JPS6051784A - Method of liquefying brown coal - Google Patents

Method of liquefying brown coal

Info

Publication number
JPS6051784A
JPS6051784A JP16017283A JP16017283A JPS6051784A JP S6051784 A JPS6051784 A JP S6051784A JP 16017283 A JP16017283 A JP 16017283A JP 16017283 A JP16017283 A JP 16017283A JP S6051784 A JPS6051784 A JP S6051784A
Authority
JP
Japan
Prior art keywords
solvent
hydrogenation
deashing
coal
distillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16017283A
Other languages
Japanese (ja)
Other versions
JPH0475275B2 (en
Inventor
Tetsuo Matsumura
哲夫 松村
Kaizaburou Saitou
斎藤 海三郎
Yutaka Mifuji
裕 美藤
Tomoji Takahashi
知二 高橋
Tatsuo Hirano
平野 龍夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KATSUTAN EKIKA KK
Asia Oil Co Ltd
Nippon Brown Coal Liquefaction Co Ltd
Idemitsu Kosan Co Ltd
Kobe Steel Ltd
Mitsubishi Kasei Corp
Original Assignee
NIPPON KATSUTAN EKIKA KK
Asia Oil Co Ltd
Nippon Brown Coal Liquefaction Co Ltd
Idemitsu Kosan Co Ltd
Kobe Steel Ltd
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KATSUTAN EKIKA KK, Asia Oil Co Ltd, Nippon Brown Coal Liquefaction Co Ltd, Idemitsu Kosan Co Ltd, Kobe Steel Ltd, Mitsubishi Kasei Corp filed Critical NIPPON KATSUTAN EKIKA KK
Priority to JP16017283A priority Critical patent/JPS6051784A/en
Publication of JPS6051784A publication Critical patent/JPS6051784A/en
Publication of JPH0475275B2 publication Critical patent/JPH0475275B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To allow secondary hydrogenation to proceed efficiently by removing efficiently pre-asphaltene component, by carrying a gravity precipitation treatment by using a specified org. solvent in a solvent-refined coal deashing stage after the primary hydrogenation in a two-stage hydrogenation method for brown coal. CONSTITUTION:Brown coal is mixed with a solvent, the resulting slurry is subjected to a primary hydrogenation in the presence of an iron catalyst at a high temp. under a high pressure, and distillation (1) is carried out. In the distillation (1), the solvent-refined coal is recovered by recovering an equilibrium solvent, and naphtha can be obtd. as a product. Since ash is still contained in the solvent-refined coal obtd. by the distillation (1), a gravity precipitation treatment is carried out by using an org. solvent having a delta value of 7.4-8.5 as a deashing solvent to thereby reduce the quantity of pre-asphaltene component therein to 20wt% or below, thus preventing the hydrogenation catalyst in the second hydrogenation stage from being deactivated.

Description

【発明の詳細な説明】 本発明は褐炭の液化方法に関し、殊に2段水添法による
液化方法において、1次水添後における溶剤精製炭(S
RC)の脱灰工程で灰分と共にプレアスファルテン成分
を効率良く除去し、2次水添を効率良く進行させること
ができる様にした褐炭の液化方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for liquefying lignite, and in particular, in a liquefaction method using a two-stage hydrogenation method, solvent refined coal (S
This invention relates to a lignite liquefaction method that efficiently removes pre-asphaltene components along with ash in the deashing process of RC, and allows secondary hydrogenation to proceed efficiently.

近年の資源、エネルギー事情から石油に代わる液体燃料
を得る技術として、j!U蔵景の豊富な石炭を液化する
技術が注目を集めて詔り、殊に埋蔵石炭の大半を占める
褐炭の液化技術は急速に進められている。中でも褐炭を
溶剤及び触媒と混合し、水素の存在下に高温高圧で水素
化してSRCと液化油を得る水添液化法は代表的なもの
の1つである。
Due to the recent resource and energy situation, j! The technology to liquefy the abundant coal of U-Zangjing has attracted attention and the liquefaction technology for lignite, which accounts for most of the coal reserves, is being rapidly advanced. Among them, one of the representative methods is the hydrogenation and liquefaction method in which lignite is mixed with a solvent and a catalyst and hydrogenated at high temperature and pressure in the presence of hydrogen to obtain SRC and liquefied oil.

ところで水添液化法で液化油を高収率で得る為には、反
応条件を苛酷にしてSRCから液化油への水素分解を高
める方法も考えられるが、この方法では生成した液化油
が更に分解してガス化し、液化油の収率はむしろ低下す
る。こうした問題の改谷策として、水添生成物を蒸留し
て液化留出油を回収した後、残ったSRCを再度水素化
処理する2段水添液化法が提案され一定の成果を得てい
る。即ち2段水添液化法とは、褐炭粉粒体を適当な溶剤
と混合し、これにFet系の触媒を加えて水素の存在下
に高温高圧で1次水添を行ない、生成物を蒸留して液化
油と残渣油(灰分及び触媒を含む)とに分離する。そし
て残渣油を脱灰処理してSRCを得た後、これにFe系
触媒よりも水添活性の高いMO% W% C0% Ni
等の触媒を加えて2次水添に付し、1次水添で液化しき
れなかったSRCを更に分解して液化油を回収する。上
述の脱灰処理は、周知の通り灰分による2次水添触媒の
活性低下を防止する為に行なわれるものであるが、本発
明者等が実験により確認したところによれば、前記2次
水添触媒の触媒活性は灰分のみならずSRC中のプレア
スファルテン成分によっても著しく低下することが確認
された。そしてこの確認結果を基に、1次水添で得たS
RCを一旦脱プレアスフアルテン処理した後2次水添を
行なう方法を確立し、先に特許出願を行なった(特願昭
57−284541号)。
By the way, in order to obtain a high yield of liquefied oil using the hydrogenation liquefaction method, it is possible to increase the hydrogen decomposition from SRC to liquefied oil by making the reaction conditions harsher, but in this method, the liquefied oil produced is further decomposed. The yield of liquefied oil actually decreases. As a solution to these problems, a two-stage hydrogenation and liquefaction method has been proposed, in which the hydrogenated product is distilled to recover liquefied distillate oil, and then the remaining SRC is hydrogenated again, and has achieved certain results. In other words, the two-stage hydrogenation and liquefaction method involves mixing lignite powder with a suitable solvent, adding a Fet-based catalyst to the mixture, performing primary hydrogenation at high temperature and pressure in the presence of hydrogen, and distilling the product. Separation into liquefied oil and residual oil (including ash and catalyst). After deashing the residual oil to obtain SRC, it is added to MO% W% C0% Ni, which has higher hydrogenation activity than Fe-based catalysts.
The SRC that was not completely liquefied in the primary hydrogenation is further decomposed and the liquefied oil is recovered. As is well known, the above-mentioned deashing treatment is carried out to prevent a decrease in the activity of the secondary hydrogenation catalyst due to ash content, but according to what the present inventors have confirmed through experiments, the secondary water It was confirmed that the catalytic activity of the added catalyst was significantly reduced not only by the ash content but also by the pre-asphaltene component in the SRC. Based on this confirmation result, the S obtained by primary hydrogenation
We established a method of performing secondary hydrogenation after once removing pre-asphaltene from RC, and filed a patent application (Japanese Patent Application No. 57-284541).

本発明はこうした2段水添液化法における特に2次水添
液化効率向上の為の研究の一環として行なわれたもので
あって、特に1次水添工程後に行なわれる脱灰工程で、
脱灰溶剤の溶解度パラメーター(δ)を特定すると共に
脱灰条件を適正に設定し、それにより2次水添触媒失活
の主原因となるプレアスファルテン成分を灰分と共に除
去し、もって水添液化効率を高めようとするものである
。即ち本発明に係る水添液化方法の構成は、褐炭を液化
用溶剤及び水添触媒と共に混合し、水素の存在下に高温
高圧で1次水添を行ない、得られた水添生成物であるS
RCを脱灰した後第2次水添に付す褐炭の2段水添液化
方法において、上記脱灰工程では、脱灰用溶剤として2
5℃における溶解度パラメーター(δ)が7.4〜8.
5である有機溶剤を使用し、重力沈降を行なって前記S
RC中のプレアスファルテン成分を20重示%以下に低
減させるところに要旨を有するものである。
The present invention was carried out as part of research to improve the efficiency of secondary hydrogenation and liquefaction in the two-stage hydrogenation and liquefaction method, and in particular, in the deashing step performed after the first hydrogenation step,
By specifying the solubility parameter (δ) of the deashing solvent and setting the deashing conditions appropriately, the pre-asphaltene component, which is the main cause of deactivation of the secondary hydrogenation catalyst, is removed together with the ash content, thereby increasing the hydrogenation and liquefaction efficiency. It is intended to increase the That is, the composition of the hydrogenation and liquefaction method according to the present invention is that lignite is mixed with a liquefaction solvent and a hydrogenation catalyst, and primary hydrogenation is performed at high temperature and high pressure in the presence of hydrogen, resulting in a hydrogenated product. S
In the two-stage hydrogenation and liquefaction method for lignite in which RC is deashed and then subjected to secondary hydrogenation, in the deashing step, 2
The solubility parameter (δ) at 5°C is 7.4 to 8.
5 using an organic solvent and carrying out gravity sedimentation to remove the above S.
The gist of this method is to reduce the pre-asphaltene component in RC to 20% by weight or less.

本発明においてプレアスファルテン成分とは、例えば「
触媒第22巻第60頁及び節71頁」に示されている如
くピリジン、キノリン或はテトラヒドロフランに可溶で
ベンゼン或はトルエンに不溶な物質と定義されるもので
、これが第2次水添原)またるSRC中に多量に含まれ
ていると、前述の如く第2次水添触媒が短時間で失活し
液化油の回収率を高めることができない。しかし以下に
詳述する如く脱灰用溶媒として特定範囲の溶解度パラメ
ーター(δ)をもつ有機溶剤を使用し、特定の温度条件
のもとて重力沈降法で脱灰を行なえば、脱灰工程で前記
プレアスファルテン成分が不溶物として除去され、2次
水添触媒の活性低下が可及的に防止される。
In the present invention, the pre-asphaltene component is, for example, “
It is defined as a substance that is soluble in pyridine, quinoline, or tetrahydrofuran and insoluble in benzene or toluene, as shown in ``Catalyst Vol. ) Also, if a large amount is contained in SRC, the secondary hydrogenation catalyst will be deactivated in a short time as described above, making it impossible to increase the recovery rate of liquefied oil. However, as detailed below, if an organic solvent with a solubility parameter (δ) in a specific range is used as a deashing solvent and deashing is carried out by gravity sedimentation under specific temperature conditions, the deashing process can be completed. The pre-asphaltene component is removed as an insoluble matter, and a decrease in the activity of the secondary hydrogenation catalyst is prevented as much as possible.

ところで前述の如く1次水添生成物中のプレアスファル
テン成分を除去するという目的のみからすれば、溶解度
パラメーター(δ)の低い有機溶剤を選択使用すればよ
いのであるが、溶解度パラメーター(δ)が低すぎると
2次水添原料として供給すべきSRC中のベンゼン可溶
成分(BS)やヘキサン可溶成分(H5)のうちかなり
の貝までも不溶物として除去されてしまって液水油の回
収示は大幅に減少する。従って上記の思想を工業的に有
効に活用する為には、脱灰用溶剤として、1次水添生成
物中の灰分やプレアスファルテンは極力溶解させること
なく、BS成分やH5成分は極力多く溶解して2次水添
原料のロスをできる限り抑えることのできる様な溶剤を
選択する必要がある。
By the way, as mentioned above, from the sole purpose of removing pre-asphaltene components in the primary hydrogenation product, it is sufficient to select and use an organic solvent with a low solubility parameter (δ). If it is too low, a considerable amount of the shellfish among the benzene soluble components (BS) and hexane soluble components (H5) in the SRC, which are to be supplied as secondary hydrogenation raw materials, will be removed as insoluble matter, making it difficult to recover liquid water and oil. The display will be significantly reduced. Therefore, in order to effectively utilize the above idea industrially, it is necessary to use a deashing solvent to dissolve as much of the BS and H5 components as possible without dissolving the ash and pre-asphaltene in the primary hydrogenation product. It is necessary to select a solvent that can suppress the loss of the secondary hydrogenation raw material as much as possible.

そこで本発明者等は1次水添て得られる代表的成分組成
のSRCC但し灰分は予め除去し有機物のみとしたもの
:ピリジン可溶成分(PS))を対象として、各穏有機
溶剤の溶解度パラメーター(8225℃における値)と
上記SRC成分の溶解性との門係を調べた。使用したS
RCのピリジン、ベンゼン、ヘキサンに対する溶解性に
基づく成分割合は下記第1表の通りである。又実験に当
たっては、SRCを該SRCに対して4倍屋(重量比)
の溶剤に分散し、溶剤の臨界温度−80℃の温度で25
分間放置した後の可溶成分及び不溶成分をめた。
Therefore, the present inventors investigated the solubility parameters of each mild organic solvent for SRCC with a typical component composition obtained by primary hydrogenation, but with the ash removed in advance and only organic substances (pyridine soluble component (PS)). (value at 8225°C) and the solubility of the above SRC component was investigated. S used
The component ratios based on the solubility of RC in pyridine, benzene, and hexane are shown in Table 1 below. In addition, in the experiment, the SRC was 4 times the SRC (weight ratio).
Dispersed in a solvent of 25% at a temperature of -80°C, the critical temperature of the solvent.
After standing for a minute, the soluble and insoluble components were collected.

第1表 SRCの成分割合 但しPS:ピリジン可溶成分 Bl:ベンゼン不溶成分 BS:ベンゼン可溶成分 Hl:ヘキサン不溶成分 H5:ヘキサン可溶成分 結果は第1図に示す通りであり、溶剤の溶解度パラメー
ター(δ)が高くなるにつれてSRC中の溶剤可溶成分
は増加してくる。即ち(δ)が7.8の溶剤を使用した
ときの可溶分は8o96にすぎないが、(δ)が9.0
の溶剤を使用するとSRCのうち95%が溶解する。こ
こで5RC(PS)のうちプレアスファルテン成分に相
当するBI分が不溶で且つ2次水添原料として好適なり
S分が可溶である溶剤の(δ)は約8,2であることが
分かる。但しSRCは周知の通り複雑で且つ多種類の水
添分解生成物の混合物であり、BI分及びBS分を完全
に分離し得る訳ではなく、BI分といえどもその中には
若干量のBS分が混入し、又BS分といえどもその中に
は若干量のBI分が混入してくる。しかもSRCの成分
割合自体出発原料たる褐炭の種類や1次水添条件等によ
って変わってくる。こうしたSRC成分割合の変動幅は
第1表に示した平均的成分割合の上・下2595程度と
考えられる。従ってこの変動幅を第4図に当てはめて溶
解度パラメーター(δ)の好適範囲をめると、第1図に
破線で示した如く(δ)=7.4〜8.5の範囲となる
。ちなみに(δ)が7,4未満では脱灰工程でBI分と
共に多量のBS分やBI分までも同時に不溶分として除
去されてしまい、2次水添原料としてのロスが大きくな
って液化油の回収量が減少する。一方(δ)が8.5を
越えるとSRC中のBI分の相当量が2次水添用SRC
中に混入してくる為、2次水添触媒の失活を有効に防止
し得なくなる。尚上記の趣旨からも明らかな様に脱灰用
溶剤の溶解度パラメーター(δ)は、前記好適範囲の中
から1次水添で得られるSRCの成分割合に応じて最適
の(δ)を選択するのがよく、最も一般的なのは前記第
1表(及び第1図)に示した様な平均的な成分割合のS
RC番と対応する最適の(δ)値である約8.2の溶解
度パラメーターを有する溶剤(例えばシクロヘキサン)
である。尚脱灰用溶剤としては一般の工業用有機溶剤を
使用することも勿論可能であるが、以下に詳述する如く
2次水添後の蒸留によって得られる適正(δ)値のナフ
サを利用すれば、脱灰用溶剤を当該水添液化設備自体か
らクローズドシステムによって供給することができるの
で極めて好都合である。即ち脱灰処理後の精SRCは前
述の如く2次水添処理に付された後蒸留により液化油の
回収が行なわれるが、該液化油中のナフサ成分の(δ)
値は2次水添条件をコントロールすることによって前記
好適範囲内に納めることができるので、このナフサ成分
を脱灰用溶剤として返還利用することが可能である。
Table 1 Component ratio of SRC However, PS: Pyridine soluble component Bl: Benzene insoluble component BS: Benzene soluble component Hl: Hexane insoluble component H5: Hexane soluble component The results are as shown in Figure 1, and the solubility of the solvent As the parameter (δ) increases, the amount of solvent-soluble components in the SRC increases. In other words, when using a solvent with (δ) of 7.8, the soluble content is only 8o96, but when (δ) is 9.0
When this solvent is used, 95% of the SRC is dissolved. Here, it can be seen that (δ) of a solvent in which the BI component corresponding to the pre-asphaltene component of 5RC (PS) is insoluble and suitable as a secondary hydrogenation raw material, and the S component is soluble is approximately 8.2. . However, as is well known, SRC is a complex mixture of many types of hydrogen cracked products, and it is not possible to completely separate the BI and BS components, and even the BI component contains a small amount of BS. Even if it is a BS component, a small amount of BI component will also be mixed in. Moreover, the component ratio of SRC itself varies depending on the type of lignite used as the starting material, primary hydrogenation conditions, etc. The range of fluctuation in the SRC component ratio is considered to be about 2,595 above and below the average component ratio shown in Table 1. Therefore, when this fluctuation range is applied to FIG. 4 to determine the preferred range of the solubility parameter (δ), the range (δ) is 7.4 to 8.5, as shown by the broken line in FIG. By the way, if (δ) is less than 7.4, a large amount of BS and BI will be simultaneously removed as insoluble components along with BI in the deashing process, resulting in a large loss as a raw material for secondary hydrogenation, resulting in a loss of liquefied oil. Collection amount decreases. On the other hand, when (δ) exceeds 8.5, a considerable amount of BI in the SRC is transferred to the SRC for secondary hydrogenation.
Since it gets mixed into the water, it becomes impossible to effectively prevent the deactivation of the secondary hydrogenation catalyst. As is clear from the above, the optimum solubility parameter (δ) of the deashing solvent is selected from the above-mentioned suitable range according to the component ratio of SRC obtained by primary hydrogenation. The most common is S with the average component ratio as shown in Table 1 (and Figure 1) above.
A solvent (e.g. cyclohexane) with a solubility parameter of approximately 8.2, with an optimal (δ) value corresponding to the RC number.
It is. Although it is of course possible to use a general industrial organic solvent as the deashing solvent, it is also possible to use naphtha with an appropriate (δ) value obtained by distillation after secondary hydrogenation, as detailed below. For example, it is very advantageous that the deashing solvent can be supplied in a closed system from the hydrogenation and liquefaction plant itself. That is, the purified SRC after deashing is subjected to a secondary hydrogenation treatment as described above, and then the liquefied oil is recovered by distillation.
Since the value can be kept within the above-mentioned preferred range by controlling the secondary hydrogenation conditions, this naphtha component can be recycled and used as a deashing solvent.

ちなみに第2図は脱灰用溶剤としてシクロヘキサン又は
二次ナフサを用いた場合における1次水添SRC中の溶
剤可溶成分を対比して示したものである。但し二次ナフ
サとしては、2次水添を400℃で行ない蒸留して得た
(δ)値8.1の2次ナフサと、2次水添を860℃で
行ない蒸留して得た(δ)値8.9の二次ナフサを使用
した。第2図からも明らかな様にシクロヘキサン、又は
(δ)値が8.1の二次ナフサを使用すると、1次水添
SRC中のBS分やI(S分を殆んどロスすることなく
BI分を115程度まで減少することができる。しかし
くδ)値の高すぎる二次ナフサを使用するとBI分の6
5%f程度が可溶分として精SRC中に混入してきてお
り、本発明の目的は到底達成することができない。
Incidentally, FIG. 2 shows a comparison of solvent-soluble components in primary hydrogenated SRC when cyclohexane or secondary naphtha is used as a deashing solvent. However, the secondary naphtha has a (δ) value of 8.1 obtained by performing secondary hydrogenation at 400°C and distilling it, and the secondary naphtha obtained by performing secondary hydrogenation at 860°C and distilling it (δ). ) A secondary naphtha with a value of 8.9 was used. As is clear from Figure 2, when cyclohexane or secondary naphtha with a (δ) value of 8.1 is used, there is almost no loss of BS or I (S) in the primary hydrogenated SRC. The BI content can be reduced to about 115. However, if a secondary naphtha with too high a δ) value is used, the BI content will be reduced to 6
Approximately 5% f has been mixed into purified SRC as a soluble component, making it impossible to achieve the object of the present invention.

ところで本発明では前述の如く脱灰工程で相当量のプレ
アスファルテン成分を不溶物として除去しようとするも
のであるから、通常の脱灰工程で分離すべきスラッジよ
りも粘性が高く、それに伴なって灰分の重力沈降効率が
低下する傾向がみられる。そこで重力沈降と効率良く進
行させるべく処理条件について検討を行なったところ、
〔脱躯用溶媒の臨界温度−80℃〕以上の温度で重力沈
降を行なうことによって灰分を効率良く分離し得ること
が分かった。しかして脱灰処理温度が上記温度を下まわ
るに従って脱灰処理液の粘性が増加して前記スラッジの
沈降速度が低下し、重力沈降の効率が悪くなる。尚脱灰
処理温度の上限は特に存在しないが、温度が高すぎると
脱灰溶剤の蒸発によって生じる降温を防止する為に加熱
する必要が生じる他、槽内処理液の対流が生じてスラッ
ジの沈降がかえって阻害される恐れもあるので、臨界温
度−5℃以下に抑えることが望ましい。
By the way, as mentioned above, in the present invention, a considerable amount of pre-asphaltene components are removed as insoluble matter in the deashing process, so the sludge is higher in viscosity than the sludge to be separated in the normal deashing process, and as a result, There is a tendency for the gravity settling efficiency of ash to decrease. Therefore, we investigated the treatment conditions to allow gravity sedimentation to progress efficiently.
It has been found that the ash can be efficiently separated by performing gravity sedimentation at a temperature higher than [the critical temperature of the dehulling solvent -80°C]. However, as the deashing treatment temperature falls below the above temperature, the viscosity of the deashing treatment liquid increases, the sedimentation rate of the sludge decreases, and the efficiency of gravity sedimentation deteriorates. There is no particular upper limit for the deashing temperature, but if the temperature is too high, it will be necessary to heat it to prevent the temperature from falling due to evaporation of the deashing solvent, and convection of the processing liquid in the tank will occur, causing sludge to settle. Since there is a possibility that the temperature may be inhibited on the contrary, it is desirable to suppress the critical temperature to -5°C or lower.

尚上記の様な処理温度を設定した場合でも、微細な灰分
を多量含むときは十分に沈降分離し難い場合もあり得る
。従ってこの様な場合は、脱灰工程に先立ってハイドロ
クロン等で例えば100μmφ 以下の微細粒子−を含
む溢流液と粗大粒子を含むボトム流出液に分離し、前記
溢流液は1次水添反応系統へ返送すると共に、ボトム流
出液のみを脱灰工程に付して脱灰負荷を軽減する方法が
極めて効果的となる。この場合1次水添工程へ返送され
る微細粒子中に含まれる鉄系触媒の活性は相当高いので
1次水添効率を阻害する恐れは殆んどなく、むしろ該微
細粒子が1次水添系統内で種晶としての機能を果たし、
微細粒子の粗大化に寄与して反応系内のコーキングを抑
制すると共に脱灰負荷を更に軽減するという副次的な効
果をfoることもできる。一方100μmφを越える粗
大粒子中の触媒成分は比表面積が小さい為に水添活性が
低く、返送による前述の様な利点を享受し得ないことに
加えて、脱灰処理時の沈降速度も速いので、分離後脱灰
工程へ送られる。
Even if the treatment temperature is set as described above, if a large amount of fine ash is contained, it may be difficult to perform sufficient sedimentation and separation. Therefore, in such a case, prior to the deashing step, the overflow liquid is separated into an overflow liquid containing fine particles of 100 μmφ or less and a bottom flow liquid containing coarse particles using a hydroclone or the like, and the overflow liquid is subjected to primary hydrogenation. A method of reducing the deashing load by returning the bottom effluent to the reaction system and subjecting only the bottom effluent to the deashing process is extremely effective. In this case, since the activity of the iron-based catalyst contained in the fine particles returned to the primary hydrogenation process is quite high, there is almost no possibility that the primary hydrogenation efficiency will be inhibited; It functions as a seed crystal within the strain,
It can also have the secondary effect of contributing to coarsening of fine particles, suppressing coking within the reaction system, and further reducing the deashing load. On the other hand, catalyst components in coarse particles exceeding 100 μmφ have a small specific surface area, so their hydrogenation activity is low, and in addition to not being able to enjoy the above-mentioned advantages of recycling, their sedimentation rate during deashing is also high. After separation, it is sent to the demineralization process.

以上の様に本発明では脱灰工程で同時にプレアスファル
テン成分を除去するところに特徴があるが、皿々実験の
結果、2次水添工程へまわされるSiC中のプレアスフ
ァルテン含有率は必ずしも零としなければならない訳で
はなく、若干量のプレアスファルテンの混入は許容され
ることが確認された。そこで2次水添触媒の失活防止と
いう観点から許容されるプレアスファルテン含有率の上
限を明確にすべく更に研究を行なったところ、第8図に
示す結果が得られた。即ち第8図は、下記第2表に示す
溶剤分別組成の原料SRCを使用し、(δ)値の異なる
溶媒を用いてBI成分愈の異なる5種類の精SRCを抽
出し、Ni−Mo系触媒を用い400℃で2次水添を行
なったときの経時的な触媒活性の変動を示した実験グラ
フである。
As described above, the present invention is characterized in that pre-asphaltene components are simultaneously removed during the deashing process, but as a result of various experiments, the pre-asphaltene content in SiC sent to the secondary hydrogenation process must necessarily be zero. It was confirmed that it is not necessary and that a small amount of pre-asphaltene is allowed to be mixed in. Therefore, further research was conducted to clarify the upper limit of the permissible pre-asphaltene content from the viewpoint of preventing deactivation of the secondary hydrogenation catalyst, and the results shown in FIG. 8 were obtained. That is, Fig. 8 shows that using raw SRC with the solvent fractionation composition shown in Table 2 below, five types of refined SRC with different BI component values were extracted using solvents with different (δ) values, and Ni-Mo based It is an experimental graph showing the change in catalyst activity over time when secondary hydrogenation is performed at 400° C. using a catalyst.

第2表 原料SRC成分 PS、BI、BS、HI、H5は第1表と同じ 第8図からも明らかな様に、SiC中のBIffiが2
0重重量以下であれば2次水添触媒の活性低下は殆んど
詔められないが、20重量%を越えると触媒の経時的な
活性低下が明確に表われてくる。
Table 2 Raw material SRC components PS, BI, BS, HI, H5 As is clear from Figure 8, which is the same as Table 1, BIffi in SiC is 2
If the amount is less than 0% by weight, there is hardly any decrease in the activity of the secondary hydrogenation catalyst, but if it exceeds 20% by weight, the activity of the catalyst will clearly decrease over time.

こうした実験事実より、本発明による脱灰時の脱プレア
スファルテン効果を実操業レベルで有効ニ発揮させる為
には、プレアスファルテン含量が20重量%以下となる
様に脱灰用溶媒の(δ)値及び脱灰処理条件を設定すべ
きであることが理解される。
From these experimental facts, in order to effectively exhibit the pre-asphaltene removal effect during deashing according to the present invention at an actual operational level, it is necessary to set the (δ) value of the deashing solvent so that the pre-asphaltene content is 20% by weight or less. It is understood that the conditions for the decalcification treatment should be set.

次に前述の様な脱灰・脱プレアスファルテン処理を含め
た一連の水添液化工程を、第4図のフロー図に基づいて
簡単に説明するが、これらの説明によって本発明の適用
対象や実施態様が制限を受けることはなく、前・後記の
趣旨に反しない程度の変更実施はすべて本発明の技術的
範囲に含まれる。図中四角枠は処理内容、括弧書きは物
質を表わしている。即ち原料褐炭を溶剤と共に混合して
得られるスラリーは、必要に応じて予熱された後高温高
圧下及び鉄系触媒の存在下で1次水添に付される。スラ
リー化溶剤の種類や添加量、予熱や1次水添反応の条件
等は本発明の制限的要件ではない。1次水添が終了した
後は必要により減圧下に気液分離を行ない、次いで蒸留
(1)を行なうが、ここでは平衡溶媒が回収されてSR
Cが回収されると共に、製品としてナフサ(芳香族化合
物、ナフテン類及びパラフィン類等からなる混合油)が
得られる。蒸留i11によって得られたSRC中には前
述の様に灰分が含まれているので、引き続いて重力沈降
法による脱灰処理が行なわれる。本発明ではとの脱灰工
程で脱灰用溶剤として(δ)値が7.4〜8.5の有機
溶剤を使用し、脱灰と同時にSRC中のプレアスファル
テン成分を除去してその含有率を20重量%以下まで低
減し、次の2次水添工程における水添触媒の失活を防止
する。尚脱灰後に改めて蒸留(2)を行ない、脱灰時に
加えた脱灰用溶剤を回収する工程を付加する場合は、回
収溶剤を脱灰用溶剤として循環使用することもできる。
Next, a series of hydrogenation and liquefaction processes including the above-mentioned deashing and pre-asphaltene treatment will be briefly explained based on the flow diagram in Figure 4. The embodiments are not limited, and all modifications and implementations that do not go against the spirit of the above and below are included within the technical scope of the present invention. In the figure, square frames represent processing details, and parentheses represent substances. That is, a slurry obtained by mixing raw material lignite with a solvent is preheated if necessary, and then subjected to primary hydrogenation at high temperature and pressure in the presence of an iron-based catalyst. The type and amount of slurry-forming solvent, conditions for preheating and primary hydrogenation reaction, etc. are not limiting requirements of the present invention. After the primary hydrogenation is completed, gas-liquid separation is performed under reduced pressure if necessary, followed by distillation (1), in which the equilibrium solvent is recovered and SR
C is recovered and naphtha (mixed oil consisting of aromatic compounds, naphthenes, paraffins, etc.) is obtained as a product. Since the SRC obtained by distillation i11 contains ash as described above, it is subsequently subjected to deashing treatment by gravity sedimentation. In the present invention, an organic solvent with a (δ) value of 7.4 to 8.5 is used as a deashing solvent in the deashing process, and at the same time as deashing, the pre-asphaltene component in the SRC is removed to reduce its content. is reduced to 20% by weight or less to prevent deactivation of the hydrogenation catalyst in the next secondary hydrogenation step. In addition, when performing distillation (2) again after deashing and adding a step of recovering the deashing solvent added at the time of deashing, the recovered solvent can also be recycled as the deashing solvent.

また脱灰用溶剤としては後述する如く2次水添後の蒸留
(3)で得たナフサも使用できるが、最初のうちは前回
の操業末期に残しておいた所定(δ)値の二次ナフサ、
或は別途準備した有機溶剤を使用し、一定のランニング
状態に入った後は蒸留(2)で得た回収溶剤の不足分を
補う程度で二次ナフサを補紬していけばよい。更に脱灰
に先立って微細粒子と粗大粒子を分離する場合は、前述
の如く微細粒子を含む溢流分は1次水添工程へ返送しく
第4図の二点鎖線)、粗大粒子を含むボトム流出分のみ
を脱灰処理工程に送ればよい。
In addition, as a deashing solvent, naphtha obtained by distillation (3) after secondary hydrogenation can be used as described later, but initially, naphtha with a predetermined (δ) value left at the end of the previous operation can be used. naphtha,
Alternatively, a separately prepared organic solvent may be used, and after entering a certain running state, secondary naphtha may be supplemented to the extent that it makes up for the shortage of recovered solvent obtained in distillation (2). Furthermore, if fine particles and coarse particles are separated prior to deashing, the overflow containing fine particles should be returned to the primary hydrogenation step (two-dot chain line in Figure 4) as described above, and the bottom containing coarse particles should be It is sufficient to send only the effluent to the deashing process.

蒸留ftl及び蒸留(2)の条件は格別制約を受けるも
のではないが、第4図からも明らかな様に少なくともナ
フサ分(低沸点留分)、平衡溶ts(中温留分)及び5
RC(高温留分)に分留できるものであることが望まれ
る。
The conditions for distillation ftl and distillation (2) are not particularly restricted, but as is clear from Figure 4, at least naphtha fraction (low boiling point fraction), equilibrium solution ts (medium temperature fraction), and
It is desired that it can be fractionated into RC (high temperature distillate).

上記脱灰工程で、前述の如<SRC中のプレアスファル
テン成分を20重量%以下に低減しておけば、次工程に
おける2次水添触媒の活性低下が殆んど防止され、精S
RCの2次水添効率を高レベルに保つことができる。従
って得られた2次水添生成物を蒸留(3)に付しナフサ
及び中質油を回収することにより、原料褐炭からの液化
油の収率を大幅に高めることができる。尚蒸留(3)で
回収された平衡溶媒は2次水添用溶媒としてms使用し
、又2次ナフサの一部は脱灰用溶剤として返還利用する
。ここで脱灰用溶剤として返還される二次ナフサの(δ
)値は、前述の説明からも明らかな様に7.4〜8.5
の範囲のものとすべきであることは言うまでもない。
In the above deashing step, if the pre-asphaltene component in SRC is reduced to 20% by weight or less as described above, a decrease in the activity of the secondary hydrogenation catalyst in the next step is almost prevented, and the refined SRC is
The secondary hydrogenation efficiency of RC can be maintained at a high level. Therefore, by subjecting the obtained secondary hydrogenation product to distillation (3) to recover naphtha and medium oil, it is possible to significantly increase the yield of liquefied oil from raw brown coal. The equilibrium solvent recovered in distillation (3) is used as a secondary hydrogenation solvent, and a portion of the secondary naphtha is returned and used as a deashing solvent. Here, the secondary naphtha (δ
) value is 7.4 to 8.5, as is clear from the above explanation.
Needless to say, it should be within the range of .

fs5図のフロー図は他の実施例を示したもので、蒸留
(3)で得た平衡溶媒を1次水添工程へ返送し、蒸留(
1)で分離された平衡溶剤の一部を製品として抜き出す
様にした他は第4図の例と実質的に同一である。
The flow diagram of fs5 diagram shows another example, in which the equilibrium solvent obtained in distillation (3) is returned to the primary hydrogenation step, and the distillation (
The example is substantially the same as the example shown in FIG. 4, except that a part of the equilibrium solvent separated in step 1) is extracted as a product.

次に水添条件は本発明の制限的要件ではなく、原料炭の
性状、平衡溶媒の種類やIA、H2の消費量、触媒の種
類等を勘案して適当に決めればよいが、代表的な条件を
例示すると次の通りである。
Next, the hydrogenation conditions are not a limiting requirement of the present invention, and may be determined appropriately taking into consideration the properties of the raw coal, the type of equilibrium solvent, the consumption amount of IA, H2, the type of catalyst, etc. Examples of conditions are as follows.

く1次水添〉 温度:480〜480℃ 圧力=150〜280Kf/傭2G 触媒: Fe2O3 〈2次水添〉 温度:400℃以上 圧力ニ 150〜280Ky/1yn2G触媒:Co−
Mo系、Ni MO系等の金属触媒 水添度:8〜4% 本発明は概略以上の様に構成されており、脱灰工程で2
次水添触媒の活性低下を生じるプレアスファルテンが2
02iffi%以下となるまで脱プレアスファルテン処
理を行なう様にしたから、2次水添効率を高レベルに維
持することができ、原料褐炭からの液化油の回収率を大
幅に高めることができた。しかもプレアスファルテンの
除去は脱灰用溶剤の(δ)値を適正に設定するだけで脱
灰工程で同時に行なうことができ、又プレアスファルテ
ン同時除去に伴って生じる重力沈降効率の低下は、脱灰
温度を適正に調節することにより容易に対処することが
できるので、操集性が低下する恐れもない。加えて脱灰
用溶剤として二次ナフサを循環使溶剤を供給する必要が
なく経済的である等、極めて実用に即した技術を提供す
ることができた。
<Primary hydrogenation> Temperature: 480-480°C Pressure = 150-280Kf/2G Catalyst: Fe2O3 <Secondary hydrogenation> Temperature: 400°C or higher Pressure 150-280Ky/1yn2G catalyst: Co-
Degree of hydrogenation of metal catalysts such as Mo type, Ni MO type, etc.: 8 to 4% The present invention is roughly configured as described above, and the deashing process
Pre-asphaltene, which causes a decrease in the activity of the secondary hydrogenation catalyst, is 2
Since the pre-asphaltene removal treatment was carried out until the amount of asphaltene was reduced to 0.02iffi% or less, the secondary hydrogenation efficiency could be maintained at a high level, and the recovery rate of liquefied oil from raw brown coal could be significantly increased. Furthermore, pre-asphaltenes can be removed simultaneously during the deashing process by simply setting the (δ) value of the deashing solvent appropriately, and the decrease in gravity settling efficiency that occurs due to the simultaneous removal of pre-asphaltenes can be This can be easily dealt with by appropriately adjusting the temperature, so there is no fear that maneuverability will deteriorate. In addition, secondary naphtha is used as a deashing solvent, and there is no need to recycle the solvent, making it economical and providing an extremely practical technology.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は脱灰用溶剤の溶解度パラメーター(δ)とSR
C中の溶剤可溶成分量の関係を示すグラフ、箇2図は脱
灰用溶剤の皿類を変えた場合におけるSRC中の可溶成
分の割合を示すグラフ、第8図は2次水添用SRC中の
BI含有率が2次水添触媒の活性低下に及ぼす影響を示
ず実註グラフ、第4.5図は本発明の実施例を示すフロ
ー図である。
Figure 1 shows the solubility parameter (δ) and SR of the deashing solvent.
A graph showing the relationship between the amount of solvent-soluble components in SRC, Figure 2 is a graph showing the proportion of soluble components in SRC when the deashing solvent dishes are changed, and Figure 8 is a graph showing the relationship between the amounts of solvent-soluble components in SRC. Figure 4.5 is a flowchart showing an example of the present invention.

Claims (1)

【特許請求の範囲】 (1)褐炭を液化用溶剤及び水添触媒と共に混合し、水
素の存在下に高温高圧で第1次水添し、得られた水添生
成物である溶剤精製炭を脱灰した後面定法水添触媒にて
第2次水添に付す?d炭の2段水添液化方法において、
上記脱灰工程では、脱灰用溶剤として25℃における溶
解度パラメーター(δ)が7.4〜8.5である有機溶
剤を使用して重力沈降を行なって溶剤精製炭中のプレア
スファルテン成分を20重ffi%以下に低減させるこ
とを特徴とする褐炭の液化方法。 (2、特許請求の範囲第1項において、重力沈降による
脱灰工程に先立って100μm以下の微細固体粒子を含
む溢流液と粗大固体粒子を含むボトム流出液に分離し、
前記溢流液は第1次水添反応系統へ返還供給すると共に
、ボトム流出液は脱灰工程に付す褐炭の液化方法。 (3)特許請求の範囲第4又は2項において、2次水添
後の蒸留で得たナフサを脱灰用溶剤として使用する褐炭
の液化方法。
[Claims] (1) Brown coal is mixed with a liquefaction solvent and a hydrogenation catalyst, and subjected to primary hydrogenation at high temperature and high pressure in the presence of hydrogen, and the resulting hydrogenated product is solvent-refined coal. After deashing, is it subjected to secondary hydrogenation using a regular hydrogenation catalyst? In the two-stage hydrogenation and liquefaction method of d-coal,
In the above deashing process, an organic solvent having a solubility parameter (δ) at 25°C of 7.4 to 8.5 is used as a deashing solvent, and gravity sedimentation is performed to remove the pre-asphaltene component in the solvent-refined coal. A method for liquefying lignite, characterized by reducing the amount to less than ffi%. (2. In claim 1, prior to the demineralization process by gravity sedimentation, the overflow liquid is separated into an overflow liquid containing fine solid particles of 100 μm or less and a bottom flow liquid containing coarse solid particles,
In this lignite liquefaction method, the overflow liquid is returned to the primary hydrogenation reaction system, and the bottom effluent is subjected to a deashing process. (3) A method for liquefying lignite according to claim 4 or 2, in which naphtha obtained by distillation after secondary hydrogenation is used as a deashing solvent.
JP16017283A 1983-08-30 1983-08-30 Method of liquefying brown coal Granted JPS6051784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16017283A JPS6051784A (en) 1983-08-30 1983-08-30 Method of liquefying brown coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16017283A JPS6051784A (en) 1983-08-30 1983-08-30 Method of liquefying brown coal

Publications (2)

Publication Number Publication Date
JPS6051784A true JPS6051784A (en) 1985-03-23
JPH0475275B2 JPH0475275B2 (en) 1992-11-30

Family

ID=15709404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16017283A Granted JPS6051784A (en) 1983-08-30 1983-08-30 Method of liquefying brown coal

Country Status (1)

Country Link
JP (1) JPS6051784A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051785A (en) * 1983-08-31 1985-03-23 Kobe Steel Ltd Method for liquefying brown coal by two-stage hydrogenation
JPH01304182A (en) * 1988-05-31 1989-12-07 Nippon Katsutan Ekika Kk Coal liquefaction technique

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3607717A (en) * 1970-01-09 1971-09-21 Kerr Mc Gee Chem Corp Fractionating coal liquefaction products with light organic solvents
US3607716A (en) * 1970-01-09 1971-09-21 Kerr Mc Gee Chem Corp Fractionation of coal liquefaction products in a mixture of heavy and light organic solvents
JPS52121605A (en) * 1976-02-18 1977-10-13 Continental Oil Co Coal liquefying process
JPS5614710A (en) * 1979-07-18 1981-02-13 Fujitsu Ltd Armoring method for elastic surface wave element
JPS5681390A (en) * 1979-12-07 1981-07-03 Chiyoda Chem Eng & Constr Co Ltd Multistage hydrogenation treatment of coal
JPS5827784A (en) * 1981-08-05 1983-02-18 ザ・ラムス・コムパニ− Coal liquefaction
JPS58118890A (en) * 1981-12-28 1983-07-15 エイチア−ルアイ・インコ−ポレ−テツド Coal hydrogenation producing hydrocarbon liquid and gas product
JPS5984977A (en) * 1982-11-04 1984-05-16 Kobe Steel Ltd Liquefaction of coal
JPS6126954A (en) * 1984-07-18 1986-02-06 Ricoh Co Ltd Photomagnetic recording medium

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3607717A (en) * 1970-01-09 1971-09-21 Kerr Mc Gee Chem Corp Fractionating coal liquefaction products with light organic solvents
US3607716A (en) * 1970-01-09 1971-09-21 Kerr Mc Gee Chem Corp Fractionation of coal liquefaction products in a mixture of heavy and light organic solvents
JPS52121605A (en) * 1976-02-18 1977-10-13 Continental Oil Co Coal liquefying process
JPS5614710A (en) * 1979-07-18 1981-02-13 Fujitsu Ltd Armoring method for elastic surface wave element
JPS5681390A (en) * 1979-12-07 1981-07-03 Chiyoda Chem Eng & Constr Co Ltd Multistage hydrogenation treatment of coal
JPS5827784A (en) * 1981-08-05 1983-02-18 ザ・ラムス・コムパニ− Coal liquefaction
JPS58118890A (en) * 1981-12-28 1983-07-15 エイチア−ルアイ・インコ−ポレ−テツド Coal hydrogenation producing hydrocarbon liquid and gas product
JPS5984977A (en) * 1982-11-04 1984-05-16 Kobe Steel Ltd Liquefaction of coal
JPS6126954A (en) * 1984-07-18 1986-02-06 Ricoh Co Ltd Photomagnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051785A (en) * 1983-08-31 1985-03-23 Kobe Steel Ltd Method for liquefying brown coal by two-stage hydrogenation
JPH01304182A (en) * 1988-05-31 1989-12-07 Nippon Katsutan Ekika Kk Coal liquefaction technique

Also Published As

Publication number Publication date
JPH0475275B2 (en) 1992-11-30

Similar Documents

Publication Publication Date Title
CA2579528C (en) Method for hydrocracking of petroleum heavy oil
US4285804A (en) Process for hydrotreating heavy hydrocarbons in liquid phase in the presence of a dispersed catalyst
JP4708463B2 (en) Production method of ashless coal
US4544479A (en) Recovery of metal values from petroleum residua and other fractions
JPH0832887B2 (en) How to separate solid asphalt
JPS6051784A (en) Method of liquefying brown coal
DE2824062A1 (en) COAL LIQUIDATION PROCEDURE
US4379747A (en) Demetalation of heavy hydrocarbon oils
DE3243143A1 (en) METHOD FOR CONVERTING COAL TO ETHYL ACETATE SOLUBLE PRODUCTS IN A COAL LIQUID PROCESS
DE1212662B (en) Process for removing metallic and nitrogenous impurities from hydrocarbon oils
JPS5843433B2 (en) coal liquefaction method
JPS6051785A (en) Method for liquefying brown coal by two-stage hydrogenation
JPS58111891A (en) Thermal cracking of heavy oil
JP6715709B2 (en) Method for producing hydrocracked oil and apparatus for producing hydrocracked oil
RU2273658C2 (en) Heavy petroleum fraction purification process
US3644201A (en) Evaporation of water during urea adduct formation
JPS5984977A (en) Liquefaction of coal
WO2017063309A1 (en) Method for processing inferior feedstock oil
JPS63238195A (en) Liquefaction of coal
JPS58219292A (en) Heavy hydrocarbon oil hydrogenolysis
JPS6247918B2 (en)
CN112574806A (en) Method for processing waste lubricating oil by refining and chemical enterprises
JPH0238625B2 (en) JUYUNYORUSEKITANNOYOBAICHUSHUTSUHO
JPH0681835B2 (en) Liquefaction method of coal
JPS6339035B2 (en)