JPS6052171A - Image pickup device - Google Patents

Image pickup device

Info

Publication number
JPS6052171A
JPS6052171A JP58160916A JP16091683A JPS6052171A JP S6052171 A JPS6052171 A JP S6052171A JP 58160916 A JP58160916 A JP 58160916A JP 16091683 A JP16091683 A JP 16091683A JP S6052171 A JPS6052171 A JP S6052171A
Authority
JP
Japan
Prior art keywords
light
dynamic range
intensity
input
filter means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58160916A
Other languages
Japanese (ja)
Inventor
Tatsuo Nagasaki
達夫 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Olympus Optical Co Ltd filed Critical Olympus Corp
Priority to JP58160916A priority Critical patent/JPS6052171A/en
Priority to US06/646,283 priority patent/US4584606A/en
Priority to DE3432229A priority patent/DE3432229C2/en
Publication of JPS6052171A publication Critical patent/JPS6052171A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/555Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/74Circuitry for compensating brightness variation in the scene by influencing the scene brightness using illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/75Circuitry for compensating brightness variation in the scene by influencing optical camera components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Exposure Control For Cameras (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To expand the dynamic range of an optical signal possible for being transduced to an electric signal by using an optical filter means, transducing logarithmically optical intensity to input to an image pickup element. CONSTITUTION:The optical filter means consists of half mirrors 4, 5 arranged at a prescribed interval on a straight line to a direction to which an incident light L is made incident. The optical filter means converts the light intensity of the incident light L logarithmically and outputs light having plural different light intensity. The light having different intensity from the half mirrors 4, 5 is fed to CCD2a-CCD2c respectively as image pickup elements. The electric signal converted at each CCD is given respectively to an adder 6, where the signals are added. The dynamic range of the optical signal possible for being transduced into electric signals is expanded in the the way of the processing.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は撮像装置に係り、特に電荷結合素子(以下CO
Dという)を撮像素子に用いたテレビジョンカメラ、電
子カメラ等の撮像装置において撮像素子の入出力特性を
対数化しダイナミックレンジを広げるように構成した撮
像装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an imaging device, and particularly to a charge-coupled device (hereinafter referred to as a CO
The present invention relates to an imaging device, such as a television camera or an electronic camera, which uses an image sensor (referred to as D) as an imaging device, and is configured to logarithmize the input/output characteristics of the imaging device to widen the dynamic range.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、テレビジョンカメラ、電子カメラ等においてCC
D@撮像素子として用いた装置が開発されている。
In recent years, CC has been used in television cameras, electronic cameras, etc.
A device used as a D@ image sensor has been developed.

CCDは周知のように電荷を半導体中に作られたポテン
シャル井戸の中に蓄荻し、外部から転送電圧を与えポテ
ンシャルの最小位置を順次動かすことで半導体表面に沿
って転送させるもので、信号蓄積機能と走査機能とを兼
ね備えている機能素子である。CCDを撮像素子として
使う場合には、受光面に入射する光の強度に比例した電
荷を各ボテンシャル井戸の中に画像信号として蓄える。
As is well known, a CCD stores charges in a potential well created in a semiconductor, and transfers them along the semiconductor surface by applying a transfer voltage from the outside and sequentially moving the lowest potential position, thereby accumulating signals. This is a functional element that has both a scanning function and a scanning function. When a CCD is used as an image sensor, a charge proportional to the intensity of light incident on the light-receiving surface is stored in each potential well as an image signal.

このCCDに入射される光の入力強度に対する出力レベ
ルの関係は第1図に示すようになり、横軸を対数目盛と
すると入力強度の増加に対して出力レベルは直線的に増
加しある入力強度にて出力レベルは飽和し一定値となる
。この図において出力レベルが雑音レベルNから飽和レ
ベルSとなるまでの入力強度の範囲がCODのダイナミ
ックレンジ(符号りで示す)を示している。通常、この
ダイナミックレンジDはおよそ30 dB程度である。
The relationship between the output level and the input intensity of light incident on this CCD is shown in Figure 1. If the horizontal axis is on a logarithmic scale, the output level increases linearly as the input intensity increases. At , the output level becomes saturated and becomes a constant value. In this figure, the range of input intensity from the noise level N to the saturation level S indicates the dynamic range of the COD (indicated by a code). Normally, this dynamic range D is about 30 dB.

ところで、一般に撮像に必要とされるダイナミックレン
ジは60〜90 dBであり、このため従来のCODを
用いた撮像装置では上記した3 0 dBのダイナミッ
クレンジの範囲に入射光の必要な強度範囲が入るように
絞りによって入射光景を調節しなければならないという
問題があった。
By the way, the dynamic range generally required for imaging is 60 to 90 dB, so in conventional imaging devices using COD, the necessary intensity range of incident light falls within the above-mentioned 30 dB dynamic range. There was a problem in that the incident sight had to be adjusted by adjusting the aperture.

〔発明の目的〕[Purpose of the invention]

本発明は上述した点に鑑み、撮像素子の入出力特性を対
数化し、−電気信号に変換し得る光信号のダイナミック
レンジを広げることができ、しだがつて電気信号に変換
し’Tb ’4%4段目路において絞りの制御やダイナ
ミックレンジの制御を電気的に容易に行うことができる
撮像装置を提供することである。
In view of the above-mentioned points, the present invention logarithmizes the input/output characteristics of an image sensor, thereby expanding the dynamic range of an optical signal that can be converted into an electrical signal. It is an object of the present invention to provide an imaging device that can easily electrically control the aperture and the dynamic range in the fourth stage path.

〔発明の概要〕[Summary of the invention]

本発明の撮像装置は、入射される光の強度を対数化し、
複数の異なった光強度で出力する光学フィルタ手段を構
成し、この媒体からの複数の異なった強度の光を複数の
撮像素子を用いて受光し、変換された電気出力を加算手
段にて加算することにより、ダイナミックレンジが拡大
された′・電気信号を得、この信号を後段回路にて処理
して絞り及びダイナミックレンジの制御を電気的に行え
るようにするものである6 〔発明の実施例〕 以下、図面に基づいて本発明の詳細な説明する。
The imaging device of the present invention logarithms the intensity of incident light,
An optical filter means that outputs a plurality of different light intensities is configured, a plurality of lights of different intensities are received from the medium using a plurality of image pickup devices, and the converted electrical outputs are added by an adding means. By doing so, an electric signal with an expanded dynamic range is obtained, and this signal is processed in a subsequent circuit so that the aperture and dynamic range can be controlled electrically.6 [Embodiments of the Invention] Hereinafter, the present invention will be described in detail based on the drawings.

第2図は本発明の撮像装置の基本的な概念を示す説明図
である。
FIG. 2 is an explanatory diagram showing the basic concept of the imaging device of the present invention.

この図において、符号1は入射光りの強度Xに対して透
過光の強度が1Jol (x + 1 )となる透過特
性を備えた非線形フィルタで、このフィルタ1をCCD
2の素子列受光面に配置することにより、CCD2より
ダイナミックレンジの拡大された電気信号が得られるよ
うにする。
In this figure, reference numeral 1 is a nonlinear filter with a transmission characteristic such that the intensity of transmitted light is 1 Jol (x + 1) with respect to the intensity X of incident light.
By arranging the element row 2 on the light receiving surface, it is possible to obtain an electric signal with an expanded dynamic range from the CCD 2.

第3図は本発明に係る撮像装置の具体的な構成の一例を
示し、入射光りが入射される撮影レンズ3の背後に、入
射光りの方向に対して45°に傾斜したハーフミラ−4
,5が互いに所定圧離隔てて同一直線上に配[されてい
る。ここで、ハーフミラ−4,5は夫々その反射光と透
過光の強度差が一30dB弱の特性を有するものである
。ハーフミラ−4に対応し入射光りの方向に直角な方向
にCCD2 aが配置され、ハーフミラ−5に対応し入
射光りの方向に直角な方向にCCD2 bが配置され、
ハーフミラ−5の背後で入射光りの方向にCCD2 c
が配置されている。各CCD2a、2b。
FIG. 3 shows an example of a specific configuration of the imaging device according to the present invention, in which a half mirror 4 tilted at 45° with respect to the direction of the incident light is provided behind the photographic lens 3 into which the incident light is incident.
, 5 are arranged on the same straight line and spaced apart from each other by a predetermined pressure. Here, each of the half mirrors 4 and 5 has a characteristic that the difference in intensity between the reflected light and the transmitted light is a little less than 130 dB. A CCD 2 a is arranged in a direction perpendicular to the direction of incident light corresponding to the half mirror 4, a CCD 2 b is arranged in a direction perpendicular to the direction of the incident light corresponding to the half mirror 5,
CCD 2 c behind the half mirror 5 in the direction of the incident light
is located. Each CCD 2a, 2b.

2Cは30dBのダイナミックレンジを有している。2C has a dynamic range of 30dB.

CCD2a 、2b 、2cの出力は加算器6に入力さ
れその出力端7に加算出力が得られるように構成してい
る。
The outputs of the CCDs 2a, 2b, and 2c are input to an adder 6, and the adder 6 is configured to provide an added output at its output terminal 7.

このような構成において、入射光りは撮影レンズ3を通
過しその一部はハーフミ→−4で反射し一部は透過する
。ハーフミラ−4で反射した光はCCD2 aで受光さ
れる一方、その、透過光はハーフミラ−5へ入射する。
In such a configuration, the incident light passes through the photographing lens 3, part of it is reflected by the half-mirror -4, and part of it is transmitted. The light reflected by the half mirror 4 is received by the CCD 2a, while the transmitted light is incident on the half mirror 5.

ハーフミラ−5で反射した光はCCD2bで受光され、
その透過光はCCD’2cで受光される。ハーフミラ−
4の反射光をOdBとすると、その透過光は−30dB
に減衰するので、ハーフミラ−5の反射光は−30dB
となり、さらにハーフミラ−5を通−j、(、p、した
透過光は一60aBとなる。したがって、3個のCCD
 2a。
The light reflected by the half mirror 5 is received by the CCD 2b,
The transmitted light is received by CCD'2c. half mirror
If the reflected light of 4 is OdB, the transmitted light is -30 dB.
Therefore, the reflected light from half mirror 5 is -30 dB.
Then, the transmitted light that passes through the half mirror 5 -j, (,p) becomes -60aB. Therefore, the three CCD
2a.

2b、2cにて夫々受光される光の強度はOdB。The intensity of the light received at 2b and 2c is OdB.

−30dB 、−60dBとなり、各CCD2a、2b
-30dB, -60dB, each CCD2a, 2b
.

2Cにて検出されるOdB、−30dB 、−60c!
Dの化号を加算器6に入力して加算する。この場合、入
射光りの強度Xに対して各CCD2a、2b。
OdB detected at 2C, -30dB, -60c!
The symbol D is input to the adder 6 and added. In this case, each CCD 2a, 2b for the intensity X of the incident light.

2Cの入出力特性は第4図に示すように表わされる。但
し、第4図で横軸の入力Xは、対数目盛であって、実線
はCCD2aの入出力特性を示し、一点鎖線はCCD2
bの入出力特性を示し、破線はCCD2 cの入出力特
性を示している。したがって、出力端7に得られる加算
出力は第5図に示すように入力X(対数目盛)に対して
lo、9(3:+1)の対数特性を備えた出力となり、
90 dBのダイナミックレンジを有することになる。
The input/output characteristics of 2C are expressed as shown in FIG. However, the input X on the horizontal axis in FIG.
The broken line shows the input/output characteristics of CCD2c. Therefore, the addition output obtained at the output terminal 7 is an output having a logarithmic characteristic of lo, 9 (3:+1) with respect to the input X (logarithmic scale), as shown in FIG.
It will have a dynamic range of 90 dB.

なお、上−記装置において、CCDの数とハーフミラ−
の数を増せば、ダイナミックレンジは更に広げることが
可能であり、又ハーフミラ−の代りにC,CDそのもの
の感度を一30dB、−60dBと落し、ccDの雑音
を減少した構成としてもよい。
In addition, in the above device, the number of CCDs and the half mirror
By increasing the number of ccDs, the dynamic range can be further widened, and instead of a half mirror, the sensitivity of the C and CD itself may be lowered to -30 dB and -60 dB to reduce the noise of the ccD.

このようにダイナミックレンジが拡大された出力を後段
の回路に伝達し絞りの制御(利得制御)及びダイナミッ
クレンジの制御を電気的に行うには次に説明するように
すればよい。
In order to electrically control the aperture (gain control) and dynamic range by transmitting the output whose dynamic range has been expanded in this way to the subsequent circuit, the following will be described.

この場合、絞りの制御は入射光りの強度Xを可変するこ
とであるから、入力強度をX、可変倍率を利用すれば、
lo9 Aという直流電圧を電気的に減算(又は加算)
して第6図に示すようにlog(r+1)の入出力特性
を示すグラフをy軸に対して平行移動するようにし、そ
の後検波することにより零レベルよりも太きい出力だけ
を取り出すようにしてやればよいことになる。第6図で
符号y1は検波によって削除される部分を示す。また、
ダイナミックレンジの制御は第7図に示すように表示部
(テレビジョンモニタ)の入力範囲に合うようにlog
(3:+1)のグラフの傾きを8倍しB1o1/(x+
1)とすることによって行える。
In this case, controlling the diaphragm is to vary the intensity X of the incident light, so if the input intensity is X and variable magnification is used,
Electrically subtract (or add) the DC voltage of lo9 A
Then, as shown in Figure 6, move the graph showing the input/output characteristics of log(r+1) parallel to the y-axis, and then perform detection to extract only the output that is thicker than the zero level. It's a good thing. In FIG. 6, symbol y1 indicates a portion deleted by detection. Also,
As shown in Figure 7, the dynamic range is controlled using log data to match the input range of the display unit (television monitor).
The slope of the graph of (3:+1) is multiplied by 8 and B1o1/(x+
This can be done by doing 1).

したがって、絞りの制御及びダイナミックレンジの制御
を行う場合には第8図に示すようにダイナミックレンジ
の可変によって対数化した入出力特性11の傾きを変え
て特性I、とし、更に絞りの可変によって平行移動させ
て特性らとすればよい。
Therefore, when controlling the aperture and the dynamic range, the slope of the logarithmic input/output characteristic 11 is changed by changing the dynamic range as shown in FIG. All you have to do is move it and set it as a characteristic.

この場合、出力yが表示装置における表示可能な範囲Y
であって入力Xが表示したい入力範囲Xに適合するよう
に絞り及びダイナミックレンジを調整すればよい。
In this case, the output y is the displayable range Y on the display device
The aperture and dynamic range may be adjusted so that the input X matches the input range X that is desired to be displayed.

このようなことから、絞りの制御及びダイナミックレン
ジの制御を行うには第9図に示すような回路構成とすれ
ばよい。
For this reason, in order to control the aperture and the dynamic range, a circuit configuration as shown in FIG. 9 may be used.

即ち、入射光りが対数特性を有したCCD部8を通過し
加算器6に入力される過程で加算器6の利得を利得制御
部9で制御電圧の可変(負電圧−■の分圧可変)によっ
て制御することにより、絞り制御を行えるようにし、加
算出力は検波部10で検波(ダイオード検波)した後、
ダイナミックレンジ制御部11に入力されて減衰率の可
変(抵抗分圧比の可変)により表示部12の入力範囲に
合うようにダイナミックレンジの制御を行う。
That is, in the process in which the incident light passes through the CCD section 8 having logarithmic characteristics and is input to the adder 6, the gain of the adder 6 is controlled by the gain control section 9, which changes the control voltage (variable negative voltage - ■ voltage division). The aperture control can be performed by controlling by
The signal is input to the dynamic range control section 11 and the dynamic range is controlled to match the input range of the display section 12 by varying the attenuation rate (variation of the resistor voltage division ratio).

更に、自動絞り制御を行うには第9図に示した回路構成
に自動利得制御(AGC)回路を付加し、第10図に示
すような回路構成とすればよい。
Furthermore, in order to carry out automatic aperture control, an automatic gain control (AGC) circuit may be added to the circuit configuration shown in FIG. 9 to obtain a circuit configuration as shown in FIG. 10.

第10図では、第9図に示した検波部1oからの出力を
ローパスフィルタ13を通して低周波成分のみを検出し
増幅部14にて増幅した後、自動絞り制御部15に入力
し自動絞り1(AGC電圧)を得、これを加算器6へ負
帰還入力している。この場合、自動絞り量は負帰還量を
可変することにより可能であり、自動絞りの応答速度は
ローパスフィルタ13のカットオフ特性を変えることに
より可能となる。
In FIG. 10, the output from the detection unit 1o shown in FIG. AGC voltage) is obtained and inputted as negative feedback to the adder 6. In this case, the amount of automatic aperture is made possible by varying the amount of negative feedback, and the response speed of the automatic aperture is made possible by changing the cutoff characteristic of the low-pass filter 13.

なお、上述した絞りの制御、自動絞りの制御。In addition, the above-mentioned aperture control and automatic aperture control.

ダイナミックレンジの制御は記録後の再生時にも当然行
うことが可能であるため、テレビジョンカメラでは受信
側、電子カメラでは受信時又は再生時に像を見ながら調
整することも可能である。
Since it is naturally possible to control the dynamic range during playback after recording, it is also possible to adjust the dynamic range while viewing the image on the receiving side in a television camera, or during reception or playback in an electronic camera.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、光学フィルタ手段を
用いて光強度を対数化して撮像素子へ入力し、光信号に
対数特性を持たせるように構成したので、電気信号に変
換し得る光信号のダイナミックレンジを広げることがで
き、さらに変換後に電気的処理により、絞りの制御(利
得の可変)。
As described above, according to the present invention, the optical filter means is used to logarithmize the light intensity and input it to the image sensor, so that the optical signal has logarithmic characteristics. The dynamic range of the signal can be expanded, and the aperture can be controlled (variable gain) through electrical processing after conversion.

自動絞りの制御(AGc)、ダイナミックレンジの制御
(表示範囲の可変)を容易に行うことができるようにな
る。
Automatic aperture control (AGc) and dynamic range control (variable display range) can be easily performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は撮像素子の入力強度対出力の関係を示す特性図
、第2図は本発明の撮像装置の基本的な概念を示す説明
図、第3図は本発明に係る撮像装置の一実施例を示す構
成図、第4図及び第5図は$3図に示す装置の入出力特
性を示す特性図、第6図は第3図の装置で絞りの制御を
行う場合の原理を示す説明図、第7図は第3図の装置で
ダイナミックレンジの制御を行う場合の原理を示す説明
図、第8図は第3図の装置で絞り及びダイナミックレン
ジの制御を行い表示する場合の原理を示す説明図、第9
図は第8図で説明したW、理に基づいて構成される撮像
装置の構成図、第10図は第9図の装置に自動絞りの制
御部を付加した構成を示す構成図である。 2a 、 2b 、 2c =−CCD (J最4g7
素子)、4.5・・・ハーフミラ−(光学フィルタ手段
)、6・・・加算器、 L・・・入射光、 第1図 士 第2図 第3図 第4図 第5図
FIG. 1 is a characteristic diagram showing the relationship between input intensity and output of an image sensor, FIG. 2 is an explanatory diagram showing the basic concept of the imaging device of the present invention, and FIG. 3 is an implementation of the imaging device according to the present invention. A configuration diagram showing an example, Figures 4 and 5 are characteristic diagrams showing the input/output characteristics of the device shown in Figure 3, and Figure 6 is an explanation showing the principle when controlling the aperture with the device shown in Figure 3. Figure 7 is an explanatory diagram showing the principle when controlling the dynamic range with the apparatus shown in Figure 3, and Figure 8 shows the principle when controlling and displaying the aperture and dynamic range using the apparatus shown in Figure 3. Explanatory diagram showing, No. 9
This figure is a block diagram of an imaging apparatus configured based on the W and theory described in FIG. 8, and FIG. 10 is a block diagram showing a configuration in which an automatic aperture control section is added to the apparatus of FIG. 9. 2a, 2b, 2c = -CCD (J maximum 4g7
4.5... Half mirror (optical filter means), 6... Adder, L... Incident light, Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5

Claims (3)

【特許請求の範囲】[Claims] (1)入射される光の強度を対数的に変え、複数の異な
った光強度で出力するように構成された光学フィルタ手
段と、この光学フィルタ手段からの複数の異なった強度
の光を夫々受光し電気信号に変換する複数の撮像素子と
、これらの撮像素子の出力を加算する加算手段とを具備
し、この加算手段からの出力をビデオ信号として用いる
ようにしたことを特徴とする撮像装置。
(1) Optical filter means configured to logarithmically change the intensity of incident light and output it at a plurality of different light intensities, and each receive a plurality of lights of different intensities from the optical filter means. What is claimed is: 1. An imaging device comprising: a plurality of imaging devices for converting electrical signals into electrical signals; and an adding means for adding up the outputs of these imaging devices, and the output from the adding means is used as a video signal.
(2)前記複数の撮像素子は、複数の電荷結合素子で構
成されることを特徴とする特許請求の範囲第1項記載の
撮像装置。
(2) The imaging device according to claim 1, wherein the plurality of image sensors are composed of a plurality of charge-coupled devices.
(3)前記光学フィルタ手段は、入射する光の方向に対
して同一直線上に所定間隔を隔てて配列された複数のハ
ーフミラ−で構成され、これらのハーフミラ−で順次反
射、透過させて複数の異なった強度の光を得て前記複数
の電荷結合素子へ入力するようにしたことを特徴とする
特許請求の範囲、第1項又は第2項記載の撮像装置。
(3) The optical filter means is composed of a plurality of half mirrors arranged at predetermined intervals on the same straight line with respect to the direction of the incident light, and these half mirrors sequentially reflect and transmit the light to 3. The imaging device according to claim 1, wherein light of different intensities is obtained and input to the plurality of charge-coupled devices.
JP58160916A 1983-09-01 1983-09-01 Image pickup device Pending JPS6052171A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58160916A JPS6052171A (en) 1983-09-01 1983-09-01 Image pickup device
US06/646,283 US4584606A (en) 1983-09-01 1984-08-31 Image pickup means
DE3432229A DE3432229C2 (en) 1983-09-01 1984-09-01 Image capture device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58160916A JPS6052171A (en) 1983-09-01 1983-09-01 Image pickup device

Publications (1)

Publication Number Publication Date
JPS6052171A true JPS6052171A (en) 1985-03-25

Family

ID=15725077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58160916A Pending JPS6052171A (en) 1983-09-01 1983-09-01 Image pickup device

Country Status (1)

Country Link
JP (1) JPS6052171A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01321384A (en) * 1988-06-24 1989-12-27 Nec Corp Laser beam incidence direction detector
JPH0342976A (en) * 1989-07-10 1991-02-25 Nippon Telegr & Teleph Corp <Ntt> Picture input device
US5517242A (en) * 1993-06-29 1996-05-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Image sensing device having expanded dynamic range
US5801773A (en) * 1993-10-29 1998-09-01 Canon Kabushiki Kaisha Image data processing apparatus for processing combined image signals in order to extend dynamic range
JP2008263345A (en) * 2007-04-11 2008-10-30 Seiko Epson Corp Image processor, image processing method, and program for image processing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639680A (en) * 1979-09-07 1981-04-15 Fujitsu General Ltd Method and device for image pickup of television
JPS5739673A (en) * 1980-08-21 1982-03-04 Minolta Camera Co Ltd Image sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639680A (en) * 1979-09-07 1981-04-15 Fujitsu General Ltd Method and device for image pickup of television
JPS5739673A (en) * 1980-08-21 1982-03-04 Minolta Camera Co Ltd Image sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01321384A (en) * 1988-06-24 1989-12-27 Nec Corp Laser beam incidence direction detector
JPH0342976A (en) * 1989-07-10 1991-02-25 Nippon Telegr & Teleph Corp <Ntt> Picture input device
US5517242A (en) * 1993-06-29 1996-05-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Image sensing device having expanded dynamic range
US5801773A (en) * 1993-10-29 1998-09-01 Canon Kabushiki Kaisha Image data processing apparatus for processing combined image signals in order to extend dynamic range
JP2008263345A (en) * 2007-04-11 2008-10-30 Seiko Epson Corp Image processor, image processing method, and program for image processing

Similar Documents

Publication Publication Date Title
US6618091B1 (en) Image pickup apparatus having image signal state adjusting means a response characteristic of which is controlled in accordance with image magnification rate
US5978021A (en) Apparatus producing a high definition picture and method thereof
JPS6052171A (en) Image pickup device
JP2522296B2 (en) Video signal gradation control circuit
JPH0254487B2 (en)
US5666574A (en) Photo-detection methods and apparatus
JP2000358190A (en) Exposure control circuit of image input device
US4302780A (en) Photometric system
JPS60105390A (en) Camera device
JPS6052172A (en) Image pickup device
JPS6012525A (en) Photoelectric converter
JPH05260357A (en) Image pickup device
JP2628552B2 (en) Electronic still camera
JPH05336456A (en) Image pickup device
JPH04196776A (en) Image pickup device
JP2982479B2 (en) TV camera device
JP2536476B2 (en) Black level correction circuit for video camera
JPS62159595A (en) Automatic white balance device
JP3058994B2 (en) Video camera and photometric method thereof
JP3086753B2 (en) Video camera and focusing method thereof
JP2554655B2 (en) Depth of field control device
JPH01177795A (en) Iris adjusting device for stereoscopic camera
JPH02111178A (en) Automatic focusing device
KR900006720Y1 (en) Vignetting compensating circuit for video camera
JPH0562865B2 (en)