JPS60517A - Multiply-connected constant-temperature constant-humidity tank - Google Patents

Multiply-connected constant-temperature constant-humidity tank

Info

Publication number
JPS60517A
JPS60517A JP10768683A JP10768683A JPS60517A JP S60517 A JPS60517 A JP S60517A JP 10768683 A JP10768683 A JP 10768683A JP 10768683 A JP10768683 A JP 10768683A JP S60517 A JPS60517 A JP S60517A
Authority
JP
Japan
Prior art keywords
tank
temperature
humidity
air blower
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10768683A
Other languages
Japanese (ja)
Inventor
Katsumi Watanabe
渡辺 勝己
Takeshi Fukushiro
福代 毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10768683A priority Critical patent/JPS60517A/en
Publication of JPS60517A publication Critical patent/JPS60517A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D27/00Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Non-Electrical Variables (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE:To extremely miniaturize a device and, at the same time, improve the reliability, by putting the compressor, condenser, accumulator, and air blower of a cooler system of each tank in a machinery room in a lump and the control device of electric systems in an electric box commonly to each tank. CONSTITUTION:Tanks 11, 12, and 13 are constituted in such a way that they are piled up in one body and separated from each other with a heat insulating material. A cooling machine system of compressor 14, accumulator 15, condenser 16, and air blower 17, which is common to each tank, is put in a machinery room 21. Moreover, a heater 22, humidifier 23, temperature sensor 24, humidity sensor 25, air blower 26, and guide fan 27 are respectively installed to each tank. In addition to the above, the electric controlling section of the air blower 17, etc., commonly used for each tank is contained in an electric box 28. Therefore, the device is miniaturized and the power consumption is greatly reduced by commonly using the machinery room and electric box and, also heat insulating walls to the tanks 11, 12, and 13. Thus a highly reliable constant temperature constant humidity tank can be obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 この発明は環境試験装置に係シ、特に試験条件の異なる
複数の恒温恒湿槽を一体化した多連装恒温恒湿槽に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an environmental testing device, and more particularly to a multiple constant temperature and humidity chamber that integrates a plurality of constant temperature and humidity chambers with different test conditions.

〔発明の背景〕[Background of the invention]

従来、電子部品の耐温性、耐湿性に関する信頼度を確認
する場合または予測する場合には、一般に恒温恒湿槽が
用いられている。特に信頼性を予測する場合には、”<
つかの温湿度条件、例えば3条件または5条件等を選び
、これらの各種の中で電子部品にストレスを加え、その
劣化数から市場における信頼度を予測していた。このよ
うな場合、従来技術による単一槽で同時に試験を行うと
すれば、3条件なら3台、5条件なら5台の恒温恒湿槽
がそれぞれ必要であった。第1図は、従来技術による恒
温恒温単一槽の概略構成図を示し、1は檜、2#′i、
機械室、3は電気ボックス、4は加熱器、5は冷却器、
6は加湿器、7は温度センサ、8は湿度センサ、9は送
風機、10はガイドフィンを各々示し、矢印は風向を示
している。
Conventionally, a constant temperature and humidity chamber is generally used when confirming or predicting reliability regarding temperature resistance and moisture resistance of electronic components. Especially when predicting reliability, "<
Selecting a few temperature and humidity conditions, for example 3 or 5 conditions, applying stress to electronic components under these various conditions, and predicting reliability in the market based on the number of deteriorations. In such a case, if tests were to be conducted simultaneously in a single tank according to the prior art, three constant temperature and humidity chambers would be required for three conditions, and five constant temperature and humidity chambers would be required for five conditions. FIG. 1 shows a schematic configuration diagram of a constant-temperature single bath according to the conventional technology, where 1 is made of cypress, 2#'i,
Machine room, 3 is electrical box, 4 is heater, 5 is cooler,
6 is a humidifier, 7 is a temperature sensor, 8 is a humidity sensor, 9 is a blower, and 10 is a guide fin, and the arrows indicate the wind direction.

しかし、上記のように単一槽を用いて同時に試験を行う
場合には、まず、何台もの恒温恒湿槽が必要となるため
、設置スペースが膨大となる欠点がちシ、第2の欠点は
、一般にこれらの試験が1000時間乃至2000時間
の単位で行なわれるため、多大な電力を消費することで
ある。また第3の欠点は、同じような機材を沢山使うた
め機材の無駄が多かった。
However, when conducting tests simultaneously using a single tank as described above, the first disadvantage is that many constant temperature and humidity chambers are required, which requires an enormous amount of installation space. Generally, these tests are performed in units of 1,000 to 2,000 hours, consuming a large amount of power. The third drawback was that a lot of similar equipment was used, leading to a lot of wasted equipment.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、上記した従来技術の欠点をなくシ、
省資源、省エネルギーの恒温恒湿槽を提供することにあ
る。
The purpose of this invention is to eliminate the above-mentioned drawbacks of the prior art.
Our goal is to provide constant temperature and humidity chambers that save resources and energy.

〔発明の概要〕[Summary of the invention]

要するにこの発明は、断熱材で仕切られた複数の槽を一
体化し、各槽内にそれぞれ加熱器、冷却器、加湿器を備
え、上記冷却器を動作させる冷却”系すなわち各槽共通
の圧縮機、凝縮器、アキュムレータおよび送M、機は、
一括して機械室内に納め、各種には各々電磁弁および減
圧器を介して並列に接続するとともに、電気系統の制御
装置は、各種とも共通の制御回路を電気ボックス内に収
納したものである。
In short, this invention integrates a plurality of tanks partitioned by heat insulating material, each tank is equipped with a heater, a cooler, and a humidifier, and a cooling system that operates the coolers, that is, a common compressor for each tank. , condenser, accumulator and sending M, machine are:
They are all housed in a machine room and connected to each type in parallel via electromagnetic valves and pressure reducers, and the electrical system control device has a common control circuit for each type housed in an electrical box.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の〜実施例の概略構成図を示す第2図に
よムまず構成を説明する。11,12゜13は、それぞ
れ槽を示し、これらは積み重ねて一体化され、断熱材で
仕切られた構成になっている。14#:i圧縮機、15
はアキュムレータ、16は凝縮器、17は送風機、18
は槽11用電磁弁、19は槽11用減圧器、20は槽1
1用冷却器を示し%檜12用および檀13用につbても
図示のように同様な構成であって、上記各槽共用の冷却
用機械系は機械室21に収納されて因る。また22は加
熱器、23は加湿器、24は温度センサ、25は湿度セ
ンサ、26は送風機、27はガイドフィンを示し、他の
各種12,13についても同様な構成になっている。ま
た各槽11,12.13共用の送風8!17等の電気制
御部は、電気ボックス28に収納しである。
Hereinafter, the structure will first be explained with reference to FIG. 2, which is a schematic block diagram of embodiments of the present invention. Reference numerals 11, 12, and 13 indicate tanks, which are stacked and integrated and partitioned with heat insulating material. 14#: i compressor, 15
is an accumulator, 16 is a condenser, 17 is a blower, 18
is the solenoid valve for tank 11, 19 is the pressure reducer for tank 11, 20 is tank 1
The coolers for cypress 12 and cypress 13 have the same construction as shown in the figure, and the cooling mechanical system common to each tank is housed in the machine room 21. Further, 22 is a heater, 23 is a humidifier, 24 is a temperature sensor, 25 is a humidity sensor, 26 is a blower, 27 is a guide fin, and the other various types 12 and 13 have the same structure. Further, electric control units such as the air blowers 8 and 17 commonly used for each tank 11, 12, and 13 are housed in an electric box 28.

つぎに動作を説明する。この発明では1台の圧縮機14
と各槽11,12.13内の加熱器22によって上記各
槽内の温度を制御する。すなわち、槽11について説明
すると、上記槽11の温度設定を槽外の温度よシも低く
したい場合は、冷却器2゜をON−OFF (電磁弁1
8のON・OFF’ ) L、逆に高くしたい場合には
、加熱器22をON・OFF して制御する。これらは
温度センサ24および槽外温度センサ(図示せず)の信
号によって判別制御される。1個の槽だけを動作させる
場合または2個の槽ある因は全部の槽の冷却器20を同
時に動作させる場合には、インバータ(図示せず)の回
転数制御によジ、圧縮機14の回転数を全速回転数の工
の回転数、全速回転数の−の回転数および全速5 回転にして、冷却能力を調整する。なお、冷却系は、従
来技術と同様、冷媒に7レオンガスを使用し、各種への
該ガスの流入量は電磁弁18により制御される。一方、
湿度は、各種の加湿器23により加湿され、湿度センサ
25を通して設定湿度に制御される。
Next, the operation will be explained. In this invention, one compressor 14
The temperature in each tank is controlled by the heater 22 in each tank 11, 12, 13. That is, to explain the tank 11, if you want to set the temperature of the tank 11 lower than the temperature outside the tank, turn the cooler 2° ON and OFF (solenoid valve 1
8 ON/OFF') On the other hand, if you want to increase the temperature, control the heater 22 by turning it ON/OFF. These are determined and controlled by signals from the temperature sensor 24 and an external temperature sensor (not shown). When only one tank is operated, or when the coolers 20 of all the tanks are operated at the same time, the speed of the compressor 14 is controlled by controlling the rotation speed of an inverter (not shown). The cooling capacity is adjusted by setting the rotation speed to the full speed rotation speed, the full speed rotation speed minus the full speed rotation speed, and the full speed rotation speed 5 rotations. Note that the cooling system uses 7 Leon gas as a refrigerant, as in the prior art, and the amount of gas flowing into each type is controlled by electromagnetic valves 18. on the other hand,
Humidity is humidified by various humidifiers 23 and controlled to a set humidity through a humidity sensor 25.

この発明においては、槽11,12.13の各種の温度
設定は、例えば槽11が高温の場合、槽12を中温、偕
13は低温のよりに設定できるし、所要期間使用後は、
槽11を低温、槽12を中温に、また槽13を高温とい
うようにも設定できる。このように各種の温湿度設定は
、中間の槽、例えばこの実施例では槽12の温度を設定
温度の中心として、その上下の槽11.13を高温また
は低温に設定することを特徴として5る。
In this invention, the various temperature settings of the tanks 11, 12, and 13 can be set, for example, when the tank 11 is at a high temperature, the tank 12 can be set at a medium temperature, and the tank 13 can be set at a low temperature.
The tank 11 can be set at a low temperature, the tank 12 at a medium temperature, and the tank 13 at a high temperature. In this way, various temperature and humidity settings are made by setting the temperature of the intermediate tank, for example, tank 12 in this embodiment, as the center of the set temperature, and setting the tanks 11 and 13 above and below it to high or low temperatures. .

つぎに、上記の場合の省エネルギー効果につ込て説明す
る。従来、各種が独立に在存する場合には、各種は、そ
の壁面から設置環境温度との温度差に応じて熱放散があ
るのに対して、この発明による3連装の場合、第3図に
示すように、下の槽13から順に高温、中温、低温に設
定するものとすると、例えば図(ロ)で中間槽の偕12
の放熱面をモデル的に示すように、槽12の上壁面29
では従来と同等な熱放散をする側壁面50,31,32
゜63 に比べて温度差が小はく熱放散が少なくなるが
、下壁面34では逆に熱を吸収する側となり、保持熱量
が少なくて済む。この関係を定量的に説明すると、つぎ
のとおりである。−ま、恒温恒湿槽の使用条件として、
槽11を40’C/95チRH1槽12を60°C/9
5%RH1また槽13を80°C/95係RHとし、槽
外環境温度を20′Gとするとともに、各種11 、1
2.13の各壁面は同材質で構成され、単位面積当りの
熱抵抗も同一で、壁面の対流による放熱効果が壁内外面
で同一と仮定する。供給熱量Qは、壁面の放熱面積Sと
槽内外の温度差ΔTとの積に近似的に比例するものとす
る。各欄11,12゜13のそれぞれの高さを0.5 
m 、幅および奥行とも1mとすると、従来の単独槽の
場合に、それぞれ3台の檜を上記の温度条件に設定した
とすると、各種の供給熱量の合計量Qsは、 QB =480 (m2’C、) であるのに対し、この発明の3連装の場合の供給熱量の
合計′jjkQcは、 QC−540[m’・0C] となり、 Qc/Qs−0,708 となって、この発明の場合は、従来の単独槽に比べて約
30俤のエネルギーが節約できる。
Next, the energy saving effect in the above case will be explained in detail. Conventionally, when each type exists independently, each type radiates heat from its wall surface according to the temperature difference between it and the installation environment temperature. Assuming that the temperature is set to high temperature, medium temperature, and low temperature in order starting from the bottom tank 13, for example, in Figure (b), the middle tank 12
As shown in the model, the upper wall surface 29 of the tank 12
In this case, side wall surfaces 50, 31, 32 which dissipate heat equivalent to the conventional one.
The temperature difference is smaller than that at 63°, so there is less heat dissipation, but the lower wall surface 34 is on the side that absorbs heat, so the amount of retained heat can be reduced. A quantitative explanation of this relationship is as follows. -Well, as a condition for using a constant temperature and humidity chamber,
Tank 11 at 40'C/95cm RH1 Tank 12 at 60°C/9
5% RH1 and tank 13 at 80°C/95% RH, the environmental temperature outside the tank at 20'G, and various 11, 1
It is assumed that each wall surface in 2.13 is made of the same material, has the same thermal resistance per unit area, and that the heat dissipation effect due to convection on the wall surface is the same on the inner and outer surfaces of the wall. It is assumed that the amount of heat supplied Q is approximately proportional to the product of the heat radiation area S of the wall surface and the temperature difference ΔT inside and outside the tank. The height of each column 11, 12゜13 is 0.5
m, width and depth are both 1m, and in the case of a conventional single tank, if each of the three cypresses is set to the above temperature conditions, the total amount of heat supplied from each type Qs is: QB = 480 (m2' C, ), whereas the total amount of heat supplied 'jjkQc in the case of triple installation of this invention is QC-540[m'・0C], which is Qc/Qs-0,708. In this case, approximately 30 yen of energy can be saved compared to a conventional single tank.

また、この発明では上記のように各欄の制御プログラム
を任意に設定することができるような構成にしであるの
で、一般の高温槽に比べて槽内が高温、多湿の環境状態
に置かれるので、送風機部。
In addition, since this invention is configured so that the control program for each column can be set arbitrarily as described above, the inside of the tank is placed in a higher temperature and humid environment than a general high temperature tank. , blower section.

シール部、槽内壁面部等は極めて厳しb環境条件下にあ
や、高温多湿になるに従ってストレスが強くなる。例え
ば、上記の試験条件として、40°C/95係PHと8
0°C/95係RHとを比較すると、ストレスの目安と
して蒸気圧では、後者が前者の6.4倍となる。この発
明においては、所要期間使用後、上記の低ストレス槽と
高ストレス槽を交換するように設定しであるので、3連
装恒温恒湿槽の寿命を格段と延ばすことができ、信頼度
の高す恒温恒湿槽全提供することができる。なお、上記
の説明においては、便宜上3連装の恒温恒湿槽につき述
べたが、何らこれに限ることなく、多連装の恒温恒湿槽
に適用できる。
The seal portion, tank inner wall surface, etc. are exposed to extremely severe environmental conditions, and the stress increases as the temperature and humidity increase. For example, as the above test conditions, 40°C / 95% PH and 8
Comparing 0°C/95% RH, the latter is 6.4 times the former in terms of vapor pressure as a measure of stress. In this invention, the low-stress tank and the high-stress tank are set to be replaced after the required period of use, so the life of the triple constant temperature and humidity tank can be significantly extended, and the reliability is high. All constant temperature and humidity chambers can be provided. In addition, in the above description, for the sake of convenience, a triple constant temperature and humidity chamber was described, but the present invention is not limited thereto, and can be applied to a multiple constant temperature and humidity chamber.

〔発明の効果」 以上説明したように、この発明によれば、従来それぞれ
の槽に付設していた機械室および電気ボックスが共用化
され、また断熱壁を共用化することによって小形にでき
るため1機材を大幅に削減できるとともに、設置スペー
スが縮小でき、かつ、大幅に節電することができるとい
う効果が得られる。また、上記に詳述したように多連装
の各種間の温度差を最小にするように設定することによ
シ、節電が期待でき、各欄のストレス条件を変えること
により、多連装恒温恒湿槽の寿命を格段に延ばすことが
でき、信頼度の高い恒温恒湿槽を提供できる。
[Effects of the Invention] As explained above, according to the present invention, the machine room and electrical box that were conventionally attached to each tank can be shared, and the size can be reduced by sharing the heat insulating wall. Not only can the number of equipment be significantly reduced, but the installation space can also be reduced, and power can be significantly saved. In addition, as detailed above, by setting the temperature difference between various types of multiple units to a minimum, power savings can be expected, and by changing the stress conditions in each column, multiple units can be set at constant temperature and humidity. The life of the tank can be significantly extended, and a highly reliable constant temperature and humidity tank can be provided.

【図面の簡単な説明】 第1図は、従来の恒温恒湿単一槽の概略構成図、第2図
は、この発明の一実施例の概略構成図、第3図(イlは
、6連装の槽の概略斜視図、同(ロ)は、中間槽の概略
斜視図を示す。 符号の説明 1.11,12.13・・・槽、2.21・・・機械室
、3,28・・・電気ボックス、4.22−・・加熱器
、5,20°・・冷却器、6.25・・・加湿器、7.
24・・・温度センサ、8゜25 ・・・湿度センサ、
9,17.26・・・送風機、10.27・・・ガイド
フィン、14・・・圧縮機、15・・・アキュムレータ
、16・・・凝縮器、18・・・電磁弁、19・・・減
圧器、29・・・槽の上壁面、30〜33・・・槽の側
壁面。 34・・・檜の下壁面 代理人弁理士 高 橋 明 夫 第1図 才2 図 第3図
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is a schematic diagram of a conventional constant temperature and humidity single tank; Fig. 2 is a schematic diagram of an embodiment of the present invention; 1.11, 12.13...Tank, 2.21...Machine room, 3,28 ...electrical box, 4.22--heater, 5,20°...cooler, 6.25...humidifier, 7.
24... Temperature sensor, 8° 25... Humidity sensor,
9,17.26...Blower, 10.27...Guide fin, 14...Compressor, 15...Accumulator, 16...Condenser, 18...Solenoid valve, 19... Pressure reducer, 29... upper wall surface of the tank, 30-33... side wall surface of the tank. 34...Hinoki Shimokabe Patent Attorney Akio Takahashi Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 断熱材で仕切られた複数の槽を一体化し、各槽内にそれ
ぞれ加熱器、冷却器、加湿器を備え、上記冷却器を動作
させる各槽共通の圧縮機、凝縮器。 アキエムレータおよび送風機は、一括して機械室内に納
め、各種の冷却器は各々電磁弁および減圧器を介して並
列に接続されるとともに、電気系統の制御装置は、各種
とも共通の回路を電気ボックス内に収納し、かつ、両端
の檜のうち、いずれか一方を高温槽に、他方を低温槽と
することを特徴とする多連装恒温恒湿槽。
[Claims] A plurality of tanks partitioned by heat insulating materials are integrated, each tank is provided with a heater, a cooler, and a humidifier, and a compressor and a condenser common to each tank operate the coolers. . The Akiemulator and the blower are housed together in the machine room, and the various coolers are connected in parallel via solenoid valves and pressure reducers, and the electrical system control device is connected to a common circuit in the electrical box. A multiple constant temperature and humidity chamber, characterized in that one of the cypresses at both ends is used as a high temperature chamber and the other as a low temperature chamber.
JP10768683A 1983-06-17 1983-06-17 Multiply-connected constant-temperature constant-humidity tank Pending JPS60517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10768683A JPS60517A (en) 1983-06-17 1983-06-17 Multiply-connected constant-temperature constant-humidity tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10768683A JPS60517A (en) 1983-06-17 1983-06-17 Multiply-connected constant-temperature constant-humidity tank

Publications (1)

Publication Number Publication Date
JPS60517A true JPS60517A (en) 1985-01-05

Family

ID=14465393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10768683A Pending JPS60517A (en) 1983-06-17 1983-06-17 Multiply-connected constant-temperature constant-humidity tank

Country Status (1)

Country Link
JP (1) JPS60517A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991012149A1 (en) * 1990-02-14 1991-08-22 Robert Bosch Gmbh Ventilator fan
KR200447569Y1 (en) 2008-03-26 2010-02-05 고예지 Humidifier that is easy to separate and wash

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991012149A1 (en) * 1990-02-14 1991-08-22 Robert Bosch Gmbh Ventilator fan
KR200447569Y1 (en) 2008-03-26 2010-02-05 고예지 Humidifier that is easy to separate and wash

Similar Documents

Publication Publication Date Title
US11867413B2 (en) HVAC unit with hot gas reheat
EP1085272A2 (en) Heating-element accommodating-box cooling apparatus and method of controlling the same
US8583289B2 (en) Climate control system for data centers
CN103727650B (en) Air conditioner and the control method of dehumidifying
KR20190079655A (en) Automatic thermostatic dehumidifier
EP3961114B1 (en) Air conditioning system, and machine learning method
CN201488149U (en) Humidifying and dehumidifying machine with constant outlet air temperature
JP4783048B2 (en) Constant temperature and humidity device
JP5292768B2 (en) Humidity control device
CN212585294U (en) Energy-saving dehumidifier
JPS60517A (en) Multiply-connected constant-temperature constant-humidity tank
CN202546976U (en) Air-cooling type semiconductor refrigerating and dehumidifying air regulating device
CN108361887A (en) A kind of Medical Devices microchannel thermotube TEC semiconductor air conditioners and its performance test methods
CN201359351Y (en) Air-conditioning laboratory
JP3323984B2 (en) Constant temperature and constant humidity air supply device
JPS602505Y2 (en) air conditioner
JP2014070790A (en) Environment testing device and control method for air conditioning system
JP2007309572A (en) Constant-temperature constant-humidity air conditioner and its temperature control method
CN208059165U (en) A kind of Medical Devices microchannel thermotube TEC semiconductor air conditioners
JP2001090990A (en) Dehumidifier
Wilberforce et al. Dehumidification performance of a variable speed heat pump and a single speed heat pump with and without dehumidification capabilities in a warm and humid climate
JPS58142138A (en) Outdoor air intake heat pump type air conditioner
JP4607218B2 (en) Heating element storage box cooling device and control method thereof
CN212278706U (en) Constant temperature dehumidification refrigerating plant
Hunt et al. Variable refrigerant flow-heat recovery performance characterization