JPS6052368B2 - Glassy coating surface stress measuring device - Google Patents

Glassy coating surface stress measuring device

Info

Publication number
JPS6052368B2
JPS6052368B2 JP15913379A JP15913379A JPS6052368B2 JP S6052368 B2 JPS6052368 B2 JP S6052368B2 JP 15913379 A JP15913379 A JP 15913379A JP 15913379 A JP15913379 A JP 15913379A JP S6052368 B2 JPS6052368 B2 JP S6052368B2
Authority
JP
Japan
Prior art keywords
light
prism
coating
surface stress
exit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15913379A
Other languages
Japanese (ja)
Other versions
JPS5682423A (en
Inventor
貫 岸井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP15913379A priority Critical patent/JPS6052368B2/en
Priority to DE8080103771T priority patent/DE3071243D1/en
Priority to US06/164,496 priority patent/US4353649A/en
Priority to EP80103771A priority patent/EP0023577B1/en
Publication of JPS5682423A publication Critical patent/JPS5682423A/en
Publication of JPS6052368B2 publication Critical patent/JPS6052368B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/43Refractivity; Phase-affecting properties, e.g. optical path length by measuring critical angle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/18Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge using photoelastic elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 本発明は、ガラス質コーティングの表面応力測定装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for measuring surface stress of vitreous coatings.

いわゆるガラス質コーティングとしては、銅製器具の
表面に施こされるほうろう、鋳鉄製器具の表面に施こさ
れるほうろう、アルミ、黄銅、銅などの表面に施される
ほうろう又は七宝、陶磁器の表面に施される釉薬など、
生活に関係の深いものが多い。
So-called vitreous coatings include enamel applied to the surface of copper utensils, enamel applied to the surface of cast iron utensils, enamel or cloisonné applied to the surfaces of aluminum, brass, copper, etc., and enamel applied to the surface of ceramics. The glaze applied, etc.
Many things are deeply related to life.

これらのコーティングの表面応力は次のような理由で重
要な役割を持つ。 一つは、コーティングが基体に良く
密着し、熱衝撃や機械的衝撃に耐え、また薬品類の侵食
にも強いためには、コーティングに適度の圧縮応力があ
ることを要する。
The surface stress of these coatings plays an important role for the following reasons. First, in order for the coating to adhere well to the substrate, to withstand thermal shock and mechanical shock, and to be resistant to attack by chemicals, the coating must have an appropriate amount of compressive stress.

表面応力が張力であれば、き裂ができやすく、はがれや
すく、化学的耐久性も悪い。また表面応力が過度に大き
い圧縮力であれば、通常「爪飛び」と呼ばれる自発的な
剥離を起しやすい。 他方、陶磁器の場合には、釉薬の
表面応力を故意に張力としてき裂を生じさせ、その装飾
効果を利用することがある。
If the surface stress is tension, it will easily crack, peel easily, and have poor chemical durability. Furthermore, if the surface stress is an excessively large compressive force, spontaneous peeling, commonly referred to as "nail skipping", tends to occur. On the other hand, in the case of ceramics, the surface stress of the glaze is sometimes used as tension to cause cracks, and the resulting decorative effect is sometimes utilized.

き裂により生ずる模様やその細かさなどは張力によつて
決まるので、目的により適当な張力を選ぶ必要がある。
これらガラス質コーティングの表面応力の測定方法と
しては、従来、陶磁器の場合には、コーティング面に垂
直に被測定物を切断して薄片試料を作り、透過光の光弾
性効果を測定することにより表面応力を測定する方法が
ある。
The pattern produced by a crack and its fineness are determined by the tension, so it is necessary to select an appropriate tension depending on the purpose.
Conventionally, in the case of ceramics, the surface stress of these glassy coatings has been measured by cutting the object to be measured perpendicular to the coating surface to prepare a thin sample, and measuring the photoelastic effect of transmitted light. There are ways to measure stress.

又、ほうろうの場合には、被コーティング基材と同一材
料で薄板を作り、この薄板の片面にほうろうをかけて焼
成し、これを室温に冷却した時生する薄板のそり程度を
測定することにより表面応力を推測する方法が知られて
いる。この方法は、被測定物自体のコーティングを直接
測定するものではなく、模擬試験板によつて間接的に表
面応力を推定するものである。 しかし、前者の光弾性
効果を測定する方法は、破壊検査であるから労力、費用
がかかる上に、薄片試料に切出すことによつて応力が一
部緩和されるため、測定値が真の値からずれてしまうと
いう欠点があつた。
In the case of enamel, a thin plate is made from the same material as the substrate to be coated, one side of the thin plate is coated with enamel, fired, and the degree of warpage of the thin plate is measured when it is cooled to room temperature. Methods for estimating surface stress are known. This method does not directly measure the coating on the object itself, but indirectly estimates the surface stress using a simulated test plate. However, the former method of measuring the photoelastic effect is a destructive test, which is laborious and expensive, and cutting into a thin sample partially relieves stress, so the measured value is not the true value. The problem was that it deviated from the original.

なお、この方法をほうろうの場合に適用しても、ほうろ
う層が薄片試料作成の途中で破壊してしまうので測定は
一般に困難であつた。又、後者の模擬試験板のそり程度
を測定する方法は、基板が鋳鉄のような薄板を作り難い
材料である場合には適用できないし、基材が鋳鉄、合金
鋼、非鉄合金類のように熱処理により熱膨張特性が変化
する材料である場合には測定値が実際の被測定物の有す
る表面応力値と異なる恐れが大きい。
Note that even if this method is applied to enamel, the measurement is generally difficult because the enamel layer is destroyed during the preparation of the thin sample. In addition, the latter method of measuring the degree of warpage of a mock test plate cannot be applied when the substrate is made of a material that is difficult to make into a thin plate, such as cast iron, or when the substrate is made of cast iron, alloy steel, or non-ferrous alloys. If the material is a material whose thermal expansion characteristics change due to heat treatment, there is a high possibility that the measured value will differ from the surface stress value of the actual object to be measured.

このように、従来の測定方法は、いずれも実際の被測定
物のコーテイング表面応力を直接測定するものではなく
、破壊検査であつたり、模擬試験板による測定である上
に、夫々上述のような欠点があるため、ガラス質コーテ
イングの表面応力測定方法としては満足できるものては
なかつた。
In this way, the conventional measurement methods do not directly measure the coating surface stress of the actual object to be measured, but instead involve destructive inspection or measurement using a simulated test plate. Due to its drawbacks, it has not been a satisfactory method for measuring the surface stress of vitreous coatings.

そこで、本発明は、実際の器具などの被測定物のガラス
質コーテイングの表面応力を、直接に、被破壊て測定し
得る装置の提供を目的とし、特に、ガラス質コーテイン
グの表面応力測定装置に関する。以下、本発明を基本原
理から説明する。
Therefore, the present invention aims to provide a device that can directly measure the surface stress of a vitreous coating of an object to be measured such as an actual instrument by destroying it, and in particular relates to a device for measuring surface stress of a vitreous coating. . The present invention will be explained below from its basic principle.

ガラス質コーテイング層においては、表面に垂直な主応
力は、一般に表面が自由表面であるため零である。
In a glassy coating layer, the principal stress normal to the surface is generally zero since the surface is a free surface.

従つて、応力は表面に平行な方向のみに存在する。この
ような媒質の中を進行する光においては、表面に平行に
振動しつつ進む光と、表面に垂直に振動しつつ進む光と
の間には、光弾性効果による屈折率差がある。この屈折
率差Δnは、表面応力p(K9/c!i)と、コーテイ
ングの光弾性常数C(Kg/d)−1とにより、 ―
−νド の式に従つて決まる。
Therefore, stress exists only in the direction parallel to the surface. When light travels through such a medium, there is a difference in refractive index due to the photoelastic effect between light that travels while vibrating parallel to the surface and light that travels while vibrating perpendicular to the surface. This refractive index difference Δn is determined by the surface stress p(K9/c!i) and the photoelastic constant C(Kg/d)-1 of the coating.
−ν is determined according to the equation.

よつて、光弾性定数Cが既知の場合には、屈折率差Δn
を求めることにより、表面応力pを知ることができる。
上記の基本原理を利用する本発明のガラス質コ.−テイ
ングの表面応力測定装置は、コーテイング層内を進む2
種類の偏光の臨界屈折角の差を知るだけで表面応力を求
め得るものであり、簡便、迅速な測定が可能である。
Therefore, if the photoelastic constant C is known, the refractive index difference Δn
By determining the surface stress p, the surface stress p can be determined.
The vitreous core of the present invention utilizes the above basic principle. - The surface stress measuring device of the coating has two
Surface stress can be determined simply by knowing the difference in the critical refraction angles of different types of polarized light, allowing for simple and quick measurement.

即ち、本発明の装置は、可干渉性光の光源と、前記光源
からの可干渉性光をガラス質コーテイング層に投射する
光投射機構と、ガラス質コーテイング表面に一面を密着
設置できる、ガラス質コーテイング層よりも屈折率が大
きい射出プリズムと、射出光について、コーテイング層
と前記射出プリズムとの界面における臨界屈折角を測定
する望遠鏡と、前記射出プリズムによる射出光について
任意の振動方向の偏光を選択透過して干渉縞を形成する
偏光機構とを具備することを特徴としている。
That is, the device of the present invention includes a light source of coherent light, a light projection mechanism for projecting the coherent light from the light source onto a vitreous coating layer, and a vitreous coating layer that can be installed on one side in close contact with the surface of the vitreous coating layer. An exit prism having a larger refractive index than the coating layer, a telescope for measuring the critical refraction angle at the interface between the coating layer and the exit prism for the exit light, and selecting polarization in an arbitrary vibration direction for the exit light from the exit prism. It is characterized by comprising a polarization mechanism that transmits light and forms interference fringes.

第1図は、本発明装置の一部を概念的に示したものであ
る。
FIG. 1 conceptually shows a part of the apparatus of the present invention.

1は光投射機構により、ガラス質コーテイング2に投射
された可干渉性光であり、3ノはコーテイング表面であ
る。
1 is coherent light projected onto the vitreous coating 2 by a light projection mechanism, and 3 is the coating surface.

4は一面を表面3に密着させた射出プリズム、5は望遠
鏡の対物レンズである。
4 is an exit prism with one side in close contact with the surface 3, and 5 is an objective lens of the telescope.

入射光1がコーテイング層2の表面3へ投射され、ほう
ろう層内で、ほうろう層の不均質部分た−とえば乳濁粒
子、微結晶、小気泡などのため散乱光を生ずる。
Incident light 1 is projected onto the surface 3 of the coating layer 2 and produces scattered light within the enamel layer due to inhomogeneities of the enamel layer, such as emulsion particles, crystallites, small bubbles, etc.

散乱光のうち、表面3の極めて近傍を、表面3に平行に
進む光6はコーテイング層2とプリズム4の界面3″に
対し臨界屈折光となり、射出プリズム4で取出され、対
物レンズ5の焦点面7上の一点8へ収束される。表面3
に平行に進まないその他の光、たとえば9,10などは
、前記界面3″に到達した時の入射角が臨界屈折光より
も小さいので、焦点面7上で点8よりも上方の点11,
12に収束する。従つて焦点面7上では、点8より上方
は光が到達するために明るく、点8より下方は光が到達
しないため暗く、点8は明暗の境界になる。かかる明暗
の境界の位置から屈折率を求める技術は、アツベの屈折
率計等において既に採用されている。ところで、コーテ
イングに表面応力が存在すると、コーテイング表面3に
平行に進行する光6であつても、前述したようにコーテ
イング表面に平行に振動する光と垂直に振動する光とで
は、屈折率に差があるため、明暗の境界8の位置も異な
る。
Of the scattered light, light 6 that travels very close to the surface 3 and parallel to the surface 3 becomes a critically refracted light at the interface 3'' between the coating layer 2 and the prism 4, is extracted by the exit prism 4, and is focused at the focal point of the objective lens 5. Converges to a point 8 on surface 7.Surface 3
Other lights, such as 9 and 10, which do not travel parallel to , have an incident angle smaller than the critical refraction light when they reach the interface 3'', so they travel at points 11 and 10 above point 8 on the focal plane 7.
It converges to 12. Therefore, on the focal plane 7, the area above the point 8 is bright because the light reaches it, and the area below the point 8 is dark because the light does not reach it, and the point 8 is the boundary between bright and dark. The technique of determining the refractive index from the position of the boundary between brightness and darkness has already been adopted in Atsube's refractometers and the like. By the way, if surface stress exists in the coating, even if the light 6 travels parallel to the coating surface 3, there will be a difference in refractive index between the light vibrating parallel to the coating surface and the light vibrating perpendicular to the coating surface, as described above. Therefore, the position of the bright and dark boundary 8 is also different.

かかる2種の光については、たとえば焦点面7の背後に
配置した偏光板13を介して観察することにより明暗の
境界を別々に確認することができ、しかして両者の屈折
率差Δnを求めることができる。しかし、実用的なほう
ろうや釉薬では、表面は一般に平面ではないし、コーテ
イング層内の屈折率も不均一であるため、前記明暗の境
界は必ずしも明瞭ではなく、十分な精度で屈折率差を求
めることができない。この点本発明装置は、可干渉性の
光源を使用した結果、焦点面7上に到達した光は細かい
干渉縞を形成するので、これのうち顕著なものを明暗の
境界の代わりに目標として使用することにより屈折率差
を十分な精度で求めることができる。可干渉性の光源と
しては、たとえばガスレーザー光、ピンホールを通過さ
せて干渉性を向上させたガス放電灯光、白熱電球光など
がある。第2図の実施例に従つて更に詳しく説明する。
For example, by observing these two types of light through a polarizing plate 13 placed behind the focal plane 7, the boundary between bright and dark can be confirmed separately, and the refractive index difference Δn between the two can be determined. Can be done. However, with practical enamel and glaze, the surface is generally not flat and the refractive index within the coating layer is non-uniform, so the boundary between light and dark is not necessarily clear, and it is difficult to determine the refractive index difference with sufficient accuracy. I can't. In this respect, in the device of the present invention, as a result of using a coherent light source, the light that reaches the focal plane 7 forms fine interference fringes, and the prominent ones of these are used as targets instead of the boundaries between bright and dark. By doing so, the refractive index difference can be determined with sufficient accuracy. Examples of coherent light sources include gas laser light, gas discharge lamp light whose coherence is improved by passing through a pinhole, and incandescent light bulb light. This will be explained in more detail with reference to the embodiment shown in FIG.

架台21には、開口22が穿たれていて、射出プリズム
23、入射プリズム24が固定されている。またレーザ
ー台25の回転固定軸26、望遠鏡27の回転固定軸2
8が備えられている。架台21は、プリズム23,24
の一面が被測定物のガラス質コーテイング29の表面に
安定して密着できるように脚30,31を備えている。
レーザー台25上には、レーザー管又はレーザー管を含
む発振管32及び反射プリズム33が備えられていて、
図示のごとくレーザー発振管32より発せられたレーザ
ービーム34は、反射プリズム33により方向を変換さ
れて、入射プリズム29を経てコーテイング層29へ投
射される。レーザー台25の上端と架台21の一端との
間にはターンバツクル機構35が備えられ、回転固定軸
26を中心としてレーザー台の傾斜角度を変えることが
でき、しかしてレーザービームのコーテイング層への投
射角度を適宜変えることができる。望遠鏡27も、回転
固定軸28を中心として回動可能で、ネジで締めつけ固
定できる把手36と把手36の軸37をスライドさせる
ことができる溝付板38とにより、適宜の角度に固定す
ることができる。望遠鏡27は、射出プリズム23から
の光を焦点面39に収束させる対物レンズ40を備え、
この場合対物レンズ40と焦点面39との間に、回転可
能な偏光板41があり、更に焦点面39上に結像した干
渉縞模様を観察するためのミクロメータ入り接眼レンズ
又は接眼測微計42を備えている。プリズム23,24
の軸43,44は架台21に設けられた軸穴内で少し遊
動できる程度にゆるく支持されていて、コーテイング2
9の表面に従つて相互の位置を可変に決定できる。測定
にあたつては、コーテイング29の表面に、プリズム2
3,24の屈折率に近い屈折率を有する浸液を滴下して
おき、コーテイング29の表面とプリズム23,24と
の光学的接触を確保する。上記の実施例における入射プ
リズム24は、本発明にとり不可欠のものではないが、
これを用いると射出プリズム23により射出される光が
多くなり測定上有利てある。
An opening 22 is bored in the pedestal 21, and an exit prism 23 and an entrance prism 24 are fixed thereto. Also, the rotation fixed shaft 26 of the laser table 25 and the rotation fixed shaft 2 of the telescope 27.
8 is provided. The pedestal 21 has prisms 23 and 24
Legs 30 and 31 are provided so that one side of the test piece can be stably brought into close contact with the surface of the glassy coating 29 of the object to be measured.
On the laser table 25, a laser tube or an oscillation tube 32 including a laser tube and a reflection prism 33 are provided.
As shown in the figure, a laser beam 34 emitted from a laser oscillation tube 32 has its direction changed by a reflection prism 33 and is projected onto a coating layer 29 via an input prism 29. A turnbuckle mechanism 35 is provided between the upper end of the laser table 25 and one end of the pedestal 21, and the inclination angle of the laser table can be changed around the rotating fixed axis 26, thereby projecting the laser beam onto the coating layer. The angle can be changed as appropriate. The telescope 27 is also rotatable around a rotating fixed shaft 28, and can be fixed at an appropriate angle using a handle 36 that can be tightened and fixed with a screw and a grooved plate 38 that can slide the shaft 37 of the handle 36. can. The telescope 27 includes an objective lens 40 that converges the light from the exit prism 23 onto a focal plane 39,
In this case, there is a rotatable polarizing plate 41 between the objective lens 40 and the focal plane 39, and an eyepiece with a micrometer or an eyepiece for observing the interference fringe pattern imaged on the focal plane 39. It is equipped with 42. Prism 23, 24
The shafts 43 and 44 are loosely supported in shaft holes provided in the pedestal 21 to the extent that they can move a little, and the coating 2
The mutual positions can be variably determined according to the surface of 9. For measurement, a prism 2 is placed on the surface of the coating 29.
An immersion liquid having a refractive index close to that of 3 and 24 is dropped to ensure optical contact between the surface of the coating 29 and the prisms 23 and 24. Although the entrance prism 24 in the above embodiment is not essential to the present invention,
If this is used, the amount of light emitted by the exit prism 23 increases, which is advantageous in terms of measurement.

即ち、第3図に一部拡大して示すように、入射プリズム
24の屈折率をコーテイング層29の屈折率よりも大き
くすると、入射光1の多くが射出プリズム23の近傍を
通るようになるため、射出プリズム23により取出され
、焦点面39に達する光が多くなり、測定が容易になる
。入射光1の界面3″に対する入射角が臨界角に等しい
場合にもつとも有効であるから、そのようにレーザー台
25の傾斜角を調整することが望ましい。他方、望遠鏡
27は、光軸が臨界屈折射出光に平行になるようにその
角度を選択する必要がある。以上の説明から理解される
ように、本発明装置によれば、ガラス質コーテイングの
表面応力を非破壊的に迅速に測定することができ、工程
、品質の管理上極めて有用である。
That is, as shown in a partially enlarged view in FIG. 3, if the refractive index of the entrance prism 24 is made larger than the refractive index of the coating layer 29, most of the incident light 1 will pass near the exit prism 23. , more light is extracted by the exit prism 23 and reaches the focal plane 39, making measurement easier. It is also effective when the incident angle of the incident light 1 to the interface 3'' is equal to the critical angle, so it is desirable to adjust the inclination angle of the laser table 25 in this way.On the other hand, the telescope 27 has an optical axis whose optical axis It is necessary to select the angle so that it is parallel to the emitted light.As can be understood from the above explanation, the device of the present invention can quickly and non-destructively measure the surface stress of a vitreous coating. It is extremely useful for process and quality control.

【図面の簡単な説明】[Brief explanation of the drawing]

L 第1図は本発明の基本原理を説明する図、第2図は
本発明装置の一実施例を表わす図、そして第3図は第2
図の部分拡大図である。 23・・・射出プリズム、24・・・入射プリズム、2
7・・・望遠鏡、29・・・ガラス質コーテイング、3
2・・ルーザ一発振管。
L Fig. 1 is a diagram explaining the basic principle of the present invention, Fig. 2 is a diagram showing an embodiment of the device of the present invention, and Fig. 3 is a diagram explaining the basic principle of the present invention.
It is a partially enlarged view of the figure. 23... Injection prism, 24... Input prism, 2
7... Telescope, 29... Glassy coating, 3
2. Loser single oscillator tube.

Claims (1)

【特許請求の範囲】[Claims] 1 可干渉性光の光源と、前記光源からの可干渉性光を
ガラス質コーティング層に投射する光投射機構と、ガラ
ス質コーティング表面に一面を密着設置できる、ガラス
質コーティング層よりも屈折率が大きい射出プリズムと
、射出光について、コーティング層と前記射出プリズム
との界面における臨界屈折角を測定する望遠鏡と、前記
射出プリズムによる射出光について任意の振動方向の偏
光を選択透過して干渉縞を形成する偏光機構とを具備す
ることを特徴とするガラス質コーティングの表面応力測
定装置。
1 A light source of coherent light, a light projection mechanism for projecting the coherent light from the light source onto the glassy coating layer, and a light projection mechanism that has a refractive index lower than that of the glassy coating layer, which can be installed in close contact with the surface of the glassy coating. A large exit prism, a telescope that measures the critical refraction angle at the interface between the coating layer and the exit prism for the exit light, and selectively transmits polarized light in any vibration direction for the exit light from the exit prism to form interference fringes. A surface stress measurement device for a glassy coating, characterized in that it is equipped with a polarization mechanism.
JP15913379A 1979-07-06 1979-12-10 Glassy coating surface stress measuring device Expired JPS6052368B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP15913379A JPS6052368B2 (en) 1979-12-10 1979-12-10 Glassy coating surface stress measuring device
DE8080103771T DE3071243D1 (en) 1979-07-06 1980-07-02 Surface stress measurement
US06/164,496 US4353649A (en) 1979-07-06 1980-07-02 Apparatus for surface stress measurement of glass coating and transparent plastic product
EP80103771A EP0023577B1 (en) 1979-07-06 1980-07-02 Surface stress measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15913379A JPS6052368B2 (en) 1979-12-10 1979-12-10 Glassy coating surface stress measuring device

Publications (2)

Publication Number Publication Date
JPS5682423A JPS5682423A (en) 1981-07-06
JPS6052368B2 true JPS6052368B2 (en) 1985-11-19

Family

ID=15686962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15913379A Expired JPS6052368B2 (en) 1979-07-06 1979-12-10 Glassy coating surface stress measuring device

Country Status (1)

Country Link
JP (1) JPS6052368B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855830A (en) * 1981-09-30 1983-04-02 Toshiba Corp Measuring apparatus of surface stress
TW201245690A (en) * 2011-03-18 2012-11-16 Asahi Glass Co Ltd Device for measuring surface stress of glass and method for measuring surface stress of glass
JP2016024002A (en) * 2014-07-18 2016-02-08 日本電気硝子株式会社 Stress measurement method of transparent article

Also Published As

Publication number Publication date
JPS5682423A (en) 1981-07-06

Similar Documents

Publication Publication Date Title
EP0023577B1 (en) Surface stress measurement
US4332476A (en) Method and apparatus for studying surface properties
JPH0228536A (en) Measurement of contact angle
JPH09236414A (en) Method and device for measuring and compensating for double refraction in rotary disk
JP2003528413A (en) System and method for simultaneously measuring thickness, reflectivity, roughness, surface contour and magnetic pattern of thin film layers on thin film magnetic disks and silicon wafers
JPH11281501A (en) Apparatus for measuring surface stress
JPS5937452B2 (en) Air-cooled tempered glass surface stress measuring device
Baker Microscope image comparator
Nix et al. An Interferometric‐Dilatometer with Photographic Recording
JPS6052368B2 (en) Glassy coating surface stress measuring device
GB2108684A (en) A method of carrying out crack tests and a test body for this method
Albertazzi et al. A radial in-plane interferometer for espi measurement
Shepard et al. Measurement of internal stress in glass articles
Factor et al. Vickers microindentation of WC–12% Co thermal spray coating: Part 2: the between-operator reproducibility limits of microhardness measurement and alternative approaches to quantifying hardness of cemented-carbide thermal spray coatings
Moslehy et al. Measurement of surface displacements in a tribological application
Yu et al. Talbot and Fourier moiré deflectometry and its applications in engineering evaluation
Trumpold Paper 9: Limits of Application of the Interference Methods for Surface Measurements
CN107543504A (en) A kind of film thickness distribution measuring method with sub-nm resolution
JPS6236110Y2 (en)
RU2107903C1 (en) Test for forming the optical surface
JPH10227624A (en) Parallelism measuring method of parallel double refraction plate
Löschke Microscopy with an ellipsometric arrangement
Downs Problems associated with thin film measurement using double beam interference microscopy
JPS63275936A (en) Measuring method for refractive index distribution
RU2126536C1 (en) Tip to measure mechanical parameters of materials