JPS6052570B2 - solid electrolytic capacitor - Google Patents

solid electrolytic capacitor

Info

Publication number
JPS6052570B2
JPS6052570B2 JP50115085A JP11508575A JPS6052570B2 JP S6052570 B2 JPS6052570 B2 JP S6052570B2 JP 50115085 A JP50115085 A JP 50115085A JP 11508575 A JP11508575 A JP 11508575A JP S6052570 B2 JPS6052570 B2 JP S6052570B2
Authority
JP
Japan
Prior art keywords
anode body
powder
semiconductor layer
electrolytic capacitor
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50115085A
Other languages
Japanese (ja)
Other versions
JPS5239163A (en
Inventor
功 入蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP50115085A priority Critical patent/JPS6052570B2/en
Publication of JPS5239163A publication Critical patent/JPS5239163A/en
Publication of JPS6052570B2 publication Critical patent/JPS6052570B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は弁作用金属の粉末を成形焼結した陽極体を用い
た固体電解コンデンサに係り、陽極体の凝集塊状粉末間
の空孔を大きくして半導体層の形成を確実にし、特性の
優れたものを提供しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solid electrolytic capacitor using an anode body formed by molding and sintering valve metal powder, and in which the pores between the aggregated powder of the anode body are enlarged to form a semiconductor layer. The aim is to provide reliable products with excellent characteristics.

一般に固体電解コンデンサの陽極体としては、タンタル
、ニオブ、アルミニウムなどの弁作用金属の高純度の粉
末を第1図に示すようにプレス成形して10−’〜10
−0Torrの高真空中で高温度で焼結して製作されて
いる。
Generally, as an anode body of a solid electrolytic capacitor, high-purity powder of a valve metal such as tantalum, niobium, or aluminum is press-molded as shown in Figure 1.
It is manufactured by sintering at high temperature in a high vacuum of -0 Torr.

図中は陽極体、2は陽極内部リードである。このような
陽極体を用いる固体電解コンデンサとして、小形化、コ
ストの低減化を計るためには、陽極体1の単位体積当り
および単位重量当りの表面積を大きくとる必要がある。
In the figure, the anode body is shown, and 2 is the anode internal lead. In order to reduce the size and cost of a solid electrolytic capacitor using such an anode body, it is necessary to increase the surface area per unit volume and unit weight of the anode body 1.

このようなことから、弁作用金属粉末の粒子の表面積を
大きくすることが必要となり、その粒子表面積を大きく
する手段としては種々の方法がある。その数例について
述べると、そのひとつは単一粒子径をできるだけ小さく
する方法で、ナトリウム還元法など種々の方法で作られ
る0.1〜50μ程度の微細な粉末とするもの、他のひ
とつとしては、この微細な個々の単一粉子の表面積を大
きくするため、粒子形状およびその表面を化学的、物理
的方法で複雑化することである。
For this reason, it is necessary to increase the surface area of the valve metal powder particles, and there are various methods for increasing the particle surface area. To give a few examples, one is a method to make the single particle size as small as possible, and the other is a method to make a fine powder of about 0.1 to 50μ made by various methods such as sodium reduction method. In order to increase the surface area of each fine individual powder, the particle shape and its surface are made complex by chemical and physical methods.

しかしながら、これらの方法では、粉末のプレス成形す
るときの金型へ充填する流動性などの作業性の点から限
界に近い状態まできており、最近では、非常に微細な単
一粒子を高真空中で高温熱処理して複数個の単一粒子を
結合させて凝集させ、10〜300μ程度の凝集粉末に
して、流動性が良好でかつ、高CV値(μF−り/gr
)の粉末を用いるようになつている。
However, these methods have reached their limits in terms of workability, such as the fluidity of filling the mold when press-molding the powder, and recently, extremely fine single particles have been processed under high vacuum. A plurality of single particles are bonded and aggregated by heat treatment at high temperature in a vacuum chamber to form an agglomerated powder of approximately 10 to 300μ, which has good fluidity and a high CV value (μF-ri/gr).
) powder is now used.

しかしながら、この凝集粉末は、その基になる単一粒子
の径として比較的微細なものを用いているため、各単一
粒子間の空孔が非常に小さく、しかも凝集粉末としても
10〜300μと小さいため、3この凝集粉末を用いて
、上述のような陽極体1を形成しても、凝集粉末間の空
孔が小さく、陽極体1の内部まで二酸化マンガンなどの
半導体層を形成することができず、また、コンデンサと
してのtanδが大きくなるなどの欠色をもつていた。
However, since this agglomerated powder uses relatively fine diameter single particles as its base, the pores between each single particle are extremely small, and even in an agglomerated powder, the pores are 10 to 300μ. 3 Even if this agglomerated powder is used to form the anode body 1 as described above, the pores between the agglomerated powders are small and it is difficult to form a semiconductor layer such as manganese dioxide to the inside of the anode body 1. In addition, the capacitor had color defects such as a large tan δ.

このtanδが大きくなる原因は、陽極体1の空孔が小
さいために電流の流れる半導体層通路が狭く、抵抗値が
増加すること並びに空孔が小さいために半導体層が充分
陽極体内部まで形成されていないことによるものである
。このTanδを改善するために、弁作用金属粉末をプ
レス成形するときに、成形密度を下げることにより多孔
度を上げる工夫もなされているがあまりこの成形密度を
下げることは、製造過程において陽極体が分解してしま
うことになり、成形密度の低下にも限度があつた。
The reasons for this increase in tan δ are that the pores in the anode body 1 are small, so the path through the semiconductor layer through which the current flows is narrow, increasing the resistance value. This is due to the fact that the In order to improve this Tan δ, efforts have been made to increase the porosity by lowering the compacting density when press-molding the valve metal powder. This resulted in decomposition, and there was a limit to the reduction in molding density.

これらの理由から、従来では特性的にも不安定で、容量
としても最高500μF程度のものに制限されていた。
For these reasons, in the past, the characteristics were unstable and the capacitance was limited to a maximum of about 500 μF.

本発明は以上のような従来の欠点を除去するものである
。以下、本発明を一実施例の図面第2図〜第4図により
説明する。
The present invention eliminates the drawbacks of the prior art as described above. Hereinafter, the present invention will be explained with reference to FIGS. 2 to 4 of the drawings of one embodiment.

すなわち、本発明は、第2図、第3図に示すように、凝
集塊状粉末3間の空孔4を非常に大きくして、半導体層
の通路を太くし電気抵抗を小さくすると同時に、各単一
粒子5間の細孔6に半導体層が形成されやすく、しかも
、径の非常に大きな凝集塊状粉末3と非常に微細な0.
1〜50μ程度の単一粒子7の混合粉末によつて陽極体
8としたところに特徴がある。
That is, as shown in FIGS. 2 and 3, the present invention makes the pores 4 between the agglomerated powders 3 very large to widen the passages in the semiconductor layer and reduce the electrical resistance, while at the same time A semiconductor layer is easily formed in the pores 6 between each particle 5, and the agglomerated powder 3 with a very large diameter and the very fine 0.
The feature is that the anode body 8 is made of a mixed powder of single particles 7 of about 1 to 50 microns.

もちろん、この陽極体8には陽極内部リード9が埋設さ
れ、そして、この陽極体8は陽極酸化により誘電体とな
る陽極酸化皮膜10を形成し、その上に硝酸マンガン溶
液を含浸し、これを熱分解して二酸化マンガンなどの半
導体層11を形成し、この半導体層11上にカーボンな
どの陰極層12を形成し、陰極層12上にシルバーペイ
ントなどの導電層13、その上に半田層14を形成して
この半田層14に陰極リード線15を半田16で接続し
、陽極内部リード9に半由付可能な陽極リード線17を
接続して、全体を樹脂などでモールドして外装置8を形
成し、第4図に示すような固体電解コンデンサとする。
Of course, an anode internal lead 9 is embedded in this anode body 8, and this anode body 8 is anodized to form an anodic oxide film 10 that becomes a dielectric, and a manganese nitrate solution is impregnated on the anode oxide film 10. A semiconductor layer 11 of manganese dioxide or the like is formed by thermal decomposition, a cathode layer 12 of carbon or the like is formed on the semiconductor layer 11, a conductive layer 13 of silver paint or the like is formed on the cathode layer 12, and a solder layer 14 is formed on the cathode layer 12. A cathode lead wire 15 is connected to this solder layer 14 with solder 16, a semi-transformable anode lead wire 17 is connected to the anode inner lead 9, and the whole is molded with resin or the like to form an outer device 8. is formed to form a solid electrolytic capacitor as shown in FIG.

すなわち、陽極体8の空孔を大きくすることは、上述の
硝酸マンガン溶液が内部まで充分に含浸され、これを熱
分解することによつて内部まで半導体層11が形成され
ることになる。一般に固体電解コンデンサのTanδは
次式で表わされる。
That is, by enlarging the pores of the anode body 8, the interior is sufficiently impregnated with the above-mentioned manganese nitrate solution, and by thermally decomposing this, the semiconductor layer 11 is formed up to the interior. Generally, Tan δ of a solid electrolytic capacitor is expressed by the following formula.

Tanδ=ω●CIR なお、ω=2πF,C=静電容量(μF)、R=等価直
列抵抗(Ω)である。
Tanδ=ω●CIR Note that ω=2πF, C=electrostatic capacity (μF), and R=equivalent series resistance (Ω).

上記式から解かるようにωおよびCは周波数を一定にし
た場合決まるものであつて、等価直列抵抗Rを小さくす
ることによりTanδを改善することができる。
As can be seen from the above equation, ω and C are determined when the frequency is kept constant, and Tan δ can be improved by reducing the equivalent series resistance R.

また、等価直列抵抗Rは種々の抵抗に分解して考えるこ
とができ、(a)弁作用金属の抵抗、{b)誘電体とな
る陽極酸化皮膜の抵抗、(C)半導体層の固有抵抗、{
d)半導体層と陽極酸化皮膜との接触抵抗、(e》陽極
体の空孔および形状の相違からくる空孔の太さ、空孔の
長さによる抵抗など、その他さらにいくつかの抵抗に分
解できる。
In addition, the equivalent series resistance R can be considered by breaking it down into various resistances: (a) resistance of the valve metal, {b) resistance of the anodic oxide film serving as the dielectric, (C) specific resistance of the semiconductor layer, {
d) Contact resistance between the semiconductor layer and the anodic oxide film, (e) resistance depending on the thickness of the pores and the length of the pores due to differences in the pores and shape of the anode body, and several other resistances. can.

本発明は、半導体層と陽極酸化皮膜との接触抵抗、陽極
体8の空孔4の大きさ、半導体層通路の形状およびその
距離に着眼したものである。
The present invention focuses on the contact resistance between the semiconductor layer and the anodic oxide film, the size of the holes 4 in the anode body 8, and the shape and distance of the semiconductor layer passage.

すなわち、コンデンサにおいては、半導体層原液の含浸
性およびTanδは陽極体8の多孔度および空孔の大き
さに左右されるため、多孔度が高く、空孔の大きい方が
望ましい。また、多孔度が高くても空孔が非常に小さい
場合は半導体層原液の含浸性が悪くなり、大容量のもの
が得られなくなり、したがつて抵抗値も増大する。
That is, in a capacitor, the impregnating property and Tan δ of the semiconductor layer stock solution depend on the porosity and the size of the pores in the anode body 8, so it is desirable that the porosity is high and the pores are large. Further, even if the porosity is high, if the pores are very small, the impregnating property of the semiconductor layer stock solution will be poor, making it impossible to obtain a large capacity, and the resistance value will also increase.

そこで本発明は32メツシユ(粒子径0.4951I)
以上のきわめて大きい多孔質凝集塊状粉末3を粒子径0
.1〜50μ程度の単一粒子5を高温真空熱処理、塊砕
などの方法で作り、この凝集塊状粉末3に、粒子径0.
1〜50μ程度の微細な単一粒子7をバインダーとして
混合した多孔質凝集塊状粉末3と単一粒子7の混合粉体
を作り、これを用いて陽極体8を製作することで、凝集
塊状粉末3間に非常に大きな空孔4が形成され、陽極体
8の内部まで半導体層11が形成できることになる。
Therefore, the present invention uses 32 meshes (particle size 0.4951I).
The above extremely large porous agglomerated powder 3 with a particle size of 0
.. Single particles 5 with a size of about 1 to 50μ are made by high-temperature vacuum heat treatment, agglomeration, etc., and the agglomerated powder 3 has a particle size of 0.
A mixed powder of the porous agglomerated powder 3 and the single particles 7 is prepared by mixing fine single particles 7 of about 1 to 50μ as a binder, and this is used to manufacture the anode body 8, thereby forming the agglomerated powder. A very large hole 4 is formed between the holes 3 and 3, and the semiconductor layer 11 can be formed up to the inside of the anode body 8.

また、凝集塊状粉末3に加える微細な単一粒子7の混合
比率は1〜30%(ωt)が好ましく、これ以外は良い
結果が得られない。
Further, the mixing ratio of the fine single particles 7 added to the agglomerated powder 3 is preferably 1 to 30% (ωt), otherwise good results will not be obtained.

すなわち、凝集塊状粉末3のみを用いてペレツト状にプ
レス成形し、高温真空焼結すると、多孔質の陽極体8を
得ることができるが、凝集塊状粉末3間の接触面積が少
なくなり、しかも凝集塊状粉末3はすでに高温真空焼結
と同様の高温真空熱処理が行なわれているために、凝集
塊状粉末3の表面エネルギーが小さくなつており、通常
の焼結温度では充分な拡散が行なわれず、陽極体8とし
ての機械的強度が弱いものとする。
That is, if only the agglomerated powder 3 is press-molded into a pellet shape and sintered in a high-temperature vacuum, a porous anode body 8 can be obtained, but the contact area between the agglomerated powder 3 is reduced, and Since the agglomerated powder 3 has already been subjected to high-temperature vacuum heat treatment similar to high-temperature vacuum sintering, the surface energy of the agglomerated powder 3 is small, and sufficient diffusion does not occur at normal sintering temperatures, causing the anode It is assumed that the mechanical strength of the body 8 is weak.

また、焼結温度をあまり高くすると、収縮現象が起り、
表面積を低下させることになり、実用上好ましくない。
Also, if the sintering temperature is too high, shrinkage will occur,
This results in a decrease in surface area, which is not preferred in practice.

そこで凝集塊状粉末3に表面エネルギーの大きい微細な
単一粒子7をバインダーとして混合することにより、こ
の単一粒子7は比較的低温度で拡散されるため、低温で
の焼結が可能となり、陽極体8として機械的強度の大き
なものとすることができる。そして、この単一粒子7の
量が30%(ωt)以上になると、凝集塊状粉末3間の
大きな空孔4を埋めてしまうので初期の目的を果せなく
なる。
Therefore, by mixing fine single particles 7 with a large surface energy as a binder into the agglomerated powder 3, the single particles 7 are diffused at a relatively low temperature, making it possible to sinter at a low temperature. The body 8 can have a high mechanical strength. If the amount of the single particles 7 exceeds 30% (ωt), the large voids 4 between the aggregated powders 3 will be filled, making it impossible to achieve the initial purpose.

以上のように本発明の固体電解コンデンサは構成される
ため、陽極体の中央部にまで半導体層を形成することが
でき、Tanδを大巾に改善でき、容量の増大、安定化
、さらに漏れ電流などの諸特性の安定化および向上が計
れ、大容量化にしても5000pFと従来の1併&近く
のものまで製作できることになり、工業的価値の大なる
ものである。
Since the solid electrolytic capacitor of the present invention is constructed as described above, it is possible to form a semiconductor layer up to the center of the anode body, and it is possible to greatly improve Tan δ, increase and stabilize the capacitance, and further improve leakage current. It is possible to stabilize and improve various characteristics such as, and even if the capacitance is increased, it can be manufactured up to 5000 pF and close to the conventional one, and is of great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の固体電解コンデンサの陽極体を示す斜視
図、第2図は本発明の固体電解コンデンサの一実施例を
示す陽極体の斜視図、第3図は同要部の拡大断面図、第
4図は同コンデンサの断面図である。 3・・・・・・凝集塊状粉末、4・・・・・・空孔、5
・・・・・・単一粒子、6・・・・・・細孔、1・・・
・・・単一粒子、8・・・・・・陽極体、9・・・・・
・陽極内部リード、10・・・・・・陽極酸化皮膜、1
1・・・・・・半導体層、12・・・・・・陰極層、1
5・・・・・・陰極リード線、18・・・・・・外装。
Fig. 1 is a perspective view showing an anode body of a conventional solid electrolytic capacitor, Fig. 2 is a perspective view of an anode body showing an embodiment of the solid electrolytic capacitor of the present invention, and Fig. 3 is an enlarged sectional view of the same essential parts. , FIG. 4 is a sectional view of the same capacitor. 3...Agglomerated powder, 4...Vacancies, 5
...Single particle, 6...Pore, 1...
...Single particle, 8...Anode body, 9...
・Anode internal lead, 10...Anodic oxide film, 1
1... Semiconductor layer, 12... Cathode layer, 1
5...Cathode lead wire, 18...Exterior.

Claims (1)

【特許請求の範囲】[Claims] 1 タンタル、ニオブ、アルミニウムなどの弁作用金属
よりなる32メッシュ(粒子径0.495mm)以上の
多孔質凝集塊状粉末に粒子径0.1〜50μの単一粒子
を混合して成形焼結した大きな空孔をもつ陽極体に、陽
極酸化皮膜、半導体層、陰極層を形成し、上記陽極体、
陰極層からリードを引出すとともに全体に外装を施して
なる固体電解コンデンサ。
1 A large powder made by molding and sintering a porous agglomerated powder of 32 mesh or more (particle size 0.495 mm) made of valve metal such as tantalum, niobium, aluminum, etc., mixed with single particles with a particle size of 0.1 to 50 μm. An anodic oxide film, a semiconductor layer, and a cathode layer are formed on an anode body having holes, and the anode body,
A solid electrolytic capacitor with leads drawn out from the cathode layer and an exterior covering applied to the entire body.
JP50115085A 1975-09-23 1975-09-23 solid electrolytic capacitor Expired JPS6052570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50115085A JPS6052570B2 (en) 1975-09-23 1975-09-23 solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50115085A JPS6052570B2 (en) 1975-09-23 1975-09-23 solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS5239163A JPS5239163A (en) 1977-03-26
JPS6052570B2 true JPS6052570B2 (en) 1985-11-20

Family

ID=14653809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50115085A Expired JPS6052570B2 (en) 1975-09-23 1975-09-23 solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS6052570B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187984U (en) * 1984-05-24 1985-12-12 富士電機株式会社 Vending machine front door

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5789212A (en) * 1980-11-25 1982-06-03 Tdk Electronics Co Ltd Composite ceramic electronic material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187984U (en) * 1984-05-24 1985-12-12 富士電機株式会社 Vending machine front door

Also Published As

Publication number Publication date
JPS5239163A (en) 1977-03-26

Similar Documents

Publication Publication Date Title
JP3196832B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP6285138B2 (en) Solid electrolytic capacitor
WO2000008662A1 (en) Sinter of niobium for capacitor, and method of manufacture thereof
US3302073A (en) Electrical capacitors and electrode material therefor
US3627520A (en) Method of producing porous sintered tantalum
US4604260A (en) Method of producing electrolytic capacitor with Al-Ti anode body
JPS6052570B2 (en) solid electrolytic capacitor
JPWO2005086193A1 (en) Solid electrolytic capacitor, anode for use in solid electrolytic capacitor, and method for producing such anode
JP6353912B2 (en) Ta-Nb alloy powder and anode element for solid electrolytic capacitor
JP4430440B2 (en) Manufacturing method of anode body for solid electrolytic capacitor
JP3343496B2 (en) Solid capacitor and manufacturing method thereof
JPH11224833A (en) Manufacture of porous anode of solid electrolytic capacitor
JP2921464B2 (en) Method for manufacturing solid electrolytic capacitor and anode body for solid electrolytic capacitor
JP2008192886A (en) Solid electrolytic capacitor and manufacturing method thereof
JP2002025864A (en) Niobium powder for capacitor, sintered compact using the same and capacitor using the compact
JPS6314458Y2 (en)
JPH1050564A (en) Manufacture of tantalum capacitor element
JPS63124511A (en) Aluminum solid electrolytic capacitor
JP6106418B2 (en) Electrolytic capacitor
US20230395329A1 (en) Method of Producing a Tantalum Capacitor Anode
JPS6041717Y2 (en) solid electrolytic capacitor
JP2003045757A (en) Electrolytic capacitor anode body and manufacturing method therefor
JP4260443B2 (en) Capacitor powder, sintered body using the same, and capacitor using the same
JP3119009B2 (en) Method for manufacturing solid electrolytic capacitor
JP2008270754A (en) Solid electrolytic capacitor and manufacturing method thereof