JPS6051503A - Permselective membrane - Google Patents

Permselective membrane

Info

Publication number
JPS6051503A
JPS6051503A JP58159039A JP15903983A JPS6051503A JP S6051503 A JPS6051503 A JP S6051503A JP 58159039 A JP58159039 A JP 58159039A JP 15903983 A JP15903983 A JP 15903983A JP S6051503 A JPS6051503 A JP S6051503A
Authority
JP
Japan
Prior art keywords
membrane
polyetherimide
resistance
solvent
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58159039A
Other languages
Japanese (ja)
Inventor
Toshio Nakao
中尾 俊夫
Yasuhide Sawada
泰秀 澤田
Yasuo Uchida
内田 安雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP58159039A priority Critical patent/JPS6051503A/en
Publication of JPS6051503A publication Critical patent/JPS6051503A/en
Pending legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PURPOSE:To provide a permselective membrane having film forming property, chemical resistance and org. solvent resistance and excellent in filtering efficiency, obtained by using aromatic polyetherimide comprising a specific repeating unit as a membrane material. CONSTITUTION:Aromatic polyetherimide being a polymer having a repeating unit represented by general formula (1) (wherein Ar1 and Ar2 are bivalent aromatic group) is mixed with a good solvent such as N-methyl-2-pyrrolidone, a metal salt such as lithium chloride and a swelling agent such as ethylene glycol to form a resin solution. This solution is cast in a membrane form while the cast membrane is immersed in a coagulation liquid, which is the non-solvent of the resin and compatible with the solvent of the resin solution, to obtain a permselective membrane having easy film forming property, high water permeability and characteristics such as excellent heat resistance and chemical resistance.

Description

【発明の詳細な説明】 本発明は膜素材が芳香族ポリエーテルイミドからなる選
択性透過膜に関し、その目的とする所は製膜が容易で、
かつ膜の濾過効率が高く、しかもすぐれた耐薬品性、耐
有機溶剤性を有する選択性透過膜を提供するにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a selectively permeable membrane whose membrane material is made of aromatic polyetherimide.
Another object of the present invention is to provide a selectively permeable membrane having high filtration efficiency and excellent chemical resistance and organic solvent resistance.

従来、液体混合物の膜分離に関し、選択性透過膜の素材
として、代表的には酢酸セルロース力(用いられてきた
。この膜は高い分画性、透水性を示す反面、耐熱性、耐
pH性、耐有機溶剤性、耐バクテリア性、機械強度につ
いては充分ではない。これらの問題を解決せんとして種
々の重合体が検討されてきたが、いずれも透過性が不充
分あるいは製膜が困難である等の新しい問題を生じ、な
お検討が望まれていた。例えばポリアミドが提唱されて
いるが、これは耐熱性、耐酸、耐アルカリ性がなお不充
分である。
Conventionally, cellulose acetate has been typically used as the material for selectively permeable membranes for membrane separation of liquid mixtures.While this membrane exhibits high fractionation and water permeability, it has poor heat resistance and pH resistance. , organic solvent resistance, bacterial resistance, and mechanical strength are not sufficient. Various polymers have been studied to solve these problems, but all of them have insufficient permeability or are difficult to form into films. New problems such as these have arisen, and further investigation is desired.For example, polyamide has been proposed, but its heat resistance, acid resistance, and alkali resistance are still insufficient.

ポリスルホン、すなわち の繰返し単位からなる重合体が提唱されている。Polysulfone, i.e. Polymers consisting of repeating units have been proposed.

このものは特定の溶媒に可溶なので製膜し易く、また膜
は耐熱、耐酸、耐アルカリ性にきわめてすぐれているが
、有機溶剤に対する耐性が不充分であシ、また自身の疎
水性の為に孔径の小さな膜とした場合に透水量が小さく
なる問題も生じている。
This material is soluble in specific solvents, so it is easy to form a film, and the film has excellent heat resistance, acid resistance, and alkali resistance, but it has insufficient resistance to organic solvents, and due to its own hydrophobicity. When a membrane with a small pore size is used, a problem arises in that water permeation becomes small.

ポリエーテルスルホン、すなわち の繰返し単位からなる重合体の利用も提唱されている。polyether sulfone, i.e. The use of polymers consisting of repeating units has also been proposed.

このものはポリスルホンの特長に加工、耐有機溶剤性、
親水性の点が若干改良されているが、なお充分ではない
。またポリイミド系重合体が提唱されている。このもの
は一般に耐熱性、耐有機溶剤性がきわめて優れているが
、逆にその故に製膜工程が煩雑となる問題が生じる。例
えば芳香族ナト2カルボン酸無水物と芳香族ジアミンか
ら有機溶剤可溶のポリアミド酸を合成し、その溶液で製
膜後閉環反応によシ芳香族ポリイミド膜とする方法がと
られている。しかしこの方法では閉環反応を完全に行な
わせる問題、縮合水が発生する為のボイドの問題等があ
シ、必然的に厳しい工程管理が要求される。
This product has the characteristics of polysulfone processing, organic solvent resistance,
Although the hydrophilicity has been slightly improved, it is still not sufficient. Polyimide polymers have also been proposed. Although this material generally has extremely excellent heat resistance and organic solvent resistance, on the other hand, this causes the problem of complicating the film forming process. For example, a method is used in which an organic solvent-soluble polyamic acid is synthesized from an aromatic dicarboxylic acid anhydride and an aromatic diamine, a film is formed using the solution, and then a ring-closing reaction is performed to form an aromatic polyimide film. However, this method has problems such as ensuring that the ring-closing reaction is completely carried out and voids due to the generation of condensed water, and inevitably requires strict process control.

本発明は従来の選択性透過膜における上記した問題を解
決せんとして研究した結果、ポリエーテルイミドを膜素
材に用いれば製膜性、耐有機溶剤性の点でバランスがと
れる事を見出し、更にこの知見に基づき種々検討を進め
完成するに至ったものである。
As a result of research aimed at solving the above-mentioned problems with conventional selectively permeable membranes, the present invention found that using polyetherimide as a membrane material provides a balance in membrane formability and organic solvent resistance. This was completed after conducting various studies based on knowledge.

本発明は繰返し単位の一般式が、 で表わされる重合体からなる事を特徴とする液体選択性
透過膜である(但しAr3、Ar2は2価の芳香族基を
示す)。
The present invention is a liquid selective permeable membrane characterized by comprising a polymer whose repeating units have the general formula (wherein Ar3 and Ar2 represent divalent aromatic groups).

以下構造(III )の繰返し単位からなる重合体をポ
リエーテルイミドと呼ぶ。
Hereinafter, a polymer consisting of repeating units of structure (III) will be referred to as polyetherimide.

本発明で用いられるポリエーテルイミドは、製膜性、耐
熱性の点から重合体としての熱変形温度は18.6 k
g/crA荷重で150℃を越えるのに必要な程度の重
合度があれば重合度について特に限定されるものではな
い。好適には重Ji−を平均重合度3QOOO以上のも
のが用いられる。主鎖中の芳香環あるいはアルキル基が
一部アルキル基、ノ・ロゲン、水酸基、チオアルコール
、アルデヒド基、カルボキシル基、ビニル基、アリル基
、アリール基、アミン基、アミド基、スルホン基、ニト
ロ基、酸アミド、ケトキシム、エポキシあるいはシラノ
ール基等の官能基またはこれらの官能基を含む化合物で
置換されたものも利用する事が出来る。まだこれらの官
能基を架橋反応に利用し膜特性を向上させる事も可能で
ある。他のポリイミド重合体等、他の重合体との混合物
も用いる事が出来る。相溶性の良い重合体との混合の他
に、相溶性の悪い、例えば室温から80℃の付近では混
合比に制限のある重合体との混合物を用い製膜する事に
よシ、特殊な膜組織を作る事も可能である。相溶性の不
充分な重合体としては、例えばポリスルホン、ポリエー
テルスルホンをあげる事が出来る。架橋、被覆層形成の
為に、他の化合物と混合しておく事も出来る。
The polyetherimide used in the present invention has a heat distortion temperature of 18.6 k as a polymer in terms of film formability and heat resistance.
There is no particular limitation on the degree of polymerization as long as the degree of polymerization is sufficient to exceed 150° C. at a load of g/crA. Preferably, a polymer having an average degree of polymerization of 3QOOO or more is used. Some aromatic rings or alkyl groups in the main chain are alkyl groups, norogen, hydroxyl groups, thioalcohols, aldehyde groups, carboxyl groups, vinyl groups, allyl groups, aryl groups, amine groups, amide groups, sulfone groups, and nitro groups. , acid amide, ketoxime, epoxy or silanol groups, or compounds containing these functional groups can also be used. It is still possible to use these functional groups in crosslinking reactions to improve membrane properties. Mixtures with other polymers such as other polyimide polymers can also be used. In addition to mixing with polymers with good compatibility, special membranes can be created by forming a film using a mixture with a polymer with poor compatibility, for example, where the mixing ratio is limited at temperatures between room temperature and 80°C. It is also possible to create an organization. Examples of polymers with insufficient compatibility include polysulfone and polyethersulfone. It can also be mixed with other compounds for crosslinking and forming a coating layer.

また本発明で用いられるポリエーテルイミドは上記構造
以外の成分とのグラフト、ブロックあるいはランダムな
共重合体も利用する事が出来る。
Furthermore, the polyetherimide used in the present invention can also be used as a graft, block or random copolymer with components other than those having the above structure.

共重合成分として架橋反応あるいは脱離反応可能なもの
を利用する事も出来る。
It is also possible to use as copolymerization components those capable of crosslinking or elimination reactions.

本発明の選択性透過膜は平膜、中空糸状膜、また他のシ
ート基材あるいは多孔体を支持体とする複合膜等いずれ
の形状でもよく、また分画分子量、透水量についても制
限されず、後述の様に広範な分画の膜に利用可能である
。膜組織についても、表層が電子顕微鏡でも孔が認めら
れない程緻密ないわゆるスキン層で覆われた膜あるいは
スキン層で覆われていない膜、また内部が多孔体状であ
るものも指状であるものも可能で、目的に応じて使い分
けられる。膜表面に官能基や化合物を結合させたり、他
の化合物あるいはレジンからなる′$葆層をもうけ、複
合膜とする事も可能である。特性向上の為に、膜表面層
上で架橋反応させたものも利用する事が出来る。
The selectively permeable membrane of the present invention may have any shape, such as a flat membrane, a hollow fiber membrane, or a composite membrane using other sheet substrates or porous materials as a support, and there are no limitations on the molecular weight cutoff or water permeability. , as described below, is available for a wide range of fractionation membranes. Regarding membrane structure, membranes whose surface layer is covered with a so-called skin layer so dense that no pores can be seen even under an electron microscope, membranes which are not covered with a skin layer, and membranes whose interior is porous are also finger-shaped. It is also possible to use different types depending on the purpose. It is also possible to form a composite membrane by bonding functional groups or compounds to the membrane surface, or by forming a layer made of other compounds or resin. In order to improve the properties, it is also possible to use a material that is subjected to a crosslinking reaction on the surface layer of the film.

本発明の選択透過膜の製造方法は任意の方法を利用出来
るが、特に湿式製膜が好適に用いられる。
Although any method can be used for manufacturing the selectively permeable membrane of the present invention, wet membrane formation is particularly preferably used.

すなわちポリエーテルイミド、ポリエーテルイミドの良
溶媒、膨潤剤等からなるレジン溶液を膜状に流延し、こ
れを該レジンの非溶媒で且つレジン溶液の溶剤とは相溶
する凝固性の液体に浸漬する事により選択性透過膜を作
製する方法であシ、レジン溶液や凝固液組成、温度等の
製膜条件は、設計する膜により種々知られている。必要
に応じ凝固液中にレジンの良溶媒、膨憫剤が含まれる事
も、賛だ複数の凝固液に順々に浸漬する方法がとられる
事もある。多孔性選択透過膜を作成するのに、後工程で
溶解抽出する為の物質をレジン溶液に混入しておく方法
が知られているが、このものも利用出来る。ポリエーテ
ルイミドの良溶媒としては、N−メチル−2−ピロリド
ン、膨潤剤としては塩化リチウム等金属塩類の他、炭酸
エチレンおよびエチレングリコール等のアルコール類を
あける事が出来る。
That is, a resin solution consisting of polyetherimide, a good solvent for polyetherimide, a swelling agent, etc. is cast into a film, and this is turned into a coagulable liquid that is a non-solvent of the resin and is compatible with the solvent of the resin solution. This is a method of producing a selectively permeable membrane by immersion, and various membrane forming conditions such as resin solution, coagulation liquid composition, temperature, etc. are known depending on the membrane to be designed. If necessary, a good solvent or swelling agent for the resin may be included in the coagulation solution, or a method of sequentially immersing the resin in multiple coagulation solutions may be used. In order to create a porous permselective membrane, a method is known in which a substance to be dissolved and extracted in a subsequent process is mixed into a resin solution, and this method can also be used. Good solvents for polyetherimide include N-methyl-2-pyrrolidone, and swelling agents include metal salts such as lithium chloride, as well as alcohols such as ethylene carbonate and ethylene glycol.

本発明の選択性透過膜は高い透水量と優れた耐熱性を有
し、かつ広い範囲の分画が実現出来る上に、従来のポリ
スルホン、ポリエーテルスルホンを素材とする透過膜に
比較して耐有機溶剤性において優れ、かつ従来のポリイ
ミド膜の様に閉環反応を行々わしめる工程を必要とせず
容易に製膜する事が出来る。また劇薬品性もポリスルホ
ン、ポリエーテルスルホン並に優れている。ポリイミド
製選択性透過膜は従来若干塩基性に弱い傾向があった。
The selective permeable membrane of the present invention has high water permeability and excellent heat resistance, and can achieve a wide range of fractionation, and is more resistant than conventional permeable membranes made of polysulfone and polyethersulfone. It has excellent organic solvent properties and can be easily formed without the need for a step of ring-closing reaction unlike conventional polyimide films. It also has excellent chemical properties comparable to polysulfone and polyethersulfone. Previously, selectively permeable membranes made of polyimide tended to be slightly sensitive to basicity.

これは製膜後の閉環反応が現実には完全ではなく、残っ
た未反応のアミド酸の部分が劣化する事が考えられた。
This is thought to be because the ring-closing reaction after film formation is actually not complete, and the remaining unreacted amic acid portion deteriorates.

しかし本発明で用いられるポリエーテルイミドが耐塩基
性においても優れているのは、製膜前に既に閉環反応が
実質的に完結している為と考えられる。この様に本発明
によるポリエーテルイミドの液体選択性透過膜は多くの
優れた特長と製膜の容易さの為に、精密沖過、限外沖過
、逆浸透濾過等の用途の膜とする事が出来、濃縮や精製
の分野で有効に働く事が期待される。
However, the reason why the polyetherimide used in the present invention is also excellent in base resistance is thought to be because the ring-closing reaction has already been substantially completed before film formation. As described above, the polyetherimide liquid-selective permeable membrane according to the present invention has many excellent features and is easy to form, so it can be used for applications such as precision filtration, ultra filtration, and reverse osmosis filtration. It is expected that it will work effectively in the fields of concentration and purification.

以下実施例にて本発明を説明する。The present invention will be explained below with reference to Examples.

実施例1 非晶性熱可塑性ポリエーテルイミド(G、E、社製ウル
ラム1000)24重量部(以下重量部で示す)をN−
メチル−2−ピロリドン114.8部、エチレンカーボ
ネー) 49.2部の混合溶液に入れ95℃、4時間か
けて溶解する。これにエチレングリコール12部を加え
、さらに80℃、4時間均一に溶解させた後、脱泡して
ドープ液を調整した。この液は45℃を下回ると白濁す
る。次に水15部、N−メチル−2−ピロリドン42,
5部、エチレンカーボネー) 42.5部からなる凝固
液を調整する。
Example 1 N-
The mixture was added to a mixed solution of 114.8 parts of methyl-2-pyrrolidone and 49.2 parts of ethylene carbonate and dissolved at 95°C over 4 hours. 12 parts of ethylene glycol was added to this, and the mixture was further uniformly dissolved at 80° C. for 4 hours, followed by defoaming to prepare a dope solution. This liquid becomes cloudy when the temperature drops below 45°C. Next, 15 parts of water, 42 parts of N-methyl-2-pyrrolidone,
A coagulation solution consisting of 42.5 parts of ethylene carbonate is prepared.

ドープ液を60℃に保ったまま同じく60℃に保ったス
テンレスベルト上に流延し、ただちに20℃の凝固液に
浸漬し、厚さ67μの選択性透過膜を得た。光学顕微鏡
で膜の断面の組織を観察したところ、指状構造は発達し
ておらず多孔性であった。膜の透水量は5070(t/
rr?・hr−atm)でブルーデキストランを通過さ
せた。この膜の表面は実質的にスキン層で被覆されては
おらず、精密沖過、血漿分離用選択性透過膜として利用
する事が出来る。
The dope solution was cast onto a stainless steel belt which was also maintained at 60°C, and immediately immersed in a coagulating solution at 20°C to obtain a selectively permeable membrane with a thickness of 67μ. When the cross-sectional structure of the membrane was observed using an optical microscope, it was found that the finger-like structure was not developed and it was porous. The water permeability of the membrane is 5070 (t/
rr?・hr-atm) was passed through blue dextran. The surface of this membrane is not substantially covered with a skin layer and can be used as a selectively permeable membrane for precision filtration and plasma separation.

実施例2 実施例1で用いたのと同じポリエーテルイミド12部、
N−メチル−2−ピロリドン85部、塩化リチウム3部
からなる混合溶液を95℃、4時間かけて均一に溶解さ
せたのち脱泡し、ドープ液を調整した。ドープ液を25
℃に保った1ま同じく25℃のステンレスベルト上に流
延し、ただちに18℃の水に浸漬し、厚さ85μの選択
性透過膜を得た。光学顕微鏡で膜の断面組織を観察した
ところ、指状構造の発達が認められた。膜の透水量は2
200 (t/m” ・hr−atm)であツ/ζ。こ
の膜の表面にはスキン層があシ、限外瀘過膜として利用
する事が出来る。
Example 2 12 parts of the same polyetherimide used in Example 1,
A mixed solution consisting of 85 parts of N-methyl-2-pyrrolidone and 3 parts of lithium chloride was uniformly dissolved at 95° C. over 4 hours, and then defoamed to prepare a dope solution. 25 dope liquid
The sample was cast onto a stainless steel belt kept at 25° C. and immediately immersed in water at 18° C. to obtain a selectively permeable membrane with a thickness of 85 μm. When the cross-sectional structure of the film was observed using an optical microscope, development of finger-like structures was observed. The water permeability of the membrane is 2
200 (t/m"·hr-atm) and ζ/ζ. There is a skin layer on the surface of this membrane, and it can be used as an ultrafiltration membrane.

実施例3 実施例1で用いたのと同じポリエーテルイミド20部、
エチレングリコール3部、N−メチル−2−ピロリドン
77部を95℃、4時間かけ均一に溶5W、脱泡してド
ープ液を作った。ドープ液を20℃に保ち、60℃のス
テンレスベル)−1−に流延し、ただちに120℃のト
ンネル炉に60秒通した。さらにただちに20℃のター
シャルブチルアルコールに浸漬し、30秒後に18℃の
水に浸漬してそのまま100分放置し、選択性透過膜を
得た。5重量%のショ糖水溶液を用い、25℃、60k
y/cJの条件で濾過性能を測定したところ、透水は4
4t/d・hrでショ糖の阻止率は100チであった。
Example 3 20 parts of the same polyetherimide used in Example 1,
A dope solution was prepared by uniformly dissolving 3 parts of ethylene glycol and 77 parts of N-methyl-2-pyrrolidone at 95 DEG C. over 4 hours for 5W and defoaming. The dope solution was maintained at 20°C, cast into a 60°C stainless steel bell), and immediately passed through a tunnel furnace at 120°C for 60 seconds. Further, it was immediately immersed in tertiary butyl alcohol at 20°C, and after 30 seconds, immersed in water at 18°C and left as it was for 100 minutes to obtain a selectively permeable membrane. Using 5% by weight sucrose aqueous solution, 25℃, 60k
When the filtration performance was measured under the conditions of y/cJ, the water permeability was 4
At 4t/d·hr, the inhibition rate of sucrose was 100t.

この膜は逆浸透漣過膜として利用出来る。This membrane can be used as a reverse osmosis filtration membrane.

なお阻止率の測定は屈折率によった。Note that the rejection rate was measured based on the refractive index.

実施例4 実施例1で用いたのと同じポリエーテルイミドを、N−
メチル2−ピロリドンに100℃、3時間かけて均一に
溶−した後脱泡し、レジン濃度20重量%のドープ液を
得た。ドープ液を20℃に保ったまま同じく20℃のガ
ラス板上に流延、ただちに18℃の水に浸漬し90〜1
20μの選択性透過膜を得た。25℃、10ky/C4
の条件下での膜の透水量およびデキストランT−70の
05重量%水溶液に於けるFlux s阻止率を第1表
に示す。
Example 4 The same polyetherimide used in Example 1 was
The mixture was uniformly dissolved in methyl 2-pyrrolidone at 100° C. for 3 hours and then defoamed to obtain a dope solution with a resin concentration of 20% by weight. While keeping the dope solution at 20°C, it was cast onto a glass plate also at 20°C, and immediately immersed in water at 18°C to give a temperature of 90-1.
A 20μ selectively permeable membrane was obtained. 25℃, 10ky/C4
Table 1 shows the water permeability of the membrane and the Flux s rejection rate in a 05% by weight aqueous solution of Dextran T-70 under the following conditions.

比較例1 ポリスルホン(UCCff、P−1700) 、ポリエ
ーテルスルホン(ICI製、600pおよび200p)
をそれぞれN−メチル−2−ピロリドンに溶解、脱泡し
、レジン濃度20重i%のドープ液を調整した。実施例
4と同じ条件で製膜し、25℃、40kf/ca!の条
件で同様の測定を行なった。結果を第1表にまとめて示
す。この様にポリエーテルイミド製の選択性透過膜は、
ポリスルホンおよびポリエーテルスルホンに比較して高
い透水量の得られる事が判る。
Comparative Example 1 Polysulfone (UCCff, P-1700), polyethersulfone (manufactured by ICI, 600p and 200p)
were each dissolved in N-methyl-2-pyrrolidone and defoamed to prepare a dope solution with a resin concentration of 20% by weight. A film was formed under the same conditions as in Example 4, at 25°C and 40 kf/ca! Similar measurements were carried out under the following conditions. The results are summarized in Table 1. In this way, the selectively permeable membrane made of polyetherimide
It can be seen that higher water permeability can be obtained compared to polysulfone and polyethersulfone.

第1表 透水性の比較 a)単位1/n?”hr−atm b)単位 チ C)ポリエーテルイミドは25℃10にり/ crAの
条件で測定。他は25℃40kg/CrAの条件で測定
した。
Table 1 Comparison of water permeability a) Unit 1/n? "hr-atm b) Unit C) Polyetherimide was measured under the conditions of 25°C 10kg/CrA. Others were measured under the condition of 25°C 40kg/CrA.

実施例5 実施例4で用いたのと同じレジン濃度20重量−のポリ
エーテルイミド/N−メチル−2−ピロリドン溶液を脱
泡し、ドープ液を得た。20℃のドープ液を25℃のス
テンレスベルト上に流延し、ただちに22℃の水に浸漬
して選択性透過膜を得た。次に得られた透過膜を18℃
のメタノールに10分浸漬し、次に18℃のシクロヘキ
サンに10分浸漬した後、80℃、30分乾燥機にて乾
燥し、乾燥膜を得た。乾燥膜を4×4crrL角に切り
分け、室温にて各種有機溶剤に48時間浸漬し、外観の
変化を観察した。
Example 5 A polyetherimide/N-methyl-2-pyrrolidone solution having the same resin concentration of 20 weight as used in Example 4 was defoamed to obtain a dope solution. A dope solution at 20°C was cast onto a stainless steel belt at 25°C, and immediately immersed in water at 22°C to obtain a selectively permeable membrane. Next, the obtained permeable membrane was heated to 18°C.
The film was immersed in methanol for 10 minutes, then cyclohexane at 18°C for 10 minutes, and then dried in a dryer at 80°C for 30 minutes to obtain a dry film. The dried film was cut into 4×4 crrL squares, immersed in various organic solvents at room temperature for 48 hours, and changes in appearance were observed.

結果を第2表に示す。The results are shown in Table 2.

比較例2 実施例5と同じ条件でポリスルホン(UCC製、P17
00)、ポリエーテルスルホン(ICI製、600P)
の乾燥膜を作シ、同様の耐有機溶剤の外観テストを行な
った。
Comparative Example 2 Polysulfone (manufactured by UCC, P17
00), polyether sulfone (manufactured by ICI, 600P)
A dry film was prepared and a similar appearance test for organic solvent resistance was conducted.

結果を第2表にまとめて示す。The results are summarized in Table 2.

第2表 耐有機溶剤性 外観テスト結果A;外観変化な
し、 B;収縮による寸法変化、形状変化が認められる、C;
はとんど溶解した。
Table 2 Organic solvent resistance Appearance test results A: No change in appearance, B: Dimensional change and shape change due to shrinkage observed, C:
was almost dissolved.

この様にポリエーテルイミド製膜は、ポリスルホン、ポ
リエーテルスルホン製膜に比較して多くの有機溶剤に対
する耐性を有している事が判る。
It can thus be seen that polyetherimide membranes have greater resistance to many organic solvents than polysulfone and polyethersulfone membranes.

実施例6 さらに耐有機溶剤性が、アルコール透過性に与える影響
を観察した。実施例5と同じ条件で乾燥ポリニーデルイ
ミド選択性透過膜を作成し、これを室温で100時間各
種肩機溶剤にV蹟した。次にそれぞれの膜をメチルアル
コールに5〜10分浸漬し、25℃、l atmの条件
でメチルアルコール透過量を測定した。
Example 6 Furthermore, the influence of organic solvent resistance on alcohol permeability was observed. A dried polyneedleimide selectively permeable membrane was prepared under the same conditions as in Example 5, and soaked in various solvents at room temperature for 100 hours. Next, each membrane was immersed in methyl alcohol for 5 to 10 minutes, and the amount of methyl alcohol permeation was measured at 25° C. and latm.

結果を第、3表に示す。The results are shown in Table 3.

比較例3 比較例2と同じ方法で作製したポリスルホン、ポリエー
テルスルホンの乾燥膜を実施例6と同じ条件で有機溶剤
に浸漬し、同じくメチルアルコールに10分浸漬した後
、25℃、1 atmの条件でメチルアルコールの透過
量を測定した。
Comparative Example 3 A dry film of polysulfone or polyethersulfone prepared in the same manner as in Comparative Example 2 was immersed in an organic solvent under the same conditions as in Example 6, and then immersed in methyl alcohol for 10 minutes, and then immersed at 25°C and 1 atm. The permeation amount of methyl alcohol was measured under these conditions.

結果を第3表にまとめて示す。The results are summarized in Table 3.

この様にアルコール透過性に対しても、ポリエーテルイ
ミドはポリスルホン、ポリエーテルスルホンに比較し耐
有機溶剤性の優れている事が判る0第3表 有機溶剤処
理後の透メタノール量変化A;無処理の膜と比較して透
メタノール量が1.1倍までのもの。以下、a;t、i
〜2.0倍、C,2,0〜10.0倍、D;10〜15
倍、E;膜の劣化の為測定不能を示す。
In this way, it can be seen that polyetherimide has superior organic solvent resistance compared to polysulfone and polyethersulfone in terms of alcohol permeability. Table 3: Change in methanol permeability after organic solvent treatment A; The amount of methanol permeable is up to 1.1 times that of the treated membrane. Below, a; t, i
~2.0 times, C, 2.0-10.0 times, D; 10-15
Double, E: Indicates that measurement is not possible due to membrane deterioration.

実施例7 実施例5で用いたのと同じ乾燥ポリエーテルイミド選択
性透過膜を室温で100時間各種の酸およびアルカリに
浸漬した。次にメチルアルコールに10分浸漬後、メチ
ルアルコールの透過J1;を25℃、1 atmの条件
で行なった。
Example 7 The same dry polyetherimide selectively permeable membrane used in Example 5 was soaked in various acids and alkalis for 100 hours at room temperature. Next, after immersion in methyl alcohol for 10 minutes, permeation J1 of methyl alcohol was performed at 25° C. and 1 atm.

結果をM4表に示す。The results are shown in Table M4.

比較例4 比較例2と同じポリスルホン、ポリニーウールスルホン
の乾燥膜を、実施例7と同じ条件で処理し、メチルアル
コールの透過量を測定した。
Comparative Example 4 A dried membrane of the same polysulfone and polynywool sulfone as in Comparative Example 2 was treated under the same conditions as in Example 7, and the permeation amount of methyl alcohol was measured.

結果を第4表にまとめて示す。The results are summarized in Table 4.

この様にポリエーテルイミド製膜は耐酸、面1アルカリ
性にきめて優れているポリスルホン、ポリエーテルスル
ホンと比較し得る耐薬品性を有している事が判る。
Thus, it can be seen that the polyetherimide film has chemical resistance comparable to polysulfone and polyethersulfone, which have excellent acid resistance and one-sided alkalinity.

第4表 薬品処理後の透アルコール量変化(注)A−E
は第3表の基準に同じ。
Table 4: Change in clear alcohol content after chemical treatment (Note) A-E
is the same as the criteria in Table 3.

実施例8 実施例1で用いたのと同じポリエーテルイミド12部を
N−メチル−2−ピロリドン88部に95℃、3時間か
けて均一に溶解し、脱泡してドープ液を得た。このドー
プ液を用い、実施例5と同じ条件で乾燥、ポリエーテル
イミド選択性透過膜を作成した。これを実施例6と同じ
各種有機溶剤に室温で24時間浸漬した。次にメチルア
ルコールに5分〜10分浸漬し、25℃、latmの条
件で水の透過量を測定した。
Example 8 12 parts of the same polyetherimide used in Example 1 was uniformly dissolved in 88 parts of N-methyl-2-pyrrolidone at 95° C. over 3 hours, and defoamed to obtain a dope solution. This dope solution was dried under the same conditions as in Example 5 to produce a polyetherimide selective permeable membrane. This was immersed in the same various organic solvents as in Example 6 at room temperature for 24 hours. Next, it was immersed in methyl alcohol for 5 to 10 minutes, and the amount of water permeation was measured at 25° C. and latm.

結果を第5表に示す。The results are shown in Table 5.

比較例5 比較例2で用いたと同じポリスルポン、ポリエーテルス
ルホンを、実施例8と同様にレジン濃度12重量%のN
−メチル−2−ピロリドン溶液を作シ、これをドープ液
として実施例5と同じ条件で乾燥膜を作製した。次に実
施例8と同じ各種有機溶剤に同条件で浸漬し、同様の処
理をした後、同じ条件で水の透過量を測定した。
Comparative Example 5 The same polysulfone and polyether sulfone used in Comparative Example 2 were mixed with N having a resin concentration of 12% by weight in the same manner as in Example 8.
-Methyl-2-pyrrolidone solution was prepared, and a dried film was prepared under the same conditions as in Example 5 using this as a dope solution. Next, it was immersed in the same various organic solvents as in Example 8 under the same conditions, and after being subjected to the same treatment, the amount of water permeation was measured under the same conditions.

結果を第5表にまとめて示す。The results are summarized in Table 5.

この様に透水性で見てもポリエーテルイミド膜は、ポリ
スルホン、ポリエーテルスルホン膜に較べ耐有機溶剤性
が優れている。
In this way, even in terms of water permeability, polyetherimide membranes have superior organic solvent resistance compared to polysulfone and polyethersulfone membranes.

第5表 有機溶剤処理による透水量の変化(注)A−E
は第3表の基準に同じ。
Table 5 Changes in water permeability due to organic solvent treatment (Note) A-E
is the same as the criteria in Table 3.

実施例9 実施例8と同じポリエーテルイミド乾燥膜を用い、実施
例7と同じ各種薬品に同じ条件で浸漬、処理の後、25
℃、1 atmの条件で水の透過量を測定した。
Example 9 Using the same polyetherimide dry membrane as in Example 8, immersion and treatment in the same various chemicals as in Example 7 under the same conditions,
The amount of water permeation was measured under the conditions of ℃ and 1 atm.

結果を第6表に示す。The results are shown in Table 6.

比較例6 比較例5と同じポリスルホン、ポリエーテルスルホン乾
燥膜に比較例4と同じ処理を行った後、25℃、lat
mの条件で水の透過量を測定した。
Comparative Example 6 The same polysulfone and polyether sulfone dry membranes as in Comparative Example 5 were subjected to the same treatment as in Comparative Example 4, and then heated at 25°C, lat.
The amount of water permeation was measured under the conditions of m.

結果を第6表にまとめて示す。The results are summarized in Table 6.

この様に透水量の変化を見ても、ポリエーテルイミド膜
はポリスルホン、ポリニーデルスルホン膜と耐酸、耐ア
ルカリ性に於いて比較しイ!Iる事が判る。
Looking at the changes in water permeability like this, polyetherimide membranes are comparable to polysulfone and polyneedle sulfone membranes in terms of acid and alkali resistance! I can see that.

第6表 薬品処理後の透水量の変化 (注)A−Eは第3表の基準に同じ0 15−Table 6: Change in water permeability after chemical treatment (Note) A-E is 0, which is the same as the standard in Table 3. 15-

Claims (1)

【特許請求の範囲】 繰シ返し単位の一般式が、 (但しAr1、Ar2は2価の芳香族基を示す。)で表
わされる重合体からなる事を特徴とする液体選択性透過
膜。
[Scope of Claims] A liquid selective permeable membrane comprising a polymer whose repeating unit has the general formula (wherein Ar1 and Ar2 represent divalent aromatic groups).
JP58159039A 1983-09-01 1983-09-01 Permselective membrane Pending JPS6051503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58159039A JPS6051503A (en) 1983-09-01 1983-09-01 Permselective membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58159039A JPS6051503A (en) 1983-09-01 1983-09-01 Permselective membrane

Publications (1)

Publication Number Publication Date
JPS6051503A true JPS6051503A (en) 1985-03-23

Family

ID=15684902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58159039A Pending JPS6051503A (en) 1983-09-01 1983-09-01 Permselective membrane

Country Status (1)

Country Link
JP (1) JPS6051503A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10044016B2 (en) 2015-07-30 2018-08-07 Gs Yuasa International Ltd. Storage battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4874478A (en) * 1971-12-30 1973-10-06
JPS583603A (en) * 1981-07-01 1983-01-10 Ube Ind Ltd Production of dried separating membrane made of polyimide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4874478A (en) * 1971-12-30 1973-10-06
JPS583603A (en) * 1981-07-01 1983-01-10 Ube Ind Ltd Production of dried separating membrane made of polyimide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10044016B2 (en) 2015-07-30 2018-08-07 Gs Yuasa International Ltd. Storage battery

Similar Documents

Publication Publication Date Title
US5700903A (en) Block copolymers
EP0422886B1 (en) Production of aromatic polyimide membranes
EP0426118B1 (en) Sulfonated hexafluoro bis-A polysulfone membranes and process for fluid separations
JPH0321335A (en) Fine porous base layer made of interfacial polyamide copolymer
JPH09103663A (en) Polyether imide film
JPS62201603A (en) Hydrophilic polysulfone membrane
JP2984716B2 (en) Aromatic separation membrane
JPH10309449A (en) Organic material separating polymer film and its manufacture
JPS6051503A (en) Permselective membrane
JPS63283705A (en) Selective semipermeable membrane of polyamideimide
JP2900184B2 (en) Aromatic copolymer separation membrane
JPH05184887A (en) Production of high performance asymmetrical membrane
JPH0122009B2 (en)
KR20210033718A (en) Composition for interfacial polymerizing polyamide and method for manufacturing water-treatment membrane using same
JPH0516290B2 (en)
JPS63283707A (en) Semipermeable membrane of polymer ampholyte
JPH02126925A (en) Laminated separating membrane
JP2827212B2 (en) Polyamideimide separation membrane
KR102270472B1 (en) Membrane, water treatment module, method of manufacturing membrane and composition for modifying active layer of membrane
JPS60216803A (en) Surface sulphonated polyetherimide permeable membrane
JPS63258603A (en) Aromatic polymer membrane
KR0123279B1 (en) Method for semipermeable composite membrane
JPS5814908A (en) Preparation of composite semi-permeable membrane
KR20220081278A (en) Crosslinked polyimide organic solvent nanofiltration membrane and preparation method thereof
JPS63240901A (en) Permselective film