JPS6052322B2 - hydraulic control device - Google Patents

hydraulic control device

Info

Publication number
JPS6052322B2
JPS6052322B2 JP50064592A JP6459275A JPS6052322B2 JP S6052322 B2 JPS6052322 B2 JP S6052322B2 JP 50064592 A JP50064592 A JP 50064592A JP 6459275 A JP6459275 A JP 6459275A JP S6052322 B2 JPS6052322 B2 JP S6052322B2
Authority
JP
Japan
Prior art keywords
directional control
ports
control valves
hydraulic
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50064592A
Other languages
Japanese (ja)
Other versions
JPS51140076A (en
Inventor
和正 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Kiki Co Ltd
Original Assignee
Sanyo Kiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Kiki Co Ltd filed Critical Sanyo Kiki Co Ltd
Priority to JP50064592A priority Critical patent/JPS6052322B2/en
Publication of JPS51140076A publication Critical patent/JPS51140076A/en
Publication of JPS6052322B2 publication Critical patent/JPS6052322B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrically Driven Valve-Operating Means (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

【発明の詳細な説明】 この発明は油圧制御装置に関するものである。[Detailed description of the invention] This invention relates to a hydraulic control device.

一般に使用されているスライドスプール型の方向制御弁
は相対する滑り合う円筒面を持つスリーブとスプールと
からなり、スリーブに相対的に設けた油の流れの口てあ
る数個のポートと、スプールに設けた数個のパツセージ
とランドにより、数個の通路閉止機構を構成し、固定さ
れた中空円筒のスリーブ内で、スプールが軸方向に直線
的に移J動して、スリーブに設けた数個のポートを同時
に開閉し、流れ方向の制御が行われる。ところで方向制
御弁の性能はこの閉止性能と流れ抵抗により決定される
A commonly used slide spool type directional control valve consists of a sleeve and a spool that have cylindrical surfaces that slide against each other.The sleeve has several ports for oil flow, and the spool has several ports installed relative to the sleeve. The several passages and lands constitute several passage closing mechanisms, and the spool moves linearly in the axial direction within the fixed hollow cylindrical sleeve. The flow direction is controlled by opening and closing the ports at the same time. By the way, the performance of a directional control valve is determined by this closing performance and flow resistance.

即ち、スリーブとスプールのランドの遊隙は油密を保持
するために最小7でなければならず、流路も流れ抵抗を
最小限とし圧力の損失を少なくしなければならない。為
にこれ等を満足するためには、弁本体の複雑なしかも極
めて精度の高い断面よりの歪をカバーするために高い剛
性と高度な加工技術(特にスリーブとスプールの嵌合は
ホーニング選択嵌合)を要求される。従つて、現存に於
ける方向制御弁は機能の割りには大型で、且つ高価格が
常識化している。この発明は上記の欠点に鑑みこれを解
決するために従来の方向制御弁にみられる相対的に設け
られた閉止機構を分割して各々独立させ弁体断面を簡略
化し、流路の圧力損失を少なくし、更にスリーブとスプ
ールの嵌合長さを短縮し、加工の難易度を軽減し、単位
部品の共用化と生産性の向上を計り、多連制御に備えて
小型化したものである。以下この発明の構成を図面につ
いて説明すると次の通りである。先すこの発明に使用す
る方向制御弁の構造及び作動の状態を第1図及び第2図
について説明する。
That is, the clearance between the land of the sleeve and the spool must be at least 7 to maintain oil tightness, and the flow path must also minimize flow resistance and reduce pressure loss. In order to satisfy these requirements, high rigidity and advanced processing technology (especially honing selective fitting for the sleeve and spool fitting) are required to cover the distortion caused by the complex and highly accurate cross section of the valve body. ) is required. Therefore, it is common knowledge that existing directional control valves are large in size and expensive for their functions. In view of the above-mentioned drawbacks, this invention solves the problem by dividing the relatively installed closing mechanisms found in conventional directional control valves, making each one independent, simplifying the cross section of the valve body, and reducing the pressure loss in the flow path. Furthermore, the mating length of the sleeve and spool has been shortened, the difficulty of processing has been reduced, unit parts can be shared, productivity has been improved, and the size has been reduced in preparation for multiple control. The configuration of the present invention will be explained below with reference to the drawings. First, the structure and operating state of the directional control valve used in the present invention will be explained with reference to FIGS. 1 and 2.

第1図は常時開の3ポート2位置で、かつ、電磁作動・
バネ復帰型の方向制御弁(NO)で、1は中空円筒面を
有するスリーブ、2,3,3″はスリーブ1に設けた油
の流れ口である第1、第2および第3のポート、4は油
の流路の役をなすパツセージ4aとスリーブ1の中空円
筒面と略同径で油のシールの役を果たすランド4bとで
成り立つスプール、5はスプール4を通常座6に押圧さ
せるためのスプリング、7はスプール4を軸方向に電磁
作動させるソレノイドである。
Figure 1 shows a normally open 3 port, 2 positions, and an electromagnetic actuator.
A spring return type directional control valve (NO), 1 is a sleeve having a hollow cylindrical surface, 2, 3, and 3'' are first, second, and third ports that are oil flow ports provided in the sleeve 1; 4 is a spool consisting of a passage 4a that serves as an oil flow path and a land 4b that has approximately the same diameter as the hollow cylindrical surface of the sleeve 1 and serves as an oil seal; 5 is used to press the spool 4 against the seat 6; The spring 7 is a solenoid that electromagnetically operates the spool 4 in the axial direction.

図面に示す状態では第1、第2、および第3のポート2
,3,3″はパツセージ4aを経て連通してあり、ソレ
ノイド7が通電するとスプール4がスプリング5に抗し
て図中右方向に吸引されて移動し、ポ.ート2がランド
4bにより遮断される。但し、第2ポート3と第3ポー
ト3″とは常時パツセージ4aを経て連通している。そ
して、電流が切られソレノイド7の引き込み外力が除か
れると、スプール4がスプリング5の弾力により座6に
押し付!けられ元の位置まて復帰し、第1ポート2はパ
ツセージ4aを経て直ちに第2および第3のポート3,
3″と連通される。第2図は常時閉の3ポート2位置で
、かつ、電磁作動・バネ復帰型の方向制御弁(NC)で
、31は中空円筒面を有するスリーブ、9,10,10
″はスリーブ8に設けた油の流れ口である第1、第2、
および第3のポート、11は油の通路の役をなすパツセ
ージ11aとスリーブ8の中空円筒面と略同径で油のシ
ールの役を果たすランド11bとで成り立つスプール、
12はスプール11を通常座13に押圧させるためのス
プリング、14はスプール11の軸方向に電磁作動させ
るソレノイドである。
In the state shown in the drawing, the first, second, and third ports 2
, 3, and 3'' are connected through a passage 4a, and when the solenoid 7 is energized, the spool 4 is attracted and moved to the right in the figure against the spring 5, and the port 2 is blocked by the land 4b. However, the second port 3 and the third port 3'' are always in communication via the passage 4a. Then, when the current is cut off and the external pulling force of the solenoid 7 is removed, the spool 4 is pressed against the seat 6 by the elasticity of the spring 5! It returns to its original position, and the first port 2 passes through the passage 4a and immediately connects to the second and third ports 3,
3''. Fig. 2 shows an electromagnetically actuated, spring return type directional control valve (NC) with normally closed 3 ports and 2 positions; 31 is a sleeve having a hollow cylindrical surface; 9, 10, 10
″ are oil flow ports provided in the sleeve 8;
and a third port 11 is a spool consisting of a passage 11a that serves as an oil passage and a land 11b that has approximately the same diameter as the hollow cylindrical surface of the sleeve 8 and serves as an oil seal;
12 is a spring for pressing the spool 11 against the normal seat 13, and 14 is a solenoid for electromagnetically operating the spool 11 in the axial direction.

図示の状態では第1ポート9はランド11bにより遮断
されており、ソレノイド14が通電するスプール11が
スプリング12に抗して図中左方向に吸引されて移動し
、第1ポート9がパツセージ11bを経て第2および第
3ポ)一ト10,1『と連通される。但し、第2ポート
10と第3ポート1『とは常時パツセージ11aを経て
連通している。そして電流が切られソレノイド14の引
き込み外力が除かれるとスプール11がスプリング12
の弾力により座13に押・し付けられ元の位置まで復帰
し、第1ポート9は直ちにランド11bにより遮断され
る。この発明は以上の如き方向制御弁NO,NCを用い
て操作用油圧配管を構成したもので、以下この発明の要
旨である操作用油圧配管の構成及び其の”作用について
説明する。
In the illustrated state, the first port 9 is blocked by the land 11b, and the spool 11 to which the solenoid 14 is energized is attracted and moved to the left in the figure against the spring 12, and the first port 9 closes the passage 11b. It is connected to the second and third ports 10, 1' via the port. However, the second port 10 and the third port 1' are always in communication via the passage 11a. Then, when the current is cut off and the external force that draws the solenoid 14 is removed, the spool 11 moves to the spring 12.
Due to the elastic force, the first port 9 is pressed against the seat 13 and returns to its original position, and the first port 9 is immediately blocked by the land 11b. This invention uses the above-mentioned directional control valves NO and NC to construct an operating hydraulic piping.Hereinafter, the structure of the operating hydraulic piping and its functions, which are the gist of this invention, will be explained.

第3図に於いて、15,16,17,18は常時開の方
向制御弁て構成した油圧発生ユニツト回路であり、19
,20,21は複動型の油圧シリンダ、22,23,2
4,25,26,27は常時閉の方向制御弁で、方向制
御弁22,23は油圧シリンダ19を、また方向制御弁
24,25は油圧シリンダ20を、また方向制御弁26
,27は油圧シリンダ21の駆動制御を行つている。
In FIG. 3, 15, 16, 17, and 18 are hydraulic pressure generating unit circuits composed of normally open directional control valves, and 19
, 20, 21 are double-acting hydraulic cylinders, 22, 23, 2
4, 25, 26, 27 are normally closed directional control valves, the directional control valves 22, 23 control the hydraulic cylinder 19, the directional control valves 24, 25 control the hydraulic cylinder 20, and the directional control valve 26
, 27 drive and control the hydraulic cylinder 21.

方向制御弁22,24,26は油圧シリンダ19,20
,21のピストン背部室19″, 2『, 21″に配
管28,29,30により夫々接続され、また方向制御
弁22,25,27は油圧シリンダ19,20,21の
ピストン前部室19″,20″, 21″に配管31,
32,33により夫々接続されている。34は油タンク
、35は油圧系統に圧油を発生させるための油圧ポンプ
で、ここて発生した圧油は配管36を通し、この途中に
設けたリリーフ弁37を通して規定圧力値にコントロー
ルされる。
Direction control valves 22, 24, 26 are hydraulic cylinders 19, 20
, 21 are connected to the piston back chambers 19'', 2'', 21'' by piping 28, 29, 30, respectively, and the direction control valves 22, 25, 27 are connected to the piston front chambers 19'', 2'', 21'' of the hydraulic cylinders 19, 20, 21, respectively. Piping 31 to 20″ and 21″,
32 and 33, respectively. 34 is an oil tank, 35 is a hydraulic pump for generating pressure oil in the hydraulic system, and the pressure oil generated here passes through a pipe 36 and is controlled to a specified pressure value through a relief valve 37 provided in the middle.

各方向制御弁は図示のように配管38・・・48て接続
して操作用油圧配管を形成し、上記圧油をそれらに供給
させる。尚、図面中49,50はともに34と同じ油タ
ンクで、図面の複雑化をさけるためにこのように清潔に
表している。SOL−1・・・SOL−10は各方向制
御弁のソレノイド、Al,Blは油圧シリンダ19の押
釦スイツチ、A2,B2は油圧シリンダ20の押釦スイ
ツチ、A3,B3は油圧シリンダ21の押釦スイツチで
、押釦スイツチAl,A2,A3で油圧シリンダ19,
20,21のピストンロツド19−2『″″,2ビ″を
伸長作動させ、押釦スイツチBl,B2,B3で油圧シ
リンダ19,20,21のピストンロツド19″″″,
2『″″,21″″″を退入作動させる。51は電源、
52は電源スイツチを示す。
Each directional control valve is connected to piping 38 . . . 48 as shown to form an operating hydraulic piping, and the pressure oil is supplied thereto. In the drawings, 49 and 50 are both oil tanks, which are the same as 34, and are shown clearly in this way to avoid complicating the drawings. SOL-1...SOL-10 are solenoids of each directional control valve, Al and Bl are push button switches of the hydraulic cylinder 19, A2 and B2 are push button switches of the hydraulic cylinder 20, and A3 and B3 are push button switches of the hydraulic cylinder 21. , hydraulic cylinder 19 with push button switches Al, A2, A3,
The piston rods 19-2 of the hydraulic cylinders 19, 20, 21 are extended and actuated by the push button switches Bl, B2, B3.
2 ``'', 21'''' is activated for retraction. 51 is the power supply;
52 indicates a power switch.

上記電気部品を図示のように一点鎖線て示す電線て接続
して電気回路を形成する。以上がこの発明による操作用
油圧配管を構成したもので、其の作用を第4図乃至第6
図について説明する。第4図は方向制御弁15,16,
17,18が開路し、また方向制御弁22,23,24
,25,26,27が閉路し、油圧シリンダ19,20
,21に油圧ポンプ35で発生した圧油が圧送されない
キープ(保持)の状態である。
An electric circuit is formed by connecting the above-mentioned electric components with electric wires shown by dashed lines as shown in the figure. The above is the structure of the operating hydraulic piping according to the present invention, and its operation is illustrated in FIGS. 4 to 6.
The diagram will be explained. Figure 4 shows directional control valves 15, 16,
17, 18 are opened, and the directional control valves 22, 23, 24 are opened.
, 25, 26, 27 are closed, and the hydraulic cylinders 19, 20
, 21 is in a kept state in which the pressure oil generated by the hydraulic pump 35 is not pumped.

この状態に於いて油圧シリンダ19を作動させるには、
先ず電源スイツチ52を入れる。そして押釦スイツチA
1を0Nにすると、電流は同スイツチA1を経てソレイ
ドSOL−1,S0L−4,S0L−5,S0L−6に
通電し、ソレノイドSOL−1,S0L−4,S0L−
5,S0L−6を通電例示させることにより夫々のスプ
ールがスプリングに抗して吸引されるから、第5図に示
すように方向制御弁15,18,22,23が切換る。
すると油圧ポンプ35で発生した圧油は配管36,38
、方向制御弁17、配管39、方向制御弁15、配管4
3、方向制御弁26、配管45、方向制御弁2牡配管4
7、方向制御弁22、配管28を経て油圧シリンダ19
のピストン背部室19″に流入し、またピストン前部室
19″の油は配管31、方向制御弁23、配管48、方
向制御弁25、配管46、方向制御弁27、配管4牡方
向制御弁16、配管41を経て油タンク50に還流する
から、油圧シリンダ19はピストンロツド195″,を
右方向に伸長作動する。次いで押釦スイツチA1を0F
Fにすると、電流が切れてソレノイドSOL−1,S0
L−4,S0L−5,S0L−6の励磁が解け、夫々の
スプールがスプリングの弾力で自動的に押し戻されて方
向制御弁15,18,22,23が切り換り、以後は油
圧シリンダ19に圧油を圧送せずピストンロツド1『″
の伸長作動は停止し、その位置を維持する。次にピスト
ンロツド19′″″を退入作動するには押釦スイツチB
1を0Nにする。
To operate the hydraulic cylinder 19 in this state,
First, turn on the power switch 52. And push button switch A
1 is set to 0N, the current flows through the switch A1 to the solenoids SOL-1, S0L-4, S0L-5, S0L-6, and the solenoids SOL-1, S0L-4, S0L-
5. By energizing S0L-6, each spool is attracted against the spring, so that the directional control valves 15, 18, 22, and 23 are switched as shown in FIG.
Then, the pressure oil generated by the hydraulic pump 35 is transferred to the pipes 36 and 38.
, directional control valve 17, piping 39, directional control valve 15, piping 4
3, directional control valve 26, piping 45, directional control valve 2 male piping 4
7. Hydraulic cylinder 19 via directional control valve 22 and piping 28
The oil in the piston back chamber 19'' flows into the piston back chamber 19'', and the oil in the piston front chamber 19'' flows through the piping 31, the directional control valve 23, the piping 48, the directional control valve 25, the piping 46, the directional control valve 27, and the piping 4 male directional control valve 16. , the oil flows back to the oil tank 50 via the piping 41, so the hydraulic cylinder 19 operates to extend the piston rod 195'' to the right.Next, push button switch A1 is set to 0F.
When set to F, the current is cut off and the solenoids SOL-1, S0
The excitation of L-4, S0L-5, and S0L-6 is released, and each spool is automatically pushed back by the elasticity of the spring, and the direction control valves 15, 18, 22, and 23 are switched, and from then on, the hydraulic cylinder 19 Piston rod 1 ``'' without sending pressure oil to
stops extending and maintains its position. Next, to move the piston rod 19''''' in and out, press push button switch B.
Set 1 to 0N.

すると電流は同スイツチB1を経てソレノイドSOL−
2,S0L一3,S0L−5,S0L−6に通電し、ソ
レノイドSOL−2,S0L−3,S0L−5,S0L
−6を通電励磁させることにより、夫々のスプールがス
プリングに抗して吸引されるから、第6図に示すように
方向制御弁16,17,22,23が切り換る。すると
油圧ポンプ35で発生して圧油は配管36、方向制御弁
18、配管40、方向制御弁16、配管4牡方向制御弁
27、配管46、方向制御弁25、配管48、方向制御
弁23、配管31を経て油圧シリンダ19のピストン前
部室19″に流入し、またピストン背部室19″の油は
配管28、方向制御弁22、配管47、方向制御弁24
、配管45、方向制御弁26、配管43、方向制御弁1
5、配管42,41を経て油タンク50に還流されるか
ら、油圧シリンダ19のピストンロツド19′″″を左
方向に退入作動させる。次いで押釦スイツチB1を0F
Fにすると、電流が切れてソレノイドSOL−2,S0
L−3,S0L一5,S0L−6の励磁が解け、夫々の
スプールがスプリングの弾力で自動的に押し戻されて方
向制御弁16,17,22,23が切り換り、以後は油
圧シリンダ19に圧油を圧送せずピストンロツド1「″
゛の退入作動は停止し、その位置を維持する。以上が一
連の油圧シリンダ19の作動である。前記第4図乃至第
6図に示す図面については油圧シリンダ19の作動につ
いて説明したが、油圧シリンダ20,21についても上
記の方法で行わしめると、同じ要領でもつて作用し、こ
れらを操作することが可能である。尚、この操作用油圧
配管の電気回路では、押釦スイツチBl,Al,B2,
A2,B3,A3を電源53,54,55,56,57
で図示の如く配線したら、押釦スイツチB1を0Nにし
ている時、これ以降の電流は遮断され、押釦スイツチA
l,B2,A2,B3,A3を0Nにしても、油圧シリ
ンダ19が退入作動するのみで、その他の作動は行われ
ないようになつている。また、以上の説明は油圧シリン
ダを三連に設けて作動させるものについてであるが、常
時開の方向制御弁NOを4個1組とする基本回路に、油
圧シリンダを1個と常時閉の方向制御弁NCを2個とを
1組とする回路を連続して接続させることにより、多数
何連もの油圧シリンダの作動が同様にして可能である。
以上説明したようにこの発明は電磁作動・バネ復帰の3
ポート・2位置型の方向制御弁を、−常時閉・常時関し
た2種類のみで組合せ、夫々に電気的に制御された信号
を与えて作動せしめ、多方向、多位置、多連の油圧制御
を可能ならしめるから、従来の方向制御弁にみられる相
対的に設けられた閉止機構を分割して各々独立させ、弁
体断面を簡略化し、流路の圧力損失を少なくし、更にス
リーブとスプールの嵌合長さを短縮し、加工の難易度を
軽減し、単位部品の共用化と生産性の向上を計り、多連
制御に備え小型化し得るものである。
Then, the current flows through the same switch B1 to the solenoid SOL-
2, energize S0L-3, S0L-5, S0L-6, solenoid SOL-2, S0L-3, S0L-5, S0L
-6 is energized and energized, each spool is attracted against the spring, so that the directional control valves 16, 17, 22, and 23 are switched as shown in FIG. Then, the pressure oil generated by the hydraulic pump 35 flows through the pipe 36, the direction control valve 18, the pipe 40, the direction control valve 16, the pipe 4, the direction control valve 27, the pipe 46, the direction control valve 25, the pipe 48, and the direction control valve 23. The oil in the piston front chamber 19'' of the hydraulic cylinder 19 flows through the piping 31, and the oil in the piston back chamber 19'' flows through the piping 28, the directional control valve 22, the piping 47, and the directional control valve 24.
, piping 45, directional control valve 26, piping 43, directional control valve 1
5. Since the oil is returned to the oil tank 50 via the pipes 42 and 41, the piston rod 19''' of the hydraulic cylinder 19 is moved in and out to the left. Next, turn push button switch B1 to 0F.
When set to F, the current is cut off and the solenoids SOL-2, S0
The excitation of L-3, S0L-5, and S0L-6 is released, and each spool is automatically pushed back by the elasticity of the spring, and the direction control valves 16, 17, 22, and 23 are switched, and from then on, the hydraulic cylinder 19 Piston rod 1 "" without sending pressure oil to
The retraction operation of ゛ is stopped and the position is maintained. The above is a series of operations of the hydraulic cylinder 19. Regarding the drawings shown in FIGS. 4 to 6, the operation of the hydraulic cylinder 19 has been explained, but if the hydraulic cylinders 20 and 21 are also operated in the same manner, they can be operated in the same manner. is possible. In addition, in the electric circuit of this hydraulic piping for operation, push button switches Bl, Al, B2,
A2, B3, A3 as power sources 53, 54, 55, 56, 57
After wiring as shown in the diagram, when push button switch B1 is set to 0N, the current from this point on will be cut off, and push button switch A will be turned off.
Even if 1, B2, A2, B3, and A3 are set to ON, the hydraulic cylinder 19 only moves in and out, and no other operations are performed. Furthermore, although the above explanation is about a system that is operated by installing three hydraulic cylinders, it is assumed that one hydraulic cylinder and one hydraulic cylinder are installed in a basic circuit consisting of a set of four normally open directional control valves NO. By connecting a circuit including two control valves NC in series, it is possible to operate a large number of hydraulic cylinders in the same way.
As explained above, this invention has three functions: electromagnetic operation and spring return.
Port, 2-position type directional control valves are combined with only 2 types - normally closed and normally related, and each is operated by applying an electrically controlled signal to achieve multi-directional, multi-position, multi-sequence hydraulic control. In order to make this possible, the relatively installed closing mechanisms found in conventional directional control valves are divided and made independent, simplifying the valve body cross section, reducing pressure loss in the flow path, and further reducing the sleeve and spool. This shortens the mating length, reduces the difficulty of machining, allows common use of unit parts, improves productivity, and allows for miniaturization in preparation for multiple control.

また、油圧発生ユニツト回路とアクチユエータとを分離
して任意の場所に設置でき、管路内の圧力損失を少なく
させ、配管を簡略化し得るものである。具体的に説明す
ると、1つの複動シリンダを作動せしめるには、常開型
の3ポート2位置電磁弁4個と、常閉型の3ポート2位
置電磁弁2個を使用すればよく、複動シリンダを1つ増
加させる毎に、常閉の上記電磁弁2個を増やせばよく、
多連化される程利点が拡大するものである。
Furthermore, the hydraulic pressure generating unit circuit and the actuator can be separated and installed at any location, reducing pressure loss in the pipeline and simplifying the piping. Specifically, to operate one double-acting cylinder, it is sufficient to use four normally open 3-port 2-position solenoid valves and two normally-closed 3-port 2-position solenoid valves. Every time you increase the number of dynamic cylinders by one, you just need to increase the number of the above two normally closed solenoid valves.
The advantages increase as the number of connections increases.

【図面の簡単な説明】 第1図はこの発明に係る常時開の方向制御弁の断面図、
第2図はこの発明に係る常時閉の方向制御弁の断面図、
第3図はこの発明の油圧制御装置の実施例を示す電気一
油圧組合せ回路記号図、第4図乃至第6図は上記実施に
於ける油圧シリンダの作動状態を示す電気一油圧組合せ
回路図てある。 NO・・・・・・常時開の方向制御弁、1・・・・・ス
リーブ、2,3,3″・・・・・・ポート、4・・・・
・・スプール、5・・・・・・スプリング、6・・・・
・・座、7・・・・・・ソレノイド、NC・・・・・・
常時閉の方向制御弁、8・・・・・・スリーブ、9,1
0,1『・・・・ポート、11・・・・・スプール、1
2・・・・・・スプリング、13・・・・・・座、14
・・・・・ソレノイド。
[Brief Description of the Drawings] Fig. 1 is a sectional view of a normally open directional control valve according to the present invention;
FIG. 2 is a sectional view of a normally closed directional control valve according to the present invention;
FIG. 3 is a symbolic diagram of an electrical-hydraulic combination circuit showing an embodiment of the hydraulic control device of the present invention, and FIGS. 4 to 6 are electrical-hydraulic combination circuit diagrams showing the operating states of the hydraulic cylinders in the above embodiment. be. NO... Normally open directional control valve, 1... Sleeve, 2, 3, 3''... Port, 4...
...Spool, 5...Spring, 6...
... Seat, 7...Solenoid, NC...
Normally closed directional control valve, 8...Sleeve, 9,1
0,1 ``...Port, 11...Spool, 1
2... Spring, 13... Seat, 14
·····solenoid.

Claims (1)

【特許請求の範囲】[Claims] 1 3ポート2位置で、その開放位置では3ポートが相
互に連通し、閉止位置では第1ポートのみ閉止され、第
2と第3ポートは連通するようになされた常時開型の電
磁作動・バネ復帰型の方向制御弁を4個使用し、そのう
ちの2個の方向制御弁の第1ポートを油圧ポンプに並列
接続し、他の2個の方向制御弁の第1ポートを油タンク
に並列接続し、かつ、ポンプ側接続の2個の方向制御弁
の第2ポートとタンク側接続の2個の方向制御弁の第3
ポートとを夫々独立させて連通させ、ポンプ側接続の2
個の方向制御弁の第3ポートを閉止し、ポンプ側接続の
2個の方向制御弁の第2ポートを夫々油圧アクチュエー
タの油圧制御回路への接続ポートとした油圧発生ユニッ
ト回路と、複数個の複動型油圧アクチュエータを装備し
、各複動型油圧アクチュエータ毎に夫々2個の常時閉型
の前記構成の方向制御弁を使用し、この2個の方向制御
弁の第1ポートを対応する複動型油圧アクチュエータに
夫々接続すると共に、各油圧アクチュエータの2個の方
向制御弁の第2及び第3ポートを夫々タンデム(串刺)
状に接続し、最終段の方向制御弁の第2ポートを閉鎖し
、最初の段となる方向制御弁の第3ポートを前記油圧発
生ユニット回路の接続ポートに夫々接続した油圧アクチ
ュエータの油圧制御回路と、各複動型油圧アクチュエー
タの2個の方向制御弁を同時に通電作動させる2個のス
イッチを、各複動型油圧アクチュエータ毎に設け、しか
も、一方のスイッチを作動させた時、同時に前記油圧発
生ユニット回路の4個の方向制御弁のうち、ポンプ側接
続の一方のもの及びタンク側接続の一方のものを通電作
動させ、他方のスイッチを作動させたときにはポンプ側
接続の他方のもの及びタンク側接続の他方のものを同時
に通電作動させて油圧発生ユニット回路から油圧アクチ
ュエータ制御回路への油圧供給方向を切換制御させるよ
うにした操作電気回路とからなることを特徴とする油圧
制御装置。
1 3 ports in 2 positions, in the open position the 3 ports communicate with each other, in the closed position only the 1st port is closed and the 2nd and 3rd ports communicate with each other. Four return type directional control valves are used, the first ports of two of them are connected in parallel to the hydraulic pump, and the first ports of the other two directional control valves are connected in parallel to the oil tank. and the second port of the two directional control valves connected to the pump side and the third port of the two directional control valves connected to the tank side.
The two ports connected to the pump side are connected to each other independently.
A hydraulic pressure generation unit circuit in which the third ports of the two directional control valves are closed and the second ports of the two directional control valves connected to the pump side are respectively connection ports to the hydraulic control circuit of the hydraulic actuator; Equipped with a double-acting hydraulic actuator, two normally-closed directional control valves having the above configuration are used for each double-acting hydraulic actuator, and the first ports of these two directional control valves are connected to the corresponding double-acting hydraulic actuators. In addition to connecting each to the dynamic hydraulic actuator, the second and third ports of the two directional control valves of each hydraulic actuator are connected in tandem (skewered).
A hydraulic control circuit for a hydraulic actuator, in which the second port of the final stage directional control valve is closed, and the third port of the first stage directional control valve is connected to the connection port of the hydraulic pressure generation unit circuit. Two switches are provided for each double-acting hydraulic actuator to simultaneously energize the two directional control valves of each double-acting hydraulic actuator. Of the four directional control valves in the generation unit circuit, one of the directional control valves connected to the pump side and one connected to the tank side are energized, and when the other switch is activated, the other one connected to the pump side and the tank side are activated. A hydraulic control device comprising an operating electric circuit configured to switch and control the direction of hydraulic pressure supply from a hydraulic pressure generation unit circuit to a hydraulic actuator control circuit by energizing the other side connection at the same time.
JP50064592A 1975-05-28 1975-05-28 hydraulic control device Expired JPS6052322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50064592A JPS6052322B2 (en) 1975-05-28 1975-05-28 hydraulic control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50064592A JPS6052322B2 (en) 1975-05-28 1975-05-28 hydraulic control device

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP15998479A Division JPS5620808A (en) 1979-12-10 1979-12-10 Hydraulic pressure control system for single acting hydraulic cylinder
JP14310781A Division JPS57204302A (en) 1981-09-09 1981-09-09 Hydraulic controller
JP15271885A Division JPS6192304A (en) 1985-07-10 1985-07-10 Hydraulic controller

Publications (2)

Publication Number Publication Date
JPS51140076A JPS51140076A (en) 1976-12-02
JPS6052322B2 true JPS6052322B2 (en) 1985-11-19

Family

ID=13262669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50064592A Expired JPS6052322B2 (en) 1975-05-28 1975-05-28 hydraulic control device

Country Status (1)

Country Link
JP (1) JPS6052322B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4714495U (en) * 1971-03-15 1972-10-20

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4714495U (en) * 1971-03-15 1972-10-20

Also Published As

Publication number Publication date
JPS51140076A (en) 1976-12-02

Similar Documents

Publication Publication Date Title
US2775982A (en) Differential-piston valve and dual pilot-valve control therefor
JP2787600B2 (en) Pilot-controlled directional control valve
US2637303A (en) Hydraulic actuated valve
US2853976A (en) Four way, solenoid actuated, fluid operated valve
US3037484A (en) Remotely controlled actuator
JPH0792157B2 (en) Solenoid operated, 2-stage hydraulic spool valve
US3790127A (en) Hydraulic valve
US4798126A (en) Load responsive system using load responsive pump control of a bypass type
JPS6052322B2 (en) hydraulic control device
US3160071A (en) Combination servo valve and control means
JPH03103685A (en) 4-way 4-position electromagnetic pilot switching valve
JPH10227304A (en) Meter-out flow control valve
JPS58211001A (en) Collected control valve
JPS6316602B2 (en)
US3633624A (en) Solenoid-operated valve assembly
JPS6192304A (en) Hydraulic controller
JPH07198054A (en) Solenoid valve
US3200847A (en) High pressure valve assembly
EP0128003A2 (en) Two-stage directional control valves
US2437723A (en) Poppet valve
JP4118474B2 (en) Directional control valve
JPH02566B2 (en)
JPS5821921Y2 (en) remote control device
JPH0371563B2 (en)
JPH0121261Y2 (en)