−4)の有する加水分解性シリル基と、前記PTMS及びDMDMS由来のポリシロキサンの有する加水分解性シリル基及びシラノール基とが結合した複合樹脂を含有する液を得た。
次いで、この液に合成例1で得られたMTMSの縮合物(a1’−1)501質量部、脱イオン水 85質量部を添加し、同温度で10時間攪拌して加水分解縮合反応させたものを、合成例1と同様の条件で蒸留することによって生成したメタノール及び水を除去し、次いで、BuOH 250質量部を添加し、不揮発分が60.0質量%の硬化性樹脂組成物(R−4)の溶液1,000質量部を得た。
(Comparative Example 4: Production of curable resin composition (R-4))
In a reaction vessel equipped with a stirrer, a thermometer, a dropping funnel, a condenser tube and a nitrogen gas inlet, 150 parts by mass of BuOH, 41 parts by mass of PTMS, and 263 parts by mass of DMDMS were charged and heated to 80 ° C.
Next, a mixture containing 42 parts by mass of MMA, 8 parts by mass of BMA, 7 parts by mass of BA, 4 parts by mass of MPTS, 6 parts by mass of BuOH and 1.2 parts by mass of TBPEH at the same temperature was added into the reaction vessel in 5 hours. The solution was added dropwise, and after completion of the addition, the reaction was further carried out at the same temperature for 20 hours to obtain an organic solvent solution of a vinyl polymer (Ra2-4) having a hydrolyzable silyl group and a number average molecular weight of 10,400.
Subsequently, a mixture of 0.04 parts by mass of A-3 and 90 parts by mass of deionized water was added dropwise over 5 minutes, and the mixture was further stirred at the same temperature for 10 hours to cause a hydrolysis condensation reaction, whereby a vinyl polymer (Ra2 -4) and a liquid containing a composite resin in which the hydrolyzable silyl group and silanol group of the polysiloxane derived from PTMS and DMDMS are combined.
Subsequently, 501 parts by mass of the MTMS condensate (a1′-1) obtained in Synthesis Example 1 and 85 parts by mass of deionized water were added to this liquid, and the mixture was stirred at the same temperature for 10 hours to cause a hydrolysis and condensation reaction. The methanol and water produced | generated by distilling a thing on the conditions similar to the synthesis example 1 are removed, Then, 250 mass parts of BuOH is added, The curable resin composition (R) whose non volatile matter is 60.0 mass% -4) 1,000 parts by mass of solution was obtained.

(比較例5:硬化性樹脂組成物(R−5)の製造)
攪拌機、温度計、滴下ロート、冷却管及び窒素ガス導入口を備えた反応容器に、BuOH 150質量部、PTMS 332質量部、DMDMS 350質量部を仕込んで80℃まで昇温した。
次いで、同温度でMMA 42質量部、BMA 8質量部、BA 7質量部、MPTS 4質量部、BuOH 6質量部及びTBPEH 1.2質量部を含有する混合物を、前記反応容器中へ6時間で滴下し、滴下終了後、更に同温度で20時間反応させて加水分解性シリル基を有する数平均分子量が10,000のビニル重合体(Ra2−5)の有機溶剤溶液を得た。
次いで、A−3 0.07質量部と脱イオン水 195質量部との混合物を、5分間で滴下し、更に同温度で10時間攪拌して加水分解縮合反応させることで、ビニル重合体(Ra2−5)の有する加水分解性シリル基と、前記PTMS及びDMDMS由来のポリシロキサンの有する加水分解性シリル基及びシラノール基とが結合した複合樹脂を含有する液を得た。
次いで、この液に3−グリシドキシプロピルトリメトキシシラン 153質量部、脱イオン水 35質量部を添加し、同温度で10時間攪拌して加水分解縮合反応させたものを、合成例1と同様の条件で蒸留することによって生成したメタノール及び水を除去し、次いで、BuOH 250質量部を添加し、不揮発分が60.0質量%の硬化性樹脂組成物(R−5)の溶液1,000質量部を得た。
(Comparative Example 5: Production of curable resin composition (R-5))
In a reaction vessel equipped with a stirrer, a thermometer, a dropping funnel, a condenser tube and a nitrogen gas inlet, 150 parts by mass of BuOH, 332 parts by mass of PTMS, and 350 parts by mass of DMDMS were charged and heated to 80 ° C.
Subsequently, a mixture containing 42 parts by mass of MMA, 8 parts by mass of BMA, 7 parts by mass of BA, 4 parts by mass of MPTS, 6 parts by mass of BuOH and 1.2 parts by mass of TBPEH at the same temperature was added into the reaction vessel in 6 hours. The solution was added dropwise, and after completion of the addition, the mixture was further reacted at the same temperature for 20 hours to obtain an organic solvent solution of a vinyl polymer (Ra2-5) having a hydrolyzable silyl group and a number average molecular weight of 10,000.
Next, a mixture of 0.07 part by mass of A-3 and 195 parts by mass of deionized water was added dropwise over 5 minutes, and the mixture was further stirred for 10 hours at the same temperature to cause a hydrolysis condensation reaction, whereby a vinyl polymer (Ra2 The liquid containing the composite resin which the hydrolyzable silyl group which -5) has, and the hydrolyzable silyl group and silanol group which the polysiloxane derived from said PTMS and DMDMS have couple | bonded was obtained.
Next, 153 parts by mass of 3-glycidoxypropyltrimethoxysilane and 35 parts by mass of deionized water were added to this solution, and the mixture was stirred at the same temperature for 10 hours to undergo a hydrolysis and condensation reaction, as in Synthesis Example 1. The methanol and water produced | generated by distilling on the conditions of this are removed, 250 mass parts of BuOH is then added, and the solution 1000 of curable resin composition (R-5) whose non volatile matter is 60.0 mass% A mass part was obtained.

(比較例6:硬化性樹脂組成物(R−6)の製造)
攪拌機、温度計、滴下ロート、冷却管及び窒素ガス導入口を備えた反応容器に、BuOH 690質量部を仕込んで80℃まで昇温した。
次いで、同温度でMMA 193質量部、BMA 36質量部、BA 30質量部、MPTS 17質量部、BuOH 28質量部及びTBPEH 5.5質量部を含有する混合物を、前記反応容器中へ3時間で滴下し、滴下終了後、更に同温度で20時間反応させて数平均分子量が10,300のビニル重合体(Ra2−6)の有機溶剤溶液を得た。
次いで、比較例3で得た硬化性樹脂組成物(R−3)808質量部と不揮発分が28.0質量%のビニル重合体(Ra2−6)の有機溶剤溶液 192質量部とを混合し、同温度で1時間攪拌することで不揮発分が53.8質量%の硬化性樹脂組成物(R−6)の溶液1,000質量部を得た。
(Comparative Example 6: Production of curable resin composition (R-6))
In a reaction vessel equipped with a stirrer, a thermometer, a dropping funnel, a cooling pipe and a nitrogen gas inlet, 690 parts by weight of BuOH was charged and heated to 80 ° C.
Next, a mixture containing 193 parts by mass of MMA, 36 parts by mass of BMA, 30 parts by mass of BA, 17 parts by mass of MPTS, 28 parts by mass of BuOH and 5.5 parts by mass of TBPEH at the same temperature was added into the reaction vessel in 3 hours. After dropping, the reaction was further continued at the same temperature for 20 hours to obtain an organic solvent solution of vinyl polymer (Ra2-6) having a number average molecular weight of 10,300.
Next, 808 parts by mass of the curable resin composition (R-3) obtained in Comparative Example 3 and 192 parts by mass of an organic solvent solution of a vinyl polymer (Ra2-6) having a nonvolatile content of 28.0% by mass were mixed. By stirring at the same temperature for 1 hour, 1,000 parts by mass of a solution of a curable resin composition (R-6) having a nonvolatile content of 53.8% by mass was obtained.

[保存安定性の評価]
上記で得られた硬化性樹脂組成物の保存安定性を、50℃において、30日間保存したものの粘度(いわゆる経時粘度)を分子とし、初期粘度を分母とする粘度比で評価した。粘度測定は、E型粘度計(東京計器株式会社製)を用いて25℃にて行った。また、サンプルの保存は、得られた硬化性樹脂組成物をガラス製チュ−ブに入れて、50℃の環境下で30日間静置せしめることによって行った。この粘度比が1に近い値であるほど、保存安定性が優れているということを意味しており、粘度比が0.9以上1.1以下で保存安定性が非常に優れている樹脂であるものと判定した。
[Evaluation of storage stability]
The storage stability of the curable resin composition obtained above was evaluated based on the viscosity ratio of the one stored for 30 days at 50 ° C. as the numerator and the initial viscosity as the denominator. The viscosity was measured at 25 ° C. using an E-type viscometer (manufactured by Tokyo Keiki Co., Ltd.). The sample was stored by placing the obtained curable resin composition in a glass tube and allowing it to stand at 50 ° C. for 30 days. The closer this viscosity ratio is to 1, the better the storage stability, and the more excellent the storage stability with a viscosity ratio of 0.9 to 1.1. It was judged that there was.

[評価用硬化塗膜の作製]
上記で得られた硬化性樹脂組成物を、軟質ガラス板、株式会社エンジニアリングテストサービス製のクロメート処理されたアルミ板上に、硬化塗膜の膜厚が30μmとなるように塗装し、23℃の環境下で1週間乾燥させて評価用硬化塗膜を得た。
[Production of cured coating film for evaluation]
The curable resin composition obtained above was coated on a soft glass plate, a chromate-treated aluminum plate manufactured by Engineering Test Service Co., Ltd. so that the thickness of the cured coating film was 30 μm, and The cured coating film for evaluation was obtained by drying in an environment for 1 week.

[塗膜外観の評価]
上記で得られた硬化塗膜を目視で観察し、下記の基準で塗膜外観を評価した。
○:クラックおよび白化の発生が認められない。
△:若干のクラックまたは白化の発生が認められる。
×:クラックまたは白化の発生が認められる。
[Evaluation of coating appearance]
The cured coating film obtained above was observed visually, and the coating film appearance was evaluated according to the following criteria.
○: Cracks and whitening are not observed.
Δ: Some cracks or whitening is observed.
X: Generation | occurrence | production of a crack or whitening is recognized.

[密着性の評価]
上記で得られた評価用硬化塗膜について、JIS K−5600 碁盤目試験法に基づいて測定した。前記硬化塗膜の上にカッターで1mm幅の切込みを入れ碁盤目の数を100個とし、全ての碁盤目を覆うようにセロハンテープを貼り付け、すばやく引き剥がして付着して残っている碁盤目の数を数え、下記の基準で評価した。
○:はがれなし。
△:はがれの面積は、全碁盤目面積の1〜64%。
×:はがれの面積は、全碁盤目面積の65%以上。
[Evaluation of adhesion]
The cured coating film for evaluation obtained above was measured based on the JIS K-5600 cross cut test method. A 1 mm wide cut is made on the cured coating film with a cutter, the number of grids is 100, cellophane tape is applied so as to cover all grids, and they are peeled off quickly to adhere and remain. Was counted and evaluated according to the following criteria.
○: No peeling.
Δ: The area of peeling is 1 to 64% of the total grid area.
X: The area of peeling is 65% or more of the total grid area.

[耐熱性(外観)の評価]
上記で得られた評価用硬化塗膜について、300℃雰囲気の乾燥機に24時間静置した後に乾燥機から取り出した後の外観を目視で観察し、下記の基準で評価した。
○:クラックの発生が認められない。
△:若干のクラックの発生が認められる。
×:クラックの発生が認められる。
[Evaluation of heat resistance (appearance)]
About the cured coating film for evaluation obtained above, after leaving still for 24 hours in a dryer at 300 ° C. atmosphere, the appearance after taking out from the dryer was visually observed and evaluated according to the following criteria.
○: Generation of cracks is not recognized.
Δ: Some cracks are observed.
X: Generation | occurrence | production of a crack is recognized.

[耐熱性(密着性)の評価]
上記で得られた評価用硬化塗膜について、300℃雰囲気の乾燥機に24時間静置した後に乾燥機から取り出し1時間静置した。その後、塗膜の上にカッターで1mm幅の切込みを入れ碁盤目の数を100個とし、全ての碁盤目を覆うようにセロハンテープを貼り付け、すばやく引き剥がして付着して残っている碁盤目の数を数え、下記の基準で評価した。
○:はがれなし。
△:はがれの面積は、全碁盤目面積の1〜64%。
×:はがれの面積は、全碁盤目面積の65%以上。
[Evaluation of heat resistance (adhesion)]
The cured coating film for evaluation obtained above was left in a dryer at 300 ° C. for 24 hours, then taken out from the dryer and allowed to stand for 1 hour. After that, a 1mm wide cut is made on the coating film with a cutter, the number of grids is 100, cellophane tape is applied so as to cover all grids, and they are peeled off quickly and adhered to the grids. Was counted and evaluated according to the following criteria.
○: No peeling.
Δ: The area of peeling is 1 to 64% of the total grid area.
X: The area of peeling is 65% or more of the total grid area.

[耐溶剤性の評価]
上記で得られた評価用硬化塗膜について、エタノールを浸み込ませたフェルトで、硬化塗膜上を往復50回ラビングしたのちの硬化塗膜の状態を、指触及び目視により判定し、下記の基準で評価した。
○:軟化及び光沢低下が認められない。
△:若干の軟化又は光沢低下が認められる。
×:著しい軟化又は光沢低下が認められる。
[Evaluation of solvent resistance]
About the cured coating film for evaluation obtained above, the state of the cured coating film after rubbing 50 times on the cured coating film with a felt soaked with ethanol was determined by touch and visual observation, and the following: Evaluation based on the criteria.
○: Softening and gloss reduction are not recognized.
(Triangle | delta): Some softening or gloss reduction is recognized.
X: Significant softening or gloss reduction is observed.

[耐酸性の評価]
上記で得られた評価用硬化塗膜について、硬化塗膜の一部を5%硫酸水溶液に浸し、25℃で7日間放置した後、硬化塗膜を水洗いし、乾燥した後の硬化塗膜の表面状態を目視で観察し、下記の基準で評価した。
○:エッチング跡が認められる
△:若干エッチング跡が認められる。
×:エッチングが著しく認められる。
[Evaluation of acid resistance]
About the cured coating film for evaluation obtained above, a part of the cured coating film was immersed in a 5% sulfuric acid aqueous solution and allowed to stand at 25 ° C. for 7 days, and then the cured coating film was washed with water and dried. The surface condition was visually observed and evaluated according to the following criteria.
○: Etching traces are observed Δ: Some etching traces are observed.
*: Etching is recognized remarkably.

[耐候性(外観)の評価]
上記で得られた評価用硬化塗膜について、デューパネル光ウェザーメーター(スガ試験機株式会社製、光照射時:30W/m、70℃;湿潤時:湿度90%以上、50℃、光照射/湿潤サイクル=8時間/4時間)で1,000時間曝露を行なった後の塗膜を目視で観察し、下記の基準で塗膜外観を評価した。
○:クラックの発生が認められない。
△:若干のクラックの発生が認められる。
×:クラックの発生が認められる。
[Evaluation of weather resistance (appearance)]
About the cured coating film for evaluation obtained above, Dew panel optical weather meter (manufactured by Suga Test Instruments Co., Ltd., light irradiation: 30 W / m 2 , 70 ° C .; wet: 90% humidity, 50 ° C., light irradiation / Wet cycle = 8 hours / 4 hours), the coating film after 1,000 hours exposure was visually observed, and the coating film appearance was evaluated according to the following criteria.
○: Generation of cracks is not recognized.
Δ: Some cracks are observed.
X: Generation | occurrence | production of a crack is recognized.

[耐候性(光沢保持率)の評価]
作製直後の評価用硬化塗膜の鏡面反射率(光沢値)(%)と、前記硬化塗膜を、デューパネル光ウェザーメーター(スガ試験機株式会社製、光照射時:30W/m2、70℃;湿潤時:湿度90%以上、50℃、光照射/湿潤サイクル=8時間/4時間)で1,000時間曝露した後の塗膜の鏡面反射率(光沢値)(%)の、曝露前の硬化塗膜の鏡面反射率(光沢値)に対する保持率(光沢保持率:%)〔(100×暴露後の塗膜の鏡面反射率)/(曝露前の硬化塗膜の鏡面反射率)〕で評価した。保持率の値が大きいほど、耐候性が良好であることを示す。
[Evaluation of weather resistance (gloss retention)]
The specular reflectance (gloss value) (%) of the cured coating film for evaluation immediately after production and the cured coating film were converted into a dew panel light weather meter (manufactured by Suga Test Instruments Co., Ltd., light irradiation: 30 W / m 2, 70 ° C. When wet: before exposure, the specular reflectance (gloss value) (%) of the coating film after 1,000 hours exposure at a humidity of 90% or higher, 50 ° C., light irradiation / wetting cycle = 8 hours / 4 hours) Retention rate (gloss retention rate:%) of the cured coating film with respect to the specular reflectance (gloss value) [(100 × specular reflectance of the coated film after exposure) / (mirror reflectance of the cured coating film before exposure)] It was evaluated with. It shows that a weather resistance is so favorable that the value of a retention rate is large.

上記の実施例1〜9の評価結果を表1及び表2に示す。   The evaluation results of Examples 1 to 9 are shown in Tables 1 and 2.

Figure 2019006873
Figure 2019006873

Figure 2019006873
Figure 2019006873

上記の比較例1〜6の評価結果を表3に示す。   Table 3 shows the evaluation results of the above Comparative Examples 1-6.

Figure 2019006873
Figure 2019006873

実施例1〜9の本発明の樹脂組成物は保存安定性に優れ、これらの樹脂組成物からは、耐熱性、耐溶剤性、耐酸性、耐候性等の各種塗膜物性に優れる硬化塗膜が得られることが確認された。   The resin compositions of the present invention of Examples 1 to 9 are excellent in storage stability, and from these resin compositions, cured coating films excellent in various coating film properties such as heat resistance, solvent resistance, acid resistance, and weather resistance. It was confirmed that

比較例1及び2は、複合樹脂(A)中のポリシロキサン(a1)が、本発明の下限である75質量%より低い例であるが、得られる塗膜の耐熱性が不十分であることが確認された。   Comparative Examples 1 and 2 are examples in which the polysiloxane (a1) in the composite resin (A) is lower than 75% by mass which is the lower limit of the present invention, but the heat resistance of the obtained coating film is insufficient. Was confirmed.

比較例3は、重合体(a2)を含有しない例であるが、保存安定性が不十分であり、また、塗膜形成が不十分であることが確認された。   Although the comparative example 3 is an example which does not contain a polymer (a2), it was confirmed that storage stability is inadequate and coating film formation is inadequate.

比較例4は、ポリシロキサン(a1)中の構造単位(U1)が、本発明の下限である10質量%より少ない例であるが、保存安定性が不十分であり、得られる塗膜が白化し塗膜外観が不十分であり、また、密着性および耐熱性が不十分であることが確認された。   Comparative Example 4 is an example in which the structural unit (U1) in the polysiloxane (a1) is less than 10% by mass which is the lower limit of the present invention, but the storage stability is insufficient, and the resulting coating film is white. It was confirmed that the appearance of the coating film was insufficient and the adhesion and heat resistance were insufficient.

比較例5は、ポリシロキサン(a1)中に構造単位(U2)を有しない例であるが、得られる塗膜の耐候性が不十分であることが確認された。   Although the comparative example 5 is an example which does not have a structural unit (U2) in polysiloxane (a1), it was confirmed that the weather resistance of the coating film obtained is inadequate.

比較例6は、ポリシロキサン溶液とビニル系重合体溶液をブレンドした例であるが、保存安定性が不十分で、また、塗膜形成が不十分であることが確認された。   Comparative Example 6 was an example in which a polysiloxane solution and a vinyl polymer solution were blended, but it was confirmed that the storage stability was insufficient and the coating film formation was insufficient.

Figure 2019006873
(一般式(1)、(2)中のRは芳香族炭化水素置換基を表し、Rは芳香族炭化水素
置換基又はアルキル基を表す。)
Figure 2019006873
(R 1 in the general formulas (1) and (2) represents an aromatic hydrocarbon substituent, and R 2 represents an aromatic hydrocarbon substituent or an alkyl group.)

Claims (4)

一般式(1)又は(2)で表される構造単位(U1)、及び一般式(3)で表される構造単位(U2)を有するポリシロキサン(a1)と重合体(a2)とが一般式(4)で表される結合により結合した複合樹脂(A)が、媒体中に溶解又は分散している硬化性樹脂組成物であって、前記複合樹脂(A)中の前記ポリシロキサン(a1)が75〜99質量%であり、前記ポリシロキサン(a1)中の前記構造単位(U1)が10〜55質量%であることを特徴とする硬化性樹脂組成物。
Figure 2019006873
Figure 2019006873
(一般式(1)、(2)中のRは芳香族炭化水素置換基を表し、Rは芳香族炭化水素置換基又はアルキル基を表す。)
Figure 2019006873
(一般式(3)中のRはメチル基又はエチル基を表す。)
Figure 2019006873
The polysiloxane (a1) and the polymer (a2) having the structural unit (U1) represented by the general formula (1) or (2) and the structural unit (U2) represented by the general formula (3) are generally used. The composite resin (A) bonded by the bond represented by the formula (4) is a curable resin composition dissolved or dispersed in a medium, and the polysiloxane (a1) in the composite resin (A) ) Is 75 to 99% by mass, and the structural unit (U1) in the polysiloxane (a1) is 10 to 55% by mass.
Figure 2019006873
Figure 2019006873
(R 1 in the general formulas (1) and (2) represents an aromatic hydrocarbon substituent, and R 2 represents an aromatic hydrocarbon substituent or an alkyl group.)
Figure 2019006873
(R 3 in the general formula (3) represents a methyl group or an ethyl group.)
Figure 2019006873
前記構造単位(U1)が、フェニルトリメトキシシランまたはジフェニルジメトキシシラン由来の構造単位である請求項1記載の硬化性樹脂組成物。   The curable resin composition according to claim 1, wherein the structural unit (U1) is a structural unit derived from phenyltrimethoxysilane or diphenyldimethoxysilane. 請求項1又は2記載の硬化性樹脂組成物を含有することを特徴とするコーティング剤。   A coating agent comprising the curable resin composition according to claim 1 or 2. 請求項3記載のコーティング剤の塗膜を有することを特徴とする物品。   An article comprising the coating film of the coating agent according to claim 3.
JP2017122206A 2017-06-22 2017-06-22 Curable resin compositions, coating agents, and articles. Active JP7062888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017122206A JP7062888B2 (en) 2017-06-22 2017-06-22 Curable resin compositions, coating agents, and articles.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017122206A JP7062888B2 (en) 2017-06-22 2017-06-22 Curable resin compositions, coating agents, and articles.

Publications (2)

Publication Number Publication Date
JP2019006873A true JP2019006873A (en) 2019-01-17
JP7062888B2 JP7062888B2 (en) 2022-05-09

Family

ID=65028384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017122206A Active JP7062888B2 (en) 2017-06-22 2017-06-22 Curable resin compositions, coating agents, and articles.

Country Status (1)

Country Link
JP (1) JP7062888B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022180866A1 (en) * 2021-02-26 2022-09-01 信越化学工業株式会社 Coating composition and coated article
WO2023068016A1 (en) * 2021-10-22 2023-04-27 信越化学工業株式会社 Paint composition, coated article, and method for forming cured film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003026997A (en) * 2001-07-11 2003-01-29 Jsr Corp Coating composition for topcoating and cured product
JP2009280706A (en) * 2008-05-22 2009-12-03 Asahi Kasei Chemicals Corp Organic-inorganic composite material
JP2011190308A (en) * 2010-03-12 2011-09-29 Dic Corp Aqueous curable resin composition and method for producing the same
US20150378256A1 (en) * 2014-06-27 2015-12-31 Chi Mei Corporation Photosensitive resin composition, protective film and element having the same
JP2018145424A (en) * 2017-03-08 2018-09-20 旭化成株式会社 Aqueous composition, aqueous coating material, coating film, and coated product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003026997A (en) * 2001-07-11 2003-01-29 Jsr Corp Coating composition for topcoating and cured product
JP2009280706A (en) * 2008-05-22 2009-12-03 Asahi Kasei Chemicals Corp Organic-inorganic composite material
JP2011190308A (en) * 2010-03-12 2011-09-29 Dic Corp Aqueous curable resin composition and method for producing the same
US20150378256A1 (en) * 2014-06-27 2015-12-31 Chi Mei Corporation Photosensitive resin composition, protective film and element having the same
JP2018145424A (en) * 2017-03-08 2018-09-20 旭化成株式会社 Aqueous composition, aqueous coating material, coating film, and coated product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022180866A1 (en) * 2021-02-26 2022-09-01 信越化学工業株式会社 Coating composition and coated article
CN116888227A (en) * 2021-02-26 2023-10-13 信越化学工业株式会社 Coating composition and coated article
WO2023068016A1 (en) * 2021-10-22 2023-04-27 信越化学工業株式会社 Paint composition, coated article, and method for forming cured film

Also Published As

Publication number Publication date
JP7062888B2 (en) 2022-05-09

Similar Documents

Publication Publication Date Title
JP4618512B2 (en) UV curable resin compositions, UV curable paints and painted products.
JP5928155B2 (en) Aqueous composite resin composition, coating agent using the same, and article having a coating film of the coating agent
US6072000A (en) Curable resin composition for use in water based paint
JP2019099728A (en) Copolymer, leveling agent, coating composition and coating article
JP7062888B2 (en) Curable resin compositions, coating agents, and articles.
JP5885029B2 (en) Aqueous composite resin composition and coating agent using the same
JP6476846B2 (en) Aqueous composite resin composition, coating agent, and article coated with the coating agent
JP5413666B2 (en) Composite resin composition, primer coating agent containing the same, and laminate
JP6933130B2 (en) Adhesive resin compositions, primers, adhesives and articles.
JP2002012817A (en) Curable resin composition for aqueous coating material
JPH06287307A (en) Polymethylstilsesquioxane polymer and vinyl copolymer resin having polymethylsilsesquioxane structure
JP2015199822A (en) Aqueous composite resin composition, and coating agent using the same
JP6922720B2 (en) Contamination resistance imparting agents, coating agents, and articles
JP7003548B2 (en) Metal coating agents and articles
JP6741172B2 (en) Aqueous resin composition, coating agent, and article
JP6418437B2 (en) Aqueous composite resin composition and coating agent using the same
JP2018145371A (en) Aqueous resin composition, coating agent, and article having coating film of the coating agent
JP2017014537A (en) Metal surface treatment agent and metal base material treated with surface treatment agent
JP2021046523A (en) Aqueous resin composition, coating agent, and article
JP5125100B2 (en) Method for producing acrylic polymer having polymerizable unsaturated bond
JPH03252414A (en) Silicone-based composition for coating
JPS62250017A (en) Silicone resin composition
JP2024005577A (en) Resin composition, coating composition and article
JP5151898B2 (en) Curable resin composition, paint and paint
JP2018145268A (en) Aqueous resin composition, coating agent, and article having coating film of the coating agent

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170921

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20180220

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190624

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220404

R151 Written notification of patent or utility model registration

Ref document number: 7062888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151