JPS6051336B2 - Interconnection line power change detection device - Google Patents

Interconnection line power change detection device

Info

Publication number
JPS6051336B2
JPS6051336B2 JP53100397A JP10039778A JPS6051336B2 JP S6051336 B2 JPS6051336 B2 JP S6051336B2 JP 53100397 A JP53100397 A JP 53100397A JP 10039778 A JP10039778 A JP 10039778A JP S6051336 B2 JPS6051336 B2 JP S6051336B2
Authority
JP
Japan
Prior art keywords
interconnection line
current
power
relay
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53100397A
Other languages
Japanese (ja)
Other versions
JPS5529220A (en
Inventor
立夫 高橋
茂幸 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP53100397A priority Critical patent/JPS6051336B2/en
Publication of JPS5529220A publication Critical patent/JPS5529220A/en
Publication of JPS6051336B2 publication Critical patent/JPS6051336B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】 本発明は2系統間の電力融通を行なつている電力系統に
おいて、他系統の原因て連系線電力が異常急変するのを
検出する連系線電力変化検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an interconnection line power change detection device for detecting abnormal sudden changes in interconnection line power due to causes in other systems in a power system that performs power interchange between two systems. It is something.

第1図及至第4図の電力系統図て、斜線部分枠1内が他
の電力系統で、その他が本系統である。他系統内のしや
断固152Rは本系統との連系線入、切用てあり、この
しや断固152Rの図示上方母線は図示してないが多く
の発電機群及び負荷群が接続されている。本系統のしや
断固152は他系統152Rと同様の目的のもので、系
統間の連系線の入、切を行なうものである。また本発明
の発電機Gは発電機しや断固52と主変圧器MTを介し
て本系統に接続さる。また負荷群Lは負荷しや断固52
Fと負荷変圧器LTを介し本系統に接続されている。次
に本系統と他系統の電力融通について説明する。
In the power system diagrams of FIGS. 1 to 4, the area within the diagonally shaded frame 1 is another power system, and the others are the main system. Shiya Katsuragi 152R in another system has an interconnection line with this system that is connected and disconnected, and although the upper bus bar of Shiya Katsuragi 152R is not shown in the diagram, many generator groups and load groups are connected to it. There is. The purpose of this system's line disconnection 152 is the same as that of other systems 152R, and it is for connecting and disconnecting interconnection lines between systems. Further, the generator G of the present invention is connected to the main system via the generator Shiya-ketsu 52 and the main transformer MT. Also, load group L is loaded and determined 52
It is connected to the main system via F and load transformer LT. Next, we will explain power interchange between this system and other systems.

方式として次の4ケースが考えられる。ケースA;第1
図に示すように、本系統負荷Lに対して本系統の発電機
Gの電力と発電機Gでの電力不足分を他系統から融通す
る。ケースB;第2図に示すように、本系統負荷Lに対
して本系統の発電機Gより電力供給し、発電機Gの余剰
分を他系統に融通する。ケースC;第3図に示すように
、本系統の発電機Gが停止中に本系統の負荷Lには他系
統により電力を供給する。
The following four cases can be considered as methods. Case A; 1st
As shown in the figure, for the main system load L, the power of the generator G of the main system and the power shortage in the generator G are accommodated from other systems. Case B: As shown in FIG. 2, power is supplied from the generator G of the main system to the main system load L, and the surplus of the generator G is transferred to other systems. Case C: As shown in FIG. 3, while the generator G of the main system is stopped, power is supplied to the load L of the main system from another system.

ケースD;第4図に示すように本系統発電機Gの電力を
他系統に供給し、本系統負荷Lには電力を供給しない。
Case D: As shown in FIG. 4, power from the main system generator G is supplied to other systems, but no power is supplied to the main system load L.

以上のような電力融通状態において、他系統のしや断固
152Rが切れた場合には、ケースAにおいては電力融
通されていた負荷分が不足し発電機Gが過負荷となりタ
ービン回転数が下降しタービン及び発電機等が危険状態
となりうるので、発電機Gの発電力を増加させるか又は
発電機Gが現状出力値より増加できない場合には負荷側
Lの負’荷を発電機Gの出力に見合つた値まで減らす必
要が生じる。またケースBにおいては、電力融通してい
た負荷分が余剰電力となり発電機Gが軽負荷となり、タ
ービン回転数が上昇しタービン及び発電機等が危険状態
となりうるので、発電機Gの発・電力を減少させるか又
は発電機Gが現状出力値より減少できない場合には負荷
Lの負荷を発電機Gの出力に見合つた値まで増す必要が
生じる。ケースCにおいては、特に発電機Gに対する影
響はない。またケースDにおいては、発電機Gの負荷が
無負荷となりタービン回転数が上昇するので、直ちにタ
ービン及び発電機を停止する必要がある。従来、しや断
器152Rのトリップはしや断器152Rそのものの接
点出力で判断することが多い。しや断器152Rの位置
が本系統以外の遠方地に設けられている場合には、しや
断器接点を本系統に持込むために布設したケーブルの線
路抵抗が大きくなるために伝送装置を設ける必要があり
、費用が増える。また伝送装置を設けた場合には、伝送
遅れや伝送装置の高信頼度化又は高信頼度とするための
伝送回線多重化による費用の増大が問題となる。またし
や断器152Rの接点が全て使用済みで接点を出せない
場合やしや断器152R相当が数多く設けられているた
めに各しや断器の接点を1個所にまとめられない場合、
またしや断器152Rが他の電力会社の系統にある場合
には接点の取り合いを行なわずに他系統の異常により本
系統が影響を受ける場合には、本系統側で他系統の異常
を検出せざるを得ない場合もある。また他系統しや断器
の接点を取り合つた場合でも信頼性をあげるために本系
統でも他系統しや断器トリップを検出することがある。
以上の問題を解決するために、従来では他系統との連系
線電力零又は電流零を第1図のX線において監視し、連
系線電力零のときをしや断器152Rトリップ(但し、
しや断器152,52,52Fの入、切により生する電
力変化ては検出しないようにロックする。)としていた
が、連系線電一力は一方向性のものてはなく他系統から
本系統へ本系統から他系統へと常に融通し合あうために
一時的に連系線電力が零となることもあり得るため、こ
のときは誤検出をすることになる。本発明は他系統と連
系している電力系統におい.て、他系統内に設けられた
連系線電力入、切用しや断器のトリップを、自系統内の
連系線電流又は電力の変化率と量により検出し、他系統
からのしや断器のトリップ接点の取り合いを不要とする
ようにした連系線電力変化検出装置を提供すること,を
目的とする。
In the above-mentioned power interchange state, if the other system's power supply 152R is disconnected, in case A, the load that was being accommodated becomes insufficient and generator G is overloaded, causing the turbine rotation speed to drop. Since the turbine, generator, etc. may be in a dangerous state, increase the power generated by the generator G, or if the generator G cannot increase its output above the current value, change the load on the load side L to the output of the generator G. It will be necessary to reduce it to a reasonable value. In case B, the load that was being accommodated becomes surplus power, and the load on generator G becomes light, and the turbine rotation speed increases, potentially putting the turbine, generator, etc. in a dangerous state. If the output value of the generator G cannot be decreased below the current output value, it is necessary to increase the load L to a value commensurate with the output of the generator G. In case C, there is no particular effect on generator G. Furthermore, in case D, the load on the generator G becomes zero and the turbine rotational speed increases, so it is necessary to immediately stop the turbine and the generator. Conventionally, the trip of the shield breaker 152R is often determined based on the contact output of the shield breaker 152R itself. If the shield breaker 152R is located in a remote area other than the main system, the line resistance of the cable installed to bring the shield breaker contact into the main system will increase, so the transmission equipment may not be installed. need to be installed, which increases costs. Further, when a transmission device is provided, problems arise such as transmission delays and increased costs due to increased reliability of the transmission device or multiplexing of transmission lines to achieve high reliability. If all the contacts of the Yasushiya Disconnector 152R are used and the contacts cannot be put out.If there are many Yasiyaya Disconnectors 152R equivalent, and the contacts of each Shishaya Disconnector 152R cannot be put together in one place,
In addition, if the disconnector 152R is in another power company's system, the main system will be affected by an abnormality in the other system without making contact, and the main system will detect the abnormality in the other system. There are times when you have no choice but to do so. In addition, even if the contacts of other systems or disconnectors are connected, this system may also detect a trip of the other systems or disconnectors in order to improve reliability.
In order to solve the above problems, conventionally, zero power or zero current in the interconnection line with other systems is monitored using the X-rays shown in Figure 1, and when the interconnection line power is zero, the disconnector 152R trips (however, ,
It is locked so that power changes caused by turning on and off the shield disconnectors 152, 52, and 52F are not detected. ), however, the interconnection line power is not unidirectional, and because it is constantly accommodating from other systems to the main system and from the main system to other systems, the interconnection line power may temporarily become zero. In this case, false detection will occur. The present invention applies to power systems that are interconnected with other systems. Detects the power on/off or disconnection of interconnection lines installed in other systems based on the rate and amount of change in the interconnection line current or power in the own system, and detects connections from other systems. It is an object of the present invention to provide an interconnection line power change detection device that eliminates the need for interlocking trip contacts of disconnectors.

以下図面を参照して本発明の一実施例を説明する。An embodiment of the present invention will be described below with reference to the drawings.

第5図において、枠1内は他の電力系統、その他は自系
統であり、枠1内は本発明を実現するための連系線電流
変化検出回路である。枠1内の他系統電力系では発電機
群及び負荷群は母線BUSに接続され、連系線電力入、
切用しや断器152Rにつながる。この連系線に変流器
CTを設け、この整流器CT2次電流1を電流変化検出
回路2に入力している。しや断器52は152Rと同様
に連系線電力入、切用しや断器であり、152Rが゜゜
入゛のときは“入゛となつており、152゜“切゛で人
為的に゜“切゛となる。発電機Gは発”電機しや断器5
2と主変圧器MTを介して自系統に接続し、自系統を負
荷変圧器LT,負荷しや断器52Fを介して自系統の負
荷群Lに接続する。電流変化検出回路2は連系線電流1
を電流/直流電圧トランスジューサ22に入力し、連系
線電流の方向に応じて正、負の極性となり且つ電流量に
比例した連系線電流信号■1を出し、絶対値演算器22
に入力する。絶対値演算器22は連系線電流の方向に応
じて変化する信号V1の極性と無関係に絶対値のみの信
号V2を出力し、電圧検出器23と変化検出器24に入
力する。尚、絶対値演算器22は公知なので、ここでは
特に説明しない。電圧検出器23は連系線電流零アンペ
アのときに動作し、この電圧検出器23動作により補助
リレーAが動作する。また変化検出器24は連系線電流
の急変検出器であり、しや断器152R,152,52
,52Fの入、切等によつて生ずる連系線電流の絶対値
の減少率が早いときを検出し、電流増加や通常の負荷変
動や発電機出力変動等による変化率の小さい電流変化で
は検出動作しない。また変化検出器24は電流の絶対値
の減少率が大きい間のみ動作し続け、早い速度から遅い
速度となつたときにはその時点で不動作となる。変化検
出器24が動作すると補助リレーBが動作する。尚、変
化検出器24は微分器+電圧検出器によるものなど従来
から多種あるので、ここでは特に説明しない。つぎに第
6図でリレーシーケンス回路を説明する。
In FIG. 5, the area within frame 1 is another power system, the others are the own system, and the area within frame 1 is an interconnection line current change detection circuit for realizing the present invention. In the other system power system in frame 1, the generator group and the load group are connected to the bus BUS, and the interconnection line power input,
It is connected to the disconnector 152R. A current transformer CT is provided on this interconnection line, and this rectifier CT secondary current 1 is inputted to a current change detection circuit 2. Like 152R, the cable disconnector 52 is a disconnector for connecting and disconnecting the interconnection line power, and when 152R is turned on, it is turned on, and when 152R is turned on, it is artificially disconnected.゜The generator G is turned off.
2 and the own system via the main transformer MT, and the own system is connected to the load group L of the own system via the load transformer LT and the load shear disconnector 52F. Current change detection circuit 2 detects interconnection line current 1
is input to the current/DC voltage transducer 22, which outputs an interconnection line current signal 1 which has a positive or negative polarity depending on the direction of the interconnection line current and is proportional to the amount of current.
Enter. The absolute value calculator 22 outputs a signal V2 having only an absolute value, regardless of the polarity of the signal V1 which changes depending on the direction of the interconnection line current, and inputs it to the voltage detector 23 and the change detector 24. Incidentally, since the absolute value calculator 22 is well known, it will not be particularly explained here. The voltage detector 23 operates when the interconnection line current is zero ampere, and the operation of the voltage detector 23 causes the auxiliary relay A to operate. Further, the change detector 24 is a sudden change detector of interconnection line current, and
, 52F is turned on or off, etc., when the rate of decrease in the absolute value of the interconnection line current is fast. It is also detected when the rate of change in current is small due to an increase in current, normal load fluctuations, generator output fluctuations, etc. Do not work. Further, the change detector 24 continues to operate only while the rate of decrease in the absolute value of the current is large, and becomes inoperative at the moment when the speed changes from high to low. When change detector 24 operates, auxiliary relay B operates. It should be noted that since there are conventionally many types of change detectors 24, such as those using a differentiator and a voltage detector, no particular explanation will be given here. Next, the relay sequence circuit will be explained with reference to FIG.

接点152−1a,152−2a,152−3aはしや
断器152が“入゛のとき閉となるその補助接点、接点
52−1a,52−3aは発電機しや断器52が“入”
のとき閉となりまた52一2bはしや断器52が“゜切
゛のとき閉となる補助接点である。接点52F−1bは
負荷しや断器52Fが゜゜切゛のとき閉となり、接点5
2F−2A,52F−3aは負荷しや断器52Fが゜゛
入゛のとき閉となる補助接点である。リレーCはしや断
器152が、“入゛,発電機しや断器52が゜゜入゛、
負荷しや断器52Fが゜゛切゛で本系統の発電機Gから
他系統へ電力を融通し本系統負荷に電力を供給していな
い状態のとき動作する。リレーDはしや断器152が゜
゜入゛、発電機しや断器52が゜“切゛、負荷しや断器
52Fが゜゜入゛で他系統から本系統負荷Lへ電力を融
通し本系統の発電機が停止している状態のとき動作する
。リレーEはしや断器152が゜“入゛発電機しや断器
52が“入゛負荷しや断器52Fが゜“入゛で本系統負
荷Lに他系統と本系統発電機Gの両者から電力供給する
か又は本系統発電機Gが本系統負荷Lと他系統への電力
供給している状態のとき動作する。前記リレーC,D,
Eが動作すると、それぞれのリレー接点C−1a,D−
1a,E−1aが閉となる。接点F−1bはホールドリ
セット用押ボタンスイッチである。また接点B−1aは
前記第5図のリレーBが動作したときに閉となる。リレ
ーGは、このリレーGが動作したとき閉となる接点G−
1aにより自己保持する。接点G−2aはリレーGが動
作したとき閉となり、接点A−1bは前記第5図のリレ
ーAが動作したとき開となる。HTは限時動作リレーで
あり、接点HT−1bは限時動作后開となる。接点F−
2bは前記F−1bと同様にホールドリセット用押ボタ
ンスイッチであり、リセット操作のときのみ開となる。
そして接点G−3aはリレーGが動作のとき閉となり、
接点A−2aは前記第5図のリレーAが動作のとき閉と
なる。リレーKはしや断器断の最終出力用で、接点F−
2b,G−3a,A−2a閉で動作し、接点K−1a閉
で自己保持する。次に上記装置の動作を説明する。第5
図において、連系線電流1は電流/直流電圧変換器21
に入力され連系線電流の方向に応じて正、負の極性とな
り且つ連系線電流の量に比例した直流信号■1となる。
そして信号V1は、絶対値演算器22に入力される。電
流/直流電流変換器21の出力は連系線電流の方向、即
ち本系統から他系統への電力融通と他系統から本系統へ
の電力融通の2方向があり、この方向に応じて正又は負
の極性の出力をするので、絶対値演算器22を設けて以
降の演算(電流変化検出)を容易に行なうことができる
ようにしている。そして絶対値演算器22の出力V2は
電圧検出器23に入力され、この電圧検出器23は連系
線電流が零アンペアのとき動作し、このときリレーAも
動作する、また出力V2は変化検出器24にも入力され
、連系線電流1が急変減少したことを変化検出器24が
検出し、これによりリレーBを動作させる。リレーAと
リレーBの動作を第7図により説明する。
Contacts 152-1a, 152-2a, 152-3a are auxiliary contacts that close when the generator or disconnector 152 is "on," and contacts 52-1a, 52-3a are closed when the generator or disconnector 52 is "on." ”
The contact 52F-1b is an auxiliary contact that closes when the load is applied and the disconnector 52F is ``off''. 5
2F-2A and 52F-3a are auxiliary contacts that close when the load and disconnector 52F are turned on. The relay C edge and disconnector 152 are “on”, the generator and the disconnector 52 are “on”,
It operates when the load disconnector 52F is turned off and power is transferred from the generator G of the main system to other systems, and power is not being supplied to the main system load. Relay D edge and disconnector 152 is turned on, generator edge and disconnector 52 is turned off, and load liner and disconnector 52F is turned on to transfer power from other systems to main system load L. It operates when the generator in the grid is stopped.When the relay E or the disconnector 152 is turned on, the generator or the disconnector 52 is turned on, or when the load is applied or the disconnector 52F is turned on. It operates when power is supplied to the main system load L from both the other system and the main system generator G, or when the main system generator G is supplying power to the main system load L and the other system. The relays C, D,
When E operates, each relay contact C-1a, D-
1a and E-1a are closed. Contact F-1b is a hold reset push button switch. Contact B-1a is closed when relay B shown in FIG. 5 is operated. Relay G has a contact G- that closes when this relay G operates.
Self-maintaining due to 1a. Contact G-2a is closed when relay G is activated, and contact A-1b is opened when relay A shown in FIG. 5 is activated. HT is a time-limited operation relay, and the contact HT-1b is opened after the time-limited operation. Contact F-
2b is a hold reset push button switch similar to F-1b, which is opened only when a reset operation is performed.
Contact G-3a is closed when relay G is activated,
Contact A-2a is closed when relay A shown in FIG. 5 is in operation. Relay K is for the final output of the disconnector, and the contact F-
It operates when 2b, G-3a, and A-2a are closed, and self-maintains when contact K-1a is closed. Next, the operation of the above device will be explained. Fifth
In the figure, interconnection line current 1 is connected to current/DC voltage converter 21
It becomes a DC signal (1) which has positive or negative polarity depending on the direction of the interconnection line current and is proportional to the amount of interconnection line current.
The signal V1 is then input to the absolute value calculator 22. The output of the current/DC current converter 21 has two directions: the direction of interconnection line current, that is, power accommodation from the main system to other systems, and power accommodation from other systems to the main system, and depending on this direction, it can be positive or Since the output is of negative polarity, an absolute value calculator 22 is provided to facilitate subsequent calculations (current change detection). Then, the output V2 of the absolute value calculator 22 is input to the voltage detector 23, and this voltage detector 23 operates when the interconnection line current is zero ampere, and at this time, the relay A also operates, and the output V2 detects a change. The change detector 24 detects a sudden change and decrease in the interconnection line current 1, and operates the relay B accordingly. The operation of relays A and B will be explained with reference to FIG.

時刻ちからら間においては、連系線電力1がある変化率
で減少しているが、この変化率はしや断器152がトリ
ップしたときの変化率よりも十分に遅いので、変化検出
器24及びリレーBは動作しない。また時亥!1t2及
びT7のときに連系線電流が急変減少しているので変化
検出器24は急変した時間の間動作するが、電流は零ア
ンペアとなつていないのでリレーAは動作しない。次に
時刻ζとらのときは前記時刻ちとT7と同様の電流変化
をしているのでリレーBが動作し、しかも電流がそれぞ
れ時刻ζとTlOにおいて零アンペアとなつているので
、このときリレーAが動作する。
During the time interval, the interconnection line power 1 decreases at a certain rate of change, but this rate of change is sufficiently slower than the rate of change when the disconnector 152 trips, so the change detector 24 and relay B does not operate. Time again! Since the interconnection line current suddenly changes and decreases at times 1t2 and T7, the change detector 24 operates during the period of sudden change, but since the current has not reached zero ampere, relay A does not operate. Next, at time ζ, relay B operates because the current is changing in the same way as at time T7, and since the current is zero ampere at time ζ and TlO, at this time relay A is activated. Operate.

また時刻ちにおいては急速に電流が増加しているが、変
化検出器24は増方向変化については検出しないのでリ
レーBは不動作となつている。そして時亥胆、とTl2
においては電流変化がゆるやかであるのでリレーBは動
作しないが、この間略電流は零アンペアなのでリレーA
が動作となる。次に第6図において、リレーC,D,E
は本系統内のしや断器152,52,52Fの3ケース
の状態を表わしており、従来技術て説明した3ケース(
第1図又は第2図と第3図と第4図)と同様である。こ
のようにケースを区分けしたのは本発明の目的が他系統
の原因による連系線電力異常変化検出にあるので、本系
統内のしや断器の変化によつても連系線電流が零アンペ
ア又は電流急変となりうるので誤検出しないようにロッ
クするためである。前記3ケースのいずれかの状態のと
きで、第7図の時刻!のとき電流急変しリレーBが動作
し接点B−1aが閉になると、リレーGが動作し接点J
G−1aが閉となりリレーGは自己保持する。
Furthermore, although the current increases rapidly at time 1, the change detector 24 does not detect any change in the increasing direction, so relay B is inoperative. And time, and Tl2
, relay B does not operate because the current changes slowly, but relay A does not operate because the current is approximately zero ampere during this period.
becomes the action. Next, in Fig. 6, relays C, D, E
represents the status of the three cases of the shield disconnectors 152, 52, and 52F in this system, and the three cases explained in the prior art (
1 or 2, 3, and 4). The reason for dividing the cases in this way is that the purpose of the present invention is to detect abnormal changes in interconnection line power due to causes in other systems, so even if a change in a disconnector in the main system causes the interconnection line current to become zero. This is to lock to prevent erroneous detection since the amperage or current may change suddenly. In any of the above three cases, the time shown in Figure 7! When the current suddenly changes and relay B operates and contact B-1a closes, relay G operates and contact J
G-1a is closed and relay G maintains itself.

そして同時に接点G−2aが閉となりこのとき連系線電
流が零アンペアとなつていないのでリレーAが不動作で
接点A−1bが閉なのでタイマーHTはタイムカウント
する。そしてタイムカウント後に接点T−1bが開とな
りリレーGが不動作となる。タイマーHTは、時刻T2
またはT7のときのように電流減少が一時的に生じてリ
レーBが動作しリレーGが自己保持するので電流零アン
ペアとなつていない場合に自己保持を解くために設けて
あり、タイマーは電流急変が連系線電流の最大値から零
アンペアに急変するまでの時間THT以上に設定する。
しかして時刻ζ又はT9のときには電流急変するととも
にタイマーTHT以内の時刻T5,tlOには電流が零
アンペアとなるので、リレーA及びBが動作しリレーG
とリレーKが動作し夫々自己保持する。
At the same time, contact G-2a is closed, and since the interconnection line current is not zero ampere, relay A is inoperative and contact A-1b is closed, so timer HT counts the time. After a time count, contact T-1b is opened and relay G is inoperative. Timer HT is time T2
Or, as in the case of T7, when the current decreases temporarily, relay B operates and relay G self-holds, so it is provided to release the self-holding when the current is not zero ampere, and the timer is set to release the self-holding when the current suddenly changes. The time required for the interconnection line current to suddenly change from the maximum value to zero ampere is set to be greater than or equal to THT.
However, at time ζ or T9, the current suddenly changes, and at time T5, tlO, which is within timer THT, the current becomes zero ampere, so relays A and B operate and relay G
and relay K operates to maintain self-holding.

そしてリレーKの動作はオペレータに対しその旨をアナ
ウンスし、これによりオペレータがリセットボタンを操
作し接点F−1b及びF−2bが開となるまでリレーG
及びKは動作しつづける。しや断器152Rがトリップ
したことによつてしや断器152を切る場合にはリレー
Gは不動作となるが、自己保持しているリレーKは不動
作とならないので問題はない。上記実施例ては、連系線
の変化を電流のみて検出しているか、電流/直流電圧変
換器の代りに電力/直流電圧変換器(電力変換器)を用
い、連系線電圧と電流をこの電力変換器に入力し電力に
よる検出方法でも同等の効果を得ることがてきる。
Then, the operation of relay K is announced to the operator, and relay G remains active until the operator operates the reset button and contacts F-1b and F-2b open.
and K continue to operate. When the sheath breaker 152 is tripped and the sheath breaker 152 is turned off, the relay G becomes inoperative, but there is no problem because the self-holding relay K does not become inoperable. In the above embodiments, changes in the interconnection line are detected only by the current, or a power/DC voltage converter (power converter) is used instead of the current/DC voltage converter to detect the interconnection line voltage and current. A similar effect can be obtained by a detection method using electric power input to this power converter.

また上記実施例では、連系線電流零アンペアの検出を絶
対値演算器22の出力側に入れているが、連系線電流の
検出することのでき点、例えば絶対値演算器22の入力
側で検出してもよい。また上−記実施例では連系線電流
の検出点をしや断器152Rと152の間で検出してい
るが、連系線電流の検出できる点、例えばしや断器15
2と発電機及び負荷の接続点との間でもよい。また上記
では連系線電力又は電流零を検出する例て説明している
が、連系線電力の異常急変のみの検出をする場合には連
系線電流又は電力零検出器とタイマーHTを除くことに
より容易に検出することができる。以上記載のように本
発明では、他系統しや断器トリップ(又は系統異)時に
生ずる連系線電流(又は電力)の急変減少状態を検出す
るとともに連系線電流(又は電力)零の両方の条件で検
出しているので誤動作がなく、また他系統からのしや断
器トリップの接点を自系統に持つてくる必要がないので
伝送装置が不要となり、経済的で且つ信頼度の高い連系
線電力変化検出装置を提供することができる。
Furthermore, in the above embodiment, the detection of the zero ampere current in the interconnection line is inputted to the output side of the absolute value calculator 22, but the point where the interconnection line current can be detected, for example, the input side of the absolute value calculator 22, is It may be detected by In addition, in the above embodiment, the detection point of the interconnection line current is detected between the shield disconnectors 152R and 152, but there are other points where the interconnection line current can be detected, for example, between the shield disconnectors 152R and 152.
2 and the connection point of the generator and load. In addition, although the above example describes the detection of interconnection line power or zero current, when only abnormal sudden changes in interconnection line power are to be detected, the interconnection line current or zero power detector and timer HT are excluded. Therefore, it can be easily detected. As described above, the present invention detects a sudden change and decrease state of the interconnection line current (or power) that occurs when the interconnection line current (or power) is tripped (or system abnormality), and also detects both the interconnection line current (or power) and zero. Detection is performed under the following conditions, so there is no malfunction, and there is no need to bring in contacts from other systems or disconnection trip contacts to the own system, eliminating the need for transmission equipment, resulting in an economical and highly reliable connection. A system line power change detection device can be provided.

【図面の簡単な説明】 第1図及至第4図は融通電力を方向別に示した連系電力
系統図、第5図及び第6図は本発明の一実施例を示す系
統図とリレーシーケンス回路図、第7図は同実施例の作
用を示すタイムチャートである。 1;他系統、152R,152,52,52F;しや断
器、CT;変流器、MT;主変圧器、G:発電機、L:
負荷、LT;負荷弯圧器、21;電流/直流電圧変換器
、22;絶対値演算器、23;電圧検出器、24;変化
検出器、A,B,C,D,E,F,G:補助リレー、H
T:限時動作リレー。
[Brief Description of the Drawings] Figures 1 to 4 are interconnected power system diagrams showing interchangeable power by direction, and Figures 5 and 6 are system diagrams and relay sequence circuits showing one embodiment of the present invention. 7 are time charts showing the operation of the same embodiment. 1; Other systems, 152R, 152, 52, 52F; Strain breaker, CT; Current transformer, MT; Main transformer, G: Generator, L:
Load, LT; Load intensifier, 21; Current/DC voltage converter, 22; Absolute value calculator, 23; Voltage detector, 24; Change detector, A, B, C, D, E, F, G: Auxiliary relay, H
T: Time-limited relay.

Claims (1)

【特許請求の範囲】[Claims] 1 相互に電力融通している電力系統において、連系線
電力又は電流の量を検出する検出器と連系線電力又は電
流の変化率を検出する変化検出器とを備え、連系線電力
又は電流が零となり且つ零になるときの変化速度が異常
に大きかつたことにより連系線のしや断事故を検出する
ことを特徴とする連系線電力変化検出装置。
1. In a power system where power is mutually interchanged, a detector for detecting the amount of interconnection line power or current and a change detector for detecting the rate of change in interconnection line power or current is provided, and 1. An interconnection line power change detection device that detects an interconnection line breakage fault when the current becomes zero and the rate of change when the current becomes zero is abnormally large.
JP53100397A 1978-08-17 1978-08-17 Interconnection line power change detection device Expired JPS6051336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53100397A JPS6051336B2 (en) 1978-08-17 1978-08-17 Interconnection line power change detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53100397A JPS6051336B2 (en) 1978-08-17 1978-08-17 Interconnection line power change detection device

Publications (2)

Publication Number Publication Date
JPS5529220A JPS5529220A (en) 1980-03-01
JPS6051336B2 true JPS6051336B2 (en) 1985-11-13

Family

ID=14272842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53100397A Expired JPS6051336B2 (en) 1978-08-17 1978-08-17 Interconnection line power change detection device

Country Status (1)

Country Link
JP (1) JPS6051336B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2734305B2 (en) * 1992-08-05 1998-03-30 三菱電機株式会社 Route disconnection accident detection device

Also Published As

Publication number Publication date
JPS5529220A (en) 1980-03-01

Similar Documents

Publication Publication Date Title
JPS6260428A (en) Annular line system protecting device
JPS6051336B2 (en) Interconnection line power change detection device
KR0185242B1 (en) Spot network power receiving and transforming apparatus
JPS6355297B2 (en)
JPS6031172B2 (en) Interconnection line power interruption detection device
JPWO2004042883A1 (en) Protective relay
JP2860740B2 (en) Grid connection protection detector
JPH0154930B2 (en)
JPH0214283Y2 (en)
JPS6347052B2 (en)
RU2014705C1 (en) Gear for stand-by directed current protection of electric power line with spur lines
JP2000078755A (en) System interlocking apparatus
JP3296511B2 (en) Voltage monitoring device
JPH0520976B2 (en)
JP3023913B2 (en) Ring protection relay
JP2503961B2 (en) Loop line protection device
JP2005333777A (en) Control device provided with systematically interconnected protection function of sog switch
JPS6240931B2 (en)
KR20230000299A (en) Distributed power source separation method and device according to disconnction of distribution line
JP3167166B2 (en) Load selective cut-off device
JPH0398419A (en) Circuit selective relay
JPS6043734B2 (en) Power supply device using inverter device
JPS6350938B2 (en)
JPS6198122A (en) Controller for network facility
JPH071979B2 (en) Distribution line Ground fault Fault relay for detecting section