JPS6339035B2 - - Google Patents

Info

Publication number
JPS6339035B2
JPS6339035B2 JP60120089A JP12008985A JPS6339035B2 JP S6339035 B2 JPS6339035 B2 JP S6339035B2 JP 60120089 A JP60120089 A JP 60120089A JP 12008985 A JP12008985 A JP 12008985A JP S6339035 B2 JPS6339035 B2 JP S6339035B2
Authority
JP
Japan
Prior art keywords
organic solvent
sludge
solvent
temperature
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60120089A
Other languages
Japanese (ja)
Other versions
JPS61276890A (en
Inventor
Shuichiro Sumida
Yutaka Mifuji
Shinichi Nagae
Kaizaburo Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Kobe Steel Ltd
Mitsubishi Kasei Corp
Original Assignee
Idemitsu Kosan Co Ltd
Kobe Steel Ltd
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd, Kobe Steel Ltd, Mitsubishi Kasei Corp filed Critical Idemitsu Kosan Co Ltd
Priority to JP12008985A priority Critical patent/JPS61276890A/en
Publication of JPS61276890A publication Critical patent/JPS61276890A/en
Publication of JPS6339035B2 publication Critical patent/JPS6339035B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は石炭液化プロセスにおける溶剤精製炭
の脱灰方法を改良したものであり、詳細には有機
溶剤との接触による沈降分離法の実施において沈
降物の排出を容易に行なわせる様に改良したもの
である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is an improved method for deashing solvent-purified coal in a coal liquefaction process, and more specifically, in carrying out a sedimentation separation method by contacting with an organic solvent. This has been improved so that sediment can be easily discharged.

〔従来の技術〕[Conventional technology]

石炭の水添による液化プロセスでは、原料石炭
中の灰分除去が重要案件の1つとなつている。例
えば石炭の溶剤精製法では、水素供与性の高い炭
化水素系溶剤を用いて原料石炭の粉砕物をスラリ
ー化し、これを水添反応に付するものであるか
ら、水添反応生成物を蒸留に付して軽質油分を回
収した後の残留物或は更に中質油分をも回収した
後の残留物中には、必然的に石炭由来の灰分およ
び液化用触媒が混入することになる。
In the liquefaction process of coal by hydrogenation, one of the important issues is the removal of ash from raw coal. For example, in the solvent refining method for coal, a hydrocarbon solvent with high hydrogen donating property is used to turn the crushed raw material coal into a slurry, which is then subjected to a hydrogenation reaction.The hydrogenation reaction product is then subjected to distillation. Coal-derived ash and liquefaction catalyst will inevitably be mixed into the residue after the light oil is recovered or the medium oil is also recovered.

上記残留物は一般に溶剤精製炭と称されてお
り、水添による液化が可能な成分も含まれている
から、水添反応塔に戻して原料と一緒に再水添し
たり或は高級触媒の充填された2次水添反応塔へ
供給すること等によつて、液化油の回収率向上に
努めている。ところが灰分を含んだままで取扱う
と配管系や反応塔に閉塞事故を発生する恐れがあ
るので、前記蒸留工程に続いて脱灰工程を組込む
のが一般的手法となつている。
The above residue is generally called solvent-refined coal, and since it contains components that can be liquefied by hydrogenation, it can be returned to the hydrogenation reaction tower and re-hydrogenated together with the raw materials, or it can be used as a catalyst for high-grade catalysts. Efforts are being made to improve the recovery rate of liquefied oil by supplying it to a packed secondary hydrogenation reaction tower. However, if it is handled while containing ash, there is a risk of clogging the piping system or reaction tower, so it has become a common practice to incorporate a deashing process following the distillation process.

この脱灰工程に適用される手段としては色々あ
るが、一般的には溶剤精製炭に有機溶剤を接触さ
せ溶解物質と不溶解物質に分けて後者を沈降させ
るという溶剤脱灰法が汎用されている。この溶剤
脱灰法で使用される溶剤についても色々な方面で
研究されており、本出願人も特開昭59−84977号
や58−161043号(特開昭60−51785号)等の提案
を行なつているが、ここで使用する溶媒によつて
は所謂BI分(ベンゼン不溶分)やPI分(ピリジ
ン不溶分)も不溶解物質側に加わり灰分と一緒に
除去されてしまう。その為前記溶剤は脱瀝溶剤と
称されることもあり、又前記脱灰工程は脱灰・脱
瀝工程と称されることもあるが、これらは溶剤の
如何を問わずすべて本発明の対象に含まれる。
There are various methods that can be applied to this deashing process, but the most commonly used method is the solvent deashing method, which involves bringing an organic solvent into contact with solvent-refined charcoal, separating dissolved substances and insoluble substances, and precipitating the latter. There is. The solvent used in this solvent deashing method has been researched in various fields, and the present applicant has also made proposals such as JP-A-59-84977 and JP-A-58-161043 (JP-A-60-51785). However, depending on the solvent used here, the so-called BI content (benzene insoluble content) and PI content (pyridine insoluble content) may also be added to the insoluble substances side and removed together with the ash content. Therefore, the above-mentioned solvent is sometimes referred to as a deasphalting solvent, and the above-mentioned deashing process is sometimes referred to as a deashing/deasphalting process, but these are all subject to the present invention regardless of the solvent. include.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

不溶解物質である灰分は微細な粉末状態を呈し
又瀝分は粘稠性の高い物質であるから、それらが
混合状態で沈降槽の底部に沈降集積したときは全
体として粘稠な半流動性物体となつている。従つ
て沈降槽の底部に設けられているスラツジ排出口
を開にしても、スラツジを滑らかに排出すること
が困難であり、上層に存在する有機溶剤を相当量
巻込む様な状態で排出しなければならない。とこ
ろがこうして排出されたスラツジには相当量の有
機溶剤並びに該溶剤に溶解されている物質(低分
子有機物質)が混入されており、これらの回収に
難渋しなければならない。そこで別途有機溶剤を
準備しこれを沈降層中に導入して流動性を高め排
出していくという手段(以下溶剤希釈法と称す)
が提案されて低分子有機物質の排出は一応少なく
なつた。
Ash, which is an insoluble substance, is in the form of a fine powder, and ash is a highly viscous substance, so when they settle and accumulate at the bottom of the settling tank in a mixed state, the whole becomes viscous and semi-fluid. It has become an object. Therefore, even if the sludge discharge port provided at the bottom of the settling tank is opened, it is difficult to discharge the sludge smoothly, and the sludge must be discharged in a state that involves a considerable amount of the organic solvent present in the upper layer. Must be. However, the sludge discharged in this way contains a considerable amount of organic solvent and substances dissolved in the solvent (low-molecular organic substances), and it is difficult to recover them. Therefore, a method of preparing a separate organic solvent and introducing it into the sedimentation layer to increase fluidity and discharge it (hereinafter referred to as the solvent dilution method)
was proposed, and the emissions of low-molecular-weight organic substances have been reduced.

しかし沈降槽中に導入される有機溶剤も前記低
分子有機物質の溶解能力があつてその排出が完全
に解消される訳ではないばかりか、導入有機溶剤
はほぼ全量がスラツジと共に排出されるため、排
出後のスラツジから有機溶剤を如何に効率良く回
収するかという問題が発生する。即ち有機溶剤回
収費用(減圧蒸留を行なつても150℃前後の高温
が必要)が高騰し、それでも尚且つ残留する有機
溶剤の存在による臭気問題或は回収固形分自体の
処理問題等が残り、一見何でもないと思われ勝ち
なスラツジ排出についても実際上の不便が多いも
のであつた。
However, the organic solvent introduced into the settling tank has the ability to dissolve the low-molecular-weight organic substances, and its discharge cannot be completely eliminated, and almost all of the introduced organic solvent is discharged together with the sludge. A problem arises as to how efficiently the organic solvent can be recovered from the sludge after it has been discharged. In other words, the cost of recovering organic solvents (even if vacuum distillation is performed, a high temperature of around 150°C is required) increases, and even then, problems such as odor problems due to the presence of residual organic solvents and problems with the treatment of the recovered solids themselves remain. Although sludge discharge may seem like a trivial matter at first glance, there are many practical inconveniences.

本発明はこの様な状況を憂慮してなされたもの
であつて、スラツジの排出性を良好にするだけで
なく、排出スラツジ中への低分子有機物質や有機
溶剤の同伴を溶剤希釈法に比べてできるだけ少な
くし得る様な方法を提供すべく種々研究を行なつ
た。
The present invention was developed in consideration of this situation, and it not only improves sludge discharge performance, but also reduces entrainment of low-molecular organic substances and organic solvents into discharged sludge compared to the solvent dilution method. We have conducted various studies in order to provide a method that can reduce the amount of damage as much as possible.

〔問題点を解決する為の手段〕[Means for solving problems]

上記問題点を解決することに成功した本発明と
は、水添反応生成物から少なくとも軽質油分を回
収した後の残留物を対象として溶剤脱灰法によつ
て脱灰するに当たり、前記残留物に有機溶剤を接
触させた後に形成される沈降層中に水を導入し、
不溶解物質を水性スラツジとして排出する点に要
旨を有するものである。
The present invention, which has succeeded in solving the above problems, is a method for deashing the residue after recovering at least light oil from the hydrogenation reaction product by a solvent deashing method. introducing water into the sedimentation layer formed after contacting the organic solvent;
The gist is that insoluble substances are discharged as an aqueous sludge.

〔作 用〕[Effect]

本発明では沈降層中に水を導入するが、導入の
実際に当たつては、(イ)脱灰・脱瀝用有機溶剤の添
加による沈降分離の初期段階、(ロ)沈降分離の進行
中である中間段階、或は(ハ)沈降分離の完了した最
終段階のいずれかにおいて、沈降分離槽の上部、
中間部或は底部のいずれからでも、且つ任意の手
段を用いて供給することができる。
In the present invention, water is introduced into the sedimentation layer, but the actual introduction is carried out during (a) the initial stage of sedimentation separation by adding an organic solvent for deashing and deassignment, and (b) during the progress of sedimentation separation. In either the intermediate stage where the sedimentation separation is completed, or (c) the final stage after the sedimentation separation is completed, the upper part of the sedimentation tank,
It can be fed either from the middle or from the bottom and by any means.

この様にして供給された水は上記有機溶剤との
親和性が無く且つ比重も大きいから、不溶解物質
と共に下方へ沈む。即ち不溶解物質と有機溶剤の
分離を図ると共に、不溶解物質の水分散状態を形
成して流動性の高い水性スラツジを形成すること
になる。従つてスラツジの排出を円滑に行なうこ
とが可能になると共に該スラツジ中への有機溶剤
混入量も少なくなる。尚灰分や瀝分等の不溶解物
に吸着されたり、或は水性スラツジ排出時に巻込
まれたりすることにより、一部の有機溶剤が水性
スラツジと共に排出されてくる。また沈降槽底部
に水が供給された場合はスラツジ層中の有機溶剤
が共に排出される。このときには上記有機溶剤が
水層と容易に分離されるため固形分中に付着乃至
吸着されてくる有機溶剤は極めてわずかな量とな
り、スラツジを分離した後の処理が簡単になる。
即ち従来行なわれていた減圧蒸留等の有機溶剤回
収作業が不必要となり、又固形分自体の取扱性も
向上する。
Since the water supplied in this manner has no affinity with the organic solvent and has a high specific gravity, it sinks downward together with insoluble substances. That is, the insoluble substances and the organic solvent are separated, and the insoluble substances are dispersed in water to form a highly fluid aqueous sludge. Therefore, the sludge can be discharged smoothly and the amount of organic solvent mixed into the sludge can be reduced. A part of the organic solvent is discharged together with the aqueous sludge because it is adsorbed by insoluble matter such as ash or particulate matter, or because it is dragged in when the aqueous sludge is discharged. Furthermore, when water is supplied to the bottom of the settling tank, the organic solvent in the sludge layer is also discharged. At this time, since the organic solvent is easily separated from the aqueous layer, the amount of organic solvent attached or adsorbed into the solid content is extremely small, and the treatment after separating the sludge becomes simple.
That is, the conventional organic solvent recovery operation such as vacuum distillation becomes unnecessary, and the handling of the solid content itself is improved.

次に沈降層中へ導入される水の温度について説
明する。
Next, the temperature of the water introduced into the sedimentation layer will be explained.

沈降分離槽の内部環境は、沈降分離を促進する
目的で一般に高温高圧となつている。圧力は通常
5Kg/cm2・G程度以上であり、温度は有機溶剤の
種類によつても異なるが当該有機溶剤の臨界温度
Tc〜(Tc―150℃)の範囲内から選択されてい
る。この様な条件下では固形分に付着乃至吸着さ
れている有機物質が軟化状態を呈し、固形分同士
の付着を招いてスラツジの流動性を低下させる原
因となつている。この様な考察は次に示す基礎実
験の結果からも支持されるところである。
The internal environment of a sedimentation separation tank is generally high temperature and high pressure for the purpose of promoting sedimentation separation. The pressure is usually about 5 kg/cm 2 G or more, and the temperature varies depending on the type of organic solvent, but it is the critical temperature of the organic solvent.
It is selected from within the range of Tc ~ (Tc - 150℃). Under such conditions, the organic substances attached to or adsorbed on the solid content become softened, causing the solid content to adhere to each other and reducing the fluidity of the sludge. This consideration is also supported by the results of basic experiments shown below.

第2図はスラツジの分散性と溶剤温度の関係を
示すグラフであつて、オートクレーブ内に溶剤精
製炭と有機溶剤を加え、オートクレーブ内の温度
を少しずつ変化させながら撹拌を続行し、液面近
傍の液(上澄液)を抜出して固形分濃度を求め
た。縦軸は(上澄液中の固形分濃度/全原料中の
固形分濃度)を示すものである。縦軸の値が1の
ものは固形分の分散性が良好であることを示し、
このことは固形分の粒径が小さく、相互付着によ
る粗大化傾向が小さいことを意味している。一方
縦軸の値が0のものは固形分の分散性が悪くほゞ
全量が沈降していることを示し、このことは固形
分の相互付着による粗大化傾向が大きいことを意
味している。この様な基礎実験の結果から判断す
ると、水の導入によつて沈降分離槽内の温度を下
げることは、固形分の相互付着を抑制してスラツ
ジの流動性を向上する上で有意義な手段になるで
あろうと思われた。
Figure 2 is a graph showing the relationship between sludge dispersibility and solvent temperature. Solvent refined charcoal and an organic solvent are added to an autoclave, and stirring is continued while gradually changing the temperature inside the autoclave. The liquid (supernatant liquid) was extracted and the solid content concentration was determined. The vertical axis indicates (solid content concentration in supernatant liquid/solid content concentration in all raw materials). A value of 1 on the vertical axis indicates good dispersibility of solids;
This means that the particle size of the solid content is small and the tendency for coarsening due to mutual adhesion is small. On the other hand, a value of 0 on the vertical axis indicates that the dispersibility of the solid content is poor and almost all of the solid content has settled, which means that there is a strong tendency for the solid content to become coarse due to mutual adhesion. Judging from the results of these basic experiments, lowering the temperature inside the settling tank by introducing water is a meaningful means of suppressing the mutual adhesion of solids and improving the fluidity of sludge. It seemed like it would happen.

この様なにところから本発明者は、少なくとも
沈降槽内温度よりも低い温度の水を導入すること
が望ましいと考えた。しかしながら導入水の温度
が低過ぎて有機溶剤層の温度が低くなつてしまう
と、沈降すべき固形分が水層に入らず有機溶剤層
中に留まつて沈降分離の目的を達成することが困
難になる場合もあり、有機溶剤層の温度が前述の
如くかなり高いことを考慮し、一般的には熱水を
導入している。有機溶剤の温度が導入水の温度と
同じ場合は問題ないが、異なる場合は両者の温度
並びに量によつて水導入後の温度が定まつてくる
ので導入水の温度及び量は、これらを背景にして
定めるべきである。目安としては水を導入した後
の温度が(150〜Tc)℃の範囲となる様にして導
入水温度及び導入水量を定めることが望まれる。
For these reasons, the present inventor considered it desirable to introduce water at a temperature lower than at least the internal temperature of the sedimentation tank. However, if the temperature of the introduced water is too low and the temperature of the organic solvent layer becomes low, the solids to be settled will not enter the water layer and will remain in the organic solvent layer, making it difficult to achieve the purpose of sedimentation separation. Considering that the temperature of the organic solvent layer is quite high as mentioned above, hot water is generally introduced. There is no problem if the temperature of the organic solvent is the same as the temperature of the water introduced, but if they are different, the temperature after water introduction will be determined by the temperature and amount of both, so the temperature and amount of water introduced should be determined based on these. It should be determined as follows. As a guideline, it is desirable to determine the temperature and amount of water introduced so that the temperature after introducing the water is in the range of (150 to Tc)°C.

〔実施例〕〔Example〕

第1図は本発明方法を組込んだ脱灰プロセスの
フローを示す説明図であり、有機溶剤と溶剤精製
炭を混合部に導入して混合した後、沈降分離部に
導入する。灰分及びその他の不溶解物質はここで
沈降し、上澄液は脱灰・脱瀝済み精製炭として別
途処理を受けるが、沈降層下部には熱水が導入さ
れ、流動性の高められたスラツジとして沈降物が
排出される。このときスラツジと熱水の混合を促
進するために撹拌するのが良い。抜き出されたス
ラツジは油水分離部に導入する。ここで固形分と
水は沈降物として分離され、有機溶剤は循環して
使用される。尚油水分離操作は高温下で行なうの
が好ましく、低温下では固形分が有機溶剤層に移
行する恐れがある。
FIG. 1 is an explanatory diagram showing the flow of a deashing process incorporating the method of the present invention, in which an organic solvent and solvent-refined charcoal are introduced into a mixing section and mixed, and then introduced into a sedimentation separation section. Ash and other undissolved substances settle here, and the supernatant liquid is treated separately as deashed and desalted refined coal, but hot water is introduced into the lower part of the sedimentation layer to create a sludge with increased fluidity. Sediment is discharged as At this time, it is advisable to stir the mixture to promote mixing of the sludge and hot water. The extracted sludge is introduced into the oil/water separation section. Here, solids and water are separated as sediment, and the organic solvent is recycled and used. The oil-water separation operation is preferably carried out at a high temperature; at low temperatures, there is a risk that the solid content will migrate to the organic solvent layer.

実施例における物質収支の例を示すと次の通り
であつた。
An example of the material balance in the example was as follows.

最初に供給される溶剤精製炭量:20部 内訳〔固形分(BI分)10部、BS分10部〕 最初に供給される有機溶剤量:80部 供給される熱水(250℃)の量:25部 上澄液:75部…内訳 溶剤精製炭:10部 有機溶剤:65部 排出スラツジ(250℃):25部+熱水25部 内訳 固形分:15部 有機溶剤:15部 熱水:25部 排出スラツジからの回収有機溶剤中の固形分:
0.1% 〔発明の効果〕 本発明は上記の様に構成されているので、沈降
分離部の底部に形成される沈降層を、良好な流動
性を有するスラツジとして円滑に排出させること
ができる。又排出スラツジから水層と溶剤層への
分離がスムーズに行なわれる結果、スラツジから
の溶剤回収が容易になるだけでなく、分離固形分
も有機溶剤含有量の少ないものとなる。
Amount of solvent refined coal initially supplied: 20 parts Breakdown [solid content (BI content) 10 parts, BS content 10 parts] Amount of organic solvent initially supplied: 80 parts Amount of hot water (250℃) supplied : 25 parts Supernatant liquid: 75 parts...Breakdown Solvent refined charcoal: 10 parts Organic solvent: 65 parts Discharge sludge (250℃): 25 parts + hot water 25 parts Breakdown Solid content: 15 parts Organic solvent: 15 parts Hot water: 25 parts Solid content in recovered organic solvent from discharged sludge:
0.1% [Effects of the Invention] Since the present invention is configured as described above, the sedimentation layer formed at the bottom of the sedimentation separation section can be smoothly discharged as a sludge with good fluidity. Further, since the discharged sludge is smoothly separated into the aqueous layer and the solvent layer, not only is it easy to recover the solvent from the sludge, but the separated solid content also has a low organic solvent content.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施フロー説明図、第2図は
固形分の分散性と温度の関係を示すグラフであ
る。
FIG. 1 is an explanatory diagram of the implementation flow of the present invention, and FIG. 2 is a graph showing the relationship between solid content dispersibility and temperature.

Claims (1)

【特許請求の範囲】[Claims] 1 水添反応生成物から少なくとも軽質油分を回
収した後の残存物を沈降分離槽に導入して有機溶
剤と接触させ、ここで沈降した不溶解物質を排出
スラツジとして沈降分離槽から抜出す溶剤脱灰法
による溶剤精製炭の脱灰法であつて、沈降層中に
水を導入し、不溶解物質を水性スラツジとして排
出することを特徴とする溶剤精製炭の脱灰方法。
1. After recovering at least light oil from the hydrogenation reaction product, the residue is introduced into a sedimentation tank and brought into contact with an organic solvent, and the precipitated insoluble materials are extracted from the sedimentation tank as discharge sludge. A method for deashing solvent-refined coal using an ash method, the method comprising introducing water into a sedimentation layer and discharging insoluble substances as an aqueous sludge.
JP12008985A 1985-06-03 1985-06-03 Method for deashing solvent-purified coal Granted JPS61276890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12008985A JPS61276890A (en) 1985-06-03 1985-06-03 Method for deashing solvent-purified coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12008985A JPS61276890A (en) 1985-06-03 1985-06-03 Method for deashing solvent-purified coal

Publications (2)

Publication Number Publication Date
JPS61276890A JPS61276890A (en) 1986-12-06
JPS6339035B2 true JPS6339035B2 (en) 1988-08-03

Family

ID=14777633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12008985A Granted JPS61276890A (en) 1985-06-03 1985-06-03 Method for deashing solvent-purified coal

Country Status (1)

Country Link
JP (1) JPS61276890A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58187487A (en) * 1982-04-27 1983-11-01 Mitsubishi Heavy Ind Ltd Deashing of coal liquefaction product

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58187487A (en) * 1982-04-27 1983-11-01 Mitsubishi Heavy Ind Ltd Deashing of coal liquefaction product

Also Published As

Publication number Publication date
JPS61276890A (en) 1986-12-06

Similar Documents

Publication Publication Date Title
US7674369B2 (en) Process for recovering ultrafine solids from a hydrocarbon liquid
US3791956A (en) Conversion of coal to clean fuel
US5236577A (en) Process for separation of hydrocarbon from tar sands froth
JP4866351B2 (en) Process for direct coal liquefaction
EP2467450B1 (en) Oil sands extraction
US4539099A (en) Process for the removal of solids from an oil
BRPI0700828B1 (en) method for hydrocracking heavy crude oil
US4544479A (en) Recovery of metal values from petroleum residua and other fractions
US5443717A (en) Recycle of waste streams
CN104046382A (en) Method for removing catalytic cracking slurry oil catalyst
US3084029A (en) Recovery of phosphorus from sludge
CN108977222B (en) Separation system and separation method for direct coal liquefaction oil residue
US3607721A (en) Process for treating a bituminous froth
US20140054201A1 (en) Method of Processing a Bituminous Feed Using Agglomeration in a Pipeline
US2431677A (en) Process for the recovery of oil from shales
US4071434A (en) Recovery of oil from tar sands
RU2744853C1 (en) Method of physical separation of outcoming oil refining flows
JPS6339035B2 (en)
US4267061A (en) Process and separating and recovering solids and clear liquid phase from dispersions
US4382855A (en) Process for removal of hydroxy- and/or mercapto-substituted hydrocarbons from coal liquids
US4132639A (en) Method for improving the sedimentation and filterability of coal-derived liquids
US4889618A (en) Treatment of catalyst fines-oil mixtures
CA1095016A (en) Classification of powdered catalyst
CN214991358U (en) Resource utilization and high-efficiency separation system for Fischer-Tropsch wax residues
JPS61276889A (en) Method for recovering solvent in deashing solvent-purified coal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees