JPS6051718B2 - LCD driving method - Google Patents

LCD driving method

Info

Publication number
JPS6051718B2
JPS6051718B2 JP634878A JP634878A JPS6051718B2 JP S6051718 B2 JPS6051718 B2 JP S6051718B2 JP 634878 A JP634878 A JP 634878A JP 634878 A JP634878 A JP 634878A JP S6051718 B2 JPS6051718 B2 JP S6051718B2
Authority
JP
Japan
Prior art keywords
liquid crystal
voltage
voltages
diodes
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP634878A
Other languages
Japanese (ja)
Other versions
JPS5498598A (en
Inventor
隆雄 正田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP634878A priority Critical patent/JPS6051718B2/en
Publication of JPS5498598A publication Critical patent/JPS5498598A/en
Publication of JPS6051718B2 publication Critical patent/JPS6051718B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Description

【発明の詳細な説明】 本発明は液晶の駆動方法に関し、特に液晶をダイナミ
ック駆動する場合の電源電圧の印加方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for driving a liquid crystal, and more particularly to a method for applying a power supply voltage when dynamically driving a liquid crystal.

一般に液晶表示板の特性に於いて、電圧が印加された
液晶のコントラストが90%となる時その電圧の実効値
を飽和電圧Vsatとし、またコントラストが10%と
なる時の電圧の実効値を立上り電圧Vthとすると、こ
れら飽和電圧Vsat及び立上り電圧Vthの温度依存
特性は第1図に示す如くになり、温度が上昇するに従つ
て飽和電圧Vsat及び立上り電圧Vthは減少するも
のである。
In general, regarding the characteristics of a liquid crystal display board, the effective value of the voltage applied when the contrast of the liquid crystal becomes 90% is defined as the saturation voltage Vsat, and the effective value of the voltage when the contrast becomes 10% is defined as the rise. Assuming that the voltage is Vth, the temperature dependence characteristics of the saturation voltage Vsat and the rising voltage Vth are as shown in FIG. 1, and as the temperature rises, the saturation voltage Vsat and the rising voltage Vth decrease.

従来第1図に示された特性を有する液晶表示板を例えば
第2図に示す様な113/ゞイアス2桁駆動方法に依つ
てダイナミック駆動する場合、選択状態にある電極間に
印加される実効電圧VSL及び非選択状態にある電極間
に印加される実効電圧VN、Lは温度に対して一定であ
り、電源電圧が3ボルトである場合その値は、実効値の
定義VRM、= (を))”dtより実効電圧V、L2
.235ボルト、実効電圧VNSし■0.999ボルト
となつている。
Conventionally, when dynamically driving a liquid crystal display panel having the characteristics shown in FIG. 1 using the 113/Ias two-digit driving method as shown in FIG. The voltage VSL and the effective voltage VN,L applied between the electrodes in the non-selected state are constant with respect to temperature, and when the supply voltage is 3 volts, the value is defined as the effective value VRM, = () )"dt to the effective voltage V, L2
.. The effective voltage VNS is 235 volts and 0.999 volts.

これらの値を第1図のグラフに示すと、液晶の立上り電
圧Vthは温度が40℃以上になると非選択状態の実効
電圧VNSしより少さくなつてしまい、即ち非選択状態
で表示が為されないはずの液晶が駆動されて薄く表示が
為されてしまいクロストークが生じる結果となり、また
液晶の飽和電圧Vsatは温度が上昇するに従つて選択
状態の実効電圧■sしより少さくなり液晶のコントラス
トは完全に飽和するが、更に高温度になると実効電圧■
,Lと飽和電圧Vsatの差が大きくなり、それだけ不
必要な電圧が印加されることになり消費電力の無駄とな
ると共に液晶の寿命にも悪影響を与えていた。本発明は
上述した点に鑑みて為されたものであり、温度に対して
、選択状態の実効電圧■,L及び非選択状態の実効電圧
VN,Lを変化させ、液晶表示板に最適な実効電圧を印
加する様にし、更に電源電圧も液晶に直流分が残らない
様な間隔でスイッチングされる液晶の駆動方法を提供す
るものである。
When these values are shown in the graph of Figure 1, the rise voltage Vth of the liquid crystal becomes smaller than the effective voltage VNS in the non-selected state when the temperature exceeds 40°C, that is, no display is produced in the non-selected state. The liquid crystal that is supposed to be driven is driven, resulting in a thin display, resulting in crosstalk, and as the temperature rises, the saturation voltage Vsat of the liquid crystal becomes smaller than the effective voltage in the selected state, which reduces the contrast of the liquid crystal. is completely saturated, but as the temperature rises further, the effective voltage decreases.
. The present invention has been made in view of the above-mentioned points, and it is possible to obtain the optimum effective voltage for the liquid crystal display panel by changing the effective voltages in the selected state, VN, L and the effective voltages in the non-selected state, with respect to temperature. The present invention provides a method for driving a liquid crystal in which a voltage is applied and the power supply voltage is also switched at intervals such that no DC component remains in the liquid crystal.

以下図面を参照して本発明の詳細な説明する。第3図は
本発明の実施例を示す回路図てある。
The present invention will be described in detail below with reference to the drawings. FIG. 3 is a circuit diagram showing an embodiment of the present invention.

本実施例は113/くイアス2桁駆動方法に用いる場合
を示し、1は電池、2はスイッチング手段となるP−M
OSFETl3はP−MOSFET2の“0n゛゛゜0
fr゛を制御するゲート制御回路、4は電流制限抵抗R
l5は分割手段であり、ダイオードD1〜D6及びダイ
オードDl,D2に並列接続されたコンデンサC1とダ
イオードD1〜D4に並列接続されたコンデンサC2と
ダイオードD1〜D6に並列接続されたコンデンサC3
とから成る。分割手段5の原理はP−MOSFET2が
“0n゛となるとダイオードD1〜D6に電流が流れコ
ンデンサCl,C2,C3にも電荷が蓄積され、そこで
ダイオードD1〜D6はすべて略同一の特性を有するも
のを用いるので、ダイオードD1〜D6の順方向電圧を
■Fとすれば、V1=2VF..V2=4VF,.V3
=6■7となり、分割手段5に印加された電圧■は3分
割される。
This embodiment shows the case where it is used in the 113/2-digit drive method, where 1 is the battery and 2 is the P-M which is the switching means.
OSFETl3 is “0n゛゛゜0 of P-MOSFET2
4 is a current limiting resistor R.
15 is a dividing means, which includes a capacitor C1 connected in parallel to the diodes D1 to D6 and diodes Dl and D2, a capacitor C2 connected in parallel to the diodes D1 to D4, and a capacitor C3 connected in parallel to the diodes D1 to D6.
It consists of The principle of the dividing means 5 is that when the P-MOSFET 2 becomes "0n", current flows through the diodes D1 to D6 and charges are accumulated in the capacitors Cl, C2, and C3, so that the diodes D1 to D6 all have substantially the same characteristics. Therefore, if the forward voltage of the diodes D1 to D6 is ■F, then V1=2VF..V2=4VF,.V3
=6*7, and the voltage * applied to the dividing means 5 is divided into three.

即ちV3,V2,Vl=V:213V:113■となる
。これら分割された電圧が適宜液晶表示板に印加されて
液晶の駆動が為されるのである。またP−MOSFET
が″0f1′2となつてもコンデンサCl,C2,C3
に蓄積された電荷がダイオードD1〜D6に流れ、各端
子の電圧■1,V2,V3は除々に減少し、液晶はこの
減少する電圧Vl,V2,■3に依つて駆動される。こ
のとき例えば端子電圧V2の消費電流が大きく電圧が力
がつた場合でも、■3−■2間の電圧が大きくなる為、
コンデンサC3からダイオードD5,D6に流れる電流
が増し、その電流の一部がコンデンサC2に充電される
。従つて各端子電圧Vl,V2,V3が減少状態でもそ
の比は一定に保たれるものである。上述したダイオード
D1〜D6の順方向電圧VFと順方向電流1pの特性は
温度に対して依存するものであり、その例を第4図に示
す。
That is, V3, V2, Vl=V:213V:113■. These divided voltages are appropriately applied to the liquid crystal display panel to drive the liquid crystal. Also P-MOSFET
Even if becomes ``0f1'2, the capacitors Cl, C2, C3
The charges accumulated in the diodes D1 to D6 flow to the diodes D1 to D6, and the voltages 1, V2, and V3 at each terminal gradually decrease, and the liquid crystal is driven by the decreasing voltages V1, V2, and 3. At this time, for example, even if the current consumption of terminal voltage V2 is large and the voltage increases, the voltage between ■3 and ■2 will increase, so
The current flowing from the capacitor C3 to the diodes D5 and D6 increases, and part of the current charges the capacitor C2. Therefore, even when the terminal voltages Vl, V2, and V3 are decreasing, the ratio is kept constant. The characteristics of the forward voltage VF and forward current 1p of the diodes D1 to D6 described above depend on temperature, and an example thereof is shown in FIG.

このVF−1F特性図は横軸に順方向電圧■F1縦軸に
順方向電流しを取り、温度がO℃、25℃、50℃、7
5℃の場合の各々の特性を示している。
This VF-1F characteristic diagram shows the forward voltage on the horizontal axis and the forward current on the vertical axis, and the temperature is 0℃, 25℃, 50℃, 7℃.
Each characteristic at 5°C is shown.

この特性図に依れば順方向電流1Fが一定であれば順方
向電圧VFは温度が高くなる程少さくなることがわかる
。この様な特性を有するダイオードD1〜D6に依つて
分割された電圧■1,■2,■3は同様に温度の上昇に
依つて電圧が少さくなるのである。今温度が25℃であ
り順方向電流1Fが10−5〔A〕である場合、順方向
電圧■。
According to this characteristic diagram, it can be seen that if the forward current 1F is constant, the forward voltage VF decreases as the temperature increases. Similarly, the voltages (1), (2), and (3) divided by the diodes D1 to D6 having such characteristics decrease as the temperature rises. If the current temperature is 25°C and the forward current 1F is 10-5 [A], the forward voltage is ■.

は0.36〔V〕である。従つて電圧■1は■1=2■
FてあるからV1=0.72〔■〕、電圧V2はV2=
4VFてV2=1.44〔■〕、V3は■3=6VFで
V3=2.16〔■〕となる。P−MOSFET2が“
゜0fr゛とならずに電池1の電圧が供給されるとする
と、第2図に示した駆動波形の場合選択状態に印加され
る実効電圧■SLは■SL(25℃)=1.61〔■〕
となり、非選択状態に印加される実効電圧■N,Lは■
N,L(25℃)=0.72〔■〕となる。また温度が
変化して順方向電圧■1が△■だけ変化したとすると、
各電圧■1,■2,■3はV3−υ▼VVLΔ ▼ −
0▼1となり、温度に依つて電圧値は変わるが電圧比は
一定である。
is 0.36 [V]. Therefore, the voltage ■1 is ■1=2■
Since F, V1=0.72 [■], voltage V2 is V2=
4VF and V2 = 1.44 [■], V3 = 3 = 6VF and V3 = 2.16 [■]. P-MOSFET2 is “
Assuming that the voltage of battery 1 is supplied without becoming 0fr, the effective voltage ■SL applied in the selected state in the case of the drive waveform shown in Fig. 2 is ■SL (25°C) = 1.61 [ ■〕
Therefore, the effective voltages ■N and L applied to the non-selected state are ■
N, L (25°C) = 0.72 [■]. Also, if the forward voltage ■1 changes by △■ due to a change in temperature, then
Each voltage ■1, ■2, ■3 is V3−υ▼VVLΔ ▼ −
0▼1, and the voltage value changes depending on the temperature, but the voltage ratio is constant.

温度が50℃の場合し=10−5〔A〕とするとVF=
0.30CV〕であり、V1=0.60〔V〕、V2=
1.20CV〕、V3=0.80〔■〕となる。従つて
第2図に示した波形図に依れば選択状態の実効電圧■し
は■5L(50℃)=1.34〔V〕となり、非選択状
態の実効電圧■N,Lは■N,L(50℃)=0.60
CV〕となる。即ち50℃の場合では実効電圧は25℃
の場合に比べて83%に低下するものである。次に第3
図に示した実施例の動作を第5図の波形図を参照しなが
ら説明する。
If the temperature is 50℃ and = 10-5 [A], then VF =
0.30CV], V1=0.60[V], V2=
1.20CV], V3=0.80[■]. Therefore, according to the waveform diagram shown in Figure 2, the effective voltage in the selected state is 5L (50°C) = 1.34 [V], and the effective voltages in the non-selected state, N and L, are N. ,L(50℃)=0.60
CV]. In other words, at 50°C, the effective voltage is 25°C.
This is a reduction of 83% compared to the case of . Then the third
The operation of the embodiment shown in the figure will be explained with reference to the waveform diagram in FIG.

ゲート制御回路3は一定間隔でP−MOSFET2のゲ
ート電圧Vcを゜“0゛レベルにするものであり、ゲー
ト電圧■cが“゜0゛レベルとなつている時のみ電池1
の電圧■Eを抵抗R4を介して分割手段5に印加するも
のである。
The gate control circuit 3 sets the gate voltage Vc of the P-MOSFET 2 to the ゜"0゛ level at regular intervals, and only when the gate voltage ■c is at the "゜0゛ level, the battery 1
A voltage ①E is applied to the dividing means 5 via the resistor R4.

ゲート電圧■。が゜“0゛レベルとなる期間は、113
バイアス2桁駆動の場合ては駆動波形の1周期Tの11
4に等しく、またその間隔は駆動波形1周期Tの312
倍となつている。この理由は後に明らかになるが液晶に
印加される電圧の直流分を打ち消す為である。まずゲー
ト電圧■。が゜゜0゛レベルである時はP−MOSFE
T2が″0n″となつてダイオードD1〜D6に一定電
流1Fが流れ、各端子■1,V2,V3にはその時の温
度に依つて定まる電圧が生じる。次にゲート電圧■。が
′4■iレベルになるとP一MOSFET2は“0ff
゛となり、分割手段5に電池1の電圧VEの供給を遮断
するが、前述した如く各コンデンサCl,C2,C3に
蓄積された電荷に依つてダイオードD1〜D6に電流が
流れる為に各端子Vl,■2,V3の電圧は第5図に示
す如く徐々に低下する。しかしその電圧の比は常に一定
であることは前に述べた通りである。T1の期間経過後
、再びゲート電圧■。が“0゛レベルとなると、P−M
OSFET2ぱ“0n゛となつて電池1の電圧■。が供
給されるのでダイオードD1〜D6に電流が流れコンデ
ンサCl,C2,C3に電荷が蓄積されて、各端子Vl
,V2,V3の電圧は初期の電圧になる。以上の動作を
繰り返すことに依り各端子電圧Vl,V2,V3は第5
図の波形の如くなり、またこの波形に於いて実線で示さ
れる波形は温度が25℃の場合を示し、破線で示される
波形は温度が50℃の場合を示すものである。上述の如
くして得られた電圧波形に依つて液晶を駆動する場合、
第5図の選択状態の波形に示される如く、各端子電圧V
l,V2,■3の減衰の繰返しに依つて当然駆動波形も
減衰を繰返すのであるが、減衰の周期は駆動波形の1周
期Tの312倍であるので、駆動波形の3周期πの期間
に於いて、前半312と後半312とは極性が反対の同
一波形となり、この期間では互いに電圧が打消されて液
晶に直流分が残らないのである。
Gate voltage■. The period when is at the “0” level is 113
In the case of bias 2-digit drive, 11 of one period T of the drive waveform
4, and the interval is 312 of one cycle T of the drive waveform.
It has doubled. The reason for this, which will become clear later, is to cancel the DC component of the voltage applied to the liquid crystal. First, the gate voltage ■. When is at ゜゜0゛ level, P-MOSFE
When T2 becomes "0n", a constant current of 1 F flows through the diodes D1 to D6, and a voltage determined depending on the temperature at that time is generated at each terminal (1), V2, and V3. Next is the gate voltage ■. When becomes '4■i level, P-MOSFET2 becomes "0ff".
Therefore, the voltage VE of the battery 1 is cut off from being supplied to the dividing means 5, but as described above, current flows through the diodes D1 to D6 due to the charges accumulated in the capacitors Cl, C2, and C3, so that each terminal Vl , ■2, and V3 gradually decrease as shown in FIG. However, as mentioned above, the voltage ratio is always constant. After the period T1 has elapsed, the gate voltage ■ is increased again. When becomes “0゛ level, P-M
Since OSFET 2 becomes 0n and the voltage of battery 1 is supplied, current flows through diodes D1 to D6, charges are accumulated in capacitors Cl, C2, and C3, and each terminal Vl
, V2, and V3 are initial voltages. By repeating the above operation, each terminal voltage Vl, V2, V3 is
The waveform is as shown in the figure, and in this waveform, the waveform shown by a solid line shows the case when the temperature is 25°C, and the waveform shown by the broken line shows the case when the temperature is 50°C. When driving the liquid crystal using the voltage waveform obtained as described above,
As shown in the waveform of the selected state in Fig. 5, each terminal voltage V
Naturally, the drive waveform also repeats attenuation due to the repetition of attenuation of l, V2, and ■3, but since the attenuation period is 312 times one period T of the drive waveform, the In this period, the first half 312 and the second half 312 have the same waveform with opposite polarity, and during this period, the voltages cancel each other out and no DC component remains in the liquid crystal.

従つて液晶の寿命への悪影響を完全に除去できるのであ
る。第6図は本実施例に依つて液晶表示板を駆動した場
合の温度特性であり、液晶表示板の飽和電圧Vsat及
び立上り電圧■Thと同様に選択状態の実効電圧■。及
び非選択状態の実効電圧■N北とが温度が高くなるに従
つて低くなるものである。この特性図から明らかに高温
度でのクロストーク及び不必要な電圧の印加が防止でき
るものである。上述の如く本発明に依れば液晶表示板の
温度特性に合わせて印加する実効電圧を変えるので、ク
ロストークの防止並びに不必要な電圧印加に依る液晶の
寿命への悪影響が防止できるものである。また分割手段
に一定間隔で電池の電圧を供給する為に電池の電力消費
が減少し、電池寿命が長くなると共に、液晶に直流分が
残らず液晶の劣化を防止するものであり、その効果大な
るものてある。また本発明の実施例では113/(イア
ス2桁駆動方”法で説明したがこれに限るものではなく
、本発明は駆動する桁数が多くなる程その効果が顕著に
現われるものである。
Therefore, the adverse effect on the life of the liquid crystal can be completely eliminated. FIG. 6 shows the temperature characteristics when the liquid crystal display panel is driven according to this embodiment, and shows the effective voltage (2) in the selected state as well as the saturation voltage Vsat and rising voltage (2) of the liquid crystal display panel. and the effective voltage (N) in the non-selected state decrease as the temperature increases. From this characteristic diagram, it is clear that crosstalk and unnecessary voltage application at high temperatures can be prevented. As described above, according to the present invention, the effective voltage applied is changed according to the temperature characteristics of the liquid crystal display panel, so that crosstalk can be prevented and the adverse effect on the life of the liquid crystal due to unnecessary voltage application can be prevented. . In addition, since battery voltage is supplied to the dividing means at regular intervals, battery power consumption is reduced and battery life is extended, and no direct current remains in the liquid crystal, preventing deterioration of the liquid crystal, which is highly effective. There is something that will happen. In addition, although the embodiment of the present invention has been described using the 113/(Ias two-digit driving method) method, the present invention is not limited to this method, and the effects of the present invention become more pronounced as the number of digits to be driven increases.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の駆動方法に依つて駆動した場合・の液晶
表示板とそれに印加される実効電圧の温度特性図、第2
図は従来の113/くイアス2桁駆動方法を示す波形図
、第3図は本発明の実施例を示す回路図、第4図は第3
図に示した実施例に用いたダイオードの特性図、第5図
は第3図に示した実)施例の動作を示す波形図、第6図
は第3図に示した実施例に依つて駆動した場合の液晶表
示板に印加される実効電圧の温度特性図である。 1・・・電池、2・・・P−MOSFETl3・・・ゲ
ート制御回路、4・・・電流制限抵抗Rl5・・・分割
手段、で7ある。
Figure 1 is a temperature characteristic diagram of the liquid crystal display panel and the effective voltage applied to it when driven by the conventional driving method.
The figure is a waveform diagram showing the conventional 113/kuias two-digit driving method, Figure 3 is a circuit diagram showing an embodiment of the present invention, and Figure 4 is a waveform diagram showing the 3-digit driving method.
5 is a waveform diagram showing the operation of the embodiment shown in FIG. 3, and FIG. 6 is a characteristic diagram of the diode used in the embodiment shown in FIG. FIG. 4 is a temperature characteristic diagram of the effective voltage applied to the liquid crystal display panel when the liquid crystal display panel is driven. 1...Battery, 2...P-MOSFETl3...Gate control circuit, 4...Current limiting resistor Rl5...Dividing means.

Claims (1)

【特許請求の範囲】 1 電源電圧を複数に分割し、該分割された電圧を液晶
表示板の電極に選択的に印加してダイナミック駆動する
液晶の駆動方法に於いて、温度依存性を有する複数のダ
イオードを直列接続し、該複数のダイオードによつて電
源電圧を温度に依存して電圧値が変化する複数の電圧に
分割し、該分割された複数の電圧を前記ダイオードに接
続されたコンデンサに充電して保持し、該保持された複
数の電圧を前記液晶表示板の電極に選択的に印加するこ
とにより、ダイナミック駆動される前記液晶表示板の電
極間の実効電圧が温度によつて変化することを特徴とす
る液晶の駆動方法。 2 電源電圧を複数に分割し、該分割された電圧を液晶
表示板の電極に選択的に印加してダイナミック駆動する
液晶の駆動方法に於いて、温度依存性を有する複数のダ
イオードを直列接続し、前記ダイナミック駆動の波形が
前半と後半で逆相となる期間を一周期としたときその3
/2の周期で前記電源電圧をスイッチング手段によつて
前記複数のダイオードに所定期間印加し、該ダイオード
により温度に依存して電圧値が変化する複数の電圧を発
生させ、該電圧を前記ダイオードに接続されたコンデン
サに充電して保持し、該保持された複数の電圧を前記液
晶表示板の電極に選択的に印加することにより、ダイナ
ミック駆動される前記液晶表示板の電極間の実効電圧が
温度によつて変化することを特徴とする液晶の駆動方法
[Claims] 1. In a liquid crystal driving method in which a power supply voltage is divided into a plurality of voltages and the divided voltages are selectively applied to electrodes of a liquid crystal display panel for dynamic driving, diodes are connected in series, the power supply voltage is divided by the plurality of diodes into a plurality of voltages whose voltage value changes depending on the temperature, and the plurality of divided voltages are applied to a capacitor connected to the diodes. By charging and holding the battery and selectively applying the plurality of held voltages to the electrodes of the liquid crystal display plate, the effective voltage between the electrodes of the dynamically driven liquid crystal display plate changes depending on the temperature. A liquid crystal driving method characterized by: 2. In a liquid crystal driving method in which the power supply voltage is divided into a plurality of parts and the divided voltages are selectively applied to the electrodes of the liquid crystal display panel for dynamic driving, a plurality of temperature-dependent diodes are connected in series. , when one period is defined as the period in which the waveform of the dynamic drive has opposite phases in the first half and the second half, Part 3
applying the power supply voltage to the plurality of diodes for a predetermined period with a cycle of /2, causing the diodes to generate a plurality of voltages whose voltage values change depending on temperature, and applying the voltages to the diodes. By charging and holding the connected capacitors and selectively applying the held voltages to the electrodes of the liquid crystal display plate, the effective voltage between the electrodes of the liquid crystal display plate that is dynamically driven increases with temperature. A liquid crystal driving method characterized by changing depending on.
JP634878A 1978-01-20 1978-01-20 LCD driving method Expired JPS6051718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP634878A JPS6051718B2 (en) 1978-01-20 1978-01-20 LCD driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP634878A JPS6051718B2 (en) 1978-01-20 1978-01-20 LCD driving method

Publications (2)

Publication Number Publication Date
JPS5498598A JPS5498598A (en) 1979-08-03
JPS6051718B2 true JPS6051718B2 (en) 1985-11-15

Family

ID=11635857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP634878A Expired JPS6051718B2 (en) 1978-01-20 1978-01-20 LCD driving method

Country Status (1)

Country Link
JP (1) JPS6051718B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132821A (en) * 1984-07-26 1986-02-15 Koito Mfg Co Ltd Temperature compensating circuit
JPS6283724A (en) * 1985-10-09 1987-04-17 Hitachi Ltd Driving circuit for liquid crystal displaying device

Also Published As

Publication number Publication date
JPS5498598A (en) 1979-08-03

Similar Documents

Publication Publication Date Title
JP4017960B2 (en) Driving circuit
JP3619299B2 (en) Light emitting element drive circuit
EP0595792B1 (en) Method and apparatus for driving capacitive display device
US6188395B1 (en) Power source circuit, power source for driving a liquid crystal display, and a liquid crystal display device
JPH09179525A (en) Method and device for driving capacitive light emitting element
JPH05714B2 (en)
JPS6042519Y2 (en) integral circuit
US4578597A (en) Large amplitude pulse generating circuits
US5608339A (en) Device for driving a LED display
US5325107A (en) Method and apparatus for driving a display device
US20070242015A1 (en) H-bridge driver for electroluminescent lamp that reduces audible noise
JPS6051718B2 (en) LCD driving method
US4071776A (en) Sawtooth voltage generator for constant amplitude sawtooth waveform from varying frequency control signal
EP0371798B1 (en) Method and apparatus for driving display device
JP3710231B2 (en) Driving method of self-scanning light emitting device
JP4406969B2 (en) EL display device
US11641161B1 (en) Charge pump circuit
JP3944327B2 (en) Light emitting element drive circuit
JPS62296317A (en) Piezo-electric element driving circuit
CN1164037C (en) Improved apparatus for current pulse generation in voltage down converters
JPH029727B2 (en)
US4985648A (en) Switching output circuit with high speed operation and low power consumption
JPH0687653B2 (en) Power control circuit
SU1345318A1 (en) Square pulse generator
JPH0221808Y2 (en)