JPS6031172B2 - Interconnection line power interruption detection device - Google Patents

Interconnection line power interruption detection device

Info

Publication number
JPS6031172B2
JPS6031172B2 JP53100396A JP10039678A JPS6031172B2 JP S6031172 B2 JPS6031172 B2 JP S6031172B2 JP 53100396 A JP53100396 A JP 53100396A JP 10039678 A JP10039678 A JP 10039678A JP S6031172 B2 JPS6031172 B2 JP S6031172B2
Authority
JP
Japan
Prior art keywords
power
generator
interconnection line
load
disconnector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53100396A
Other languages
Japanese (ja)
Other versions
JPS5529219A (en
Inventor
立夫 高橋
茂幸 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP53100396A priority Critical patent/JPS6031172B2/en
Publication of JPS5529219A publication Critical patent/JPS5529219A/en
Publication of JPS6031172B2 publication Critical patent/JPS6031172B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】 本発明は2系統間の電力融通を行なっている電力系統に
おいて、他系統の原因で連系線電力が零となったことを
検出する連系線電力断検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an interconnection line power interruption detection device for detecting when interconnection line power has become zero due to a cause in another system in a power system that performs power interchange between two systems. It is something.

第1図に電力系統を示す。Figure 1 shows the power system.

斜線部分枠1内が他の電力系統で枠外が本系統である。
池系統内のしや断器152Rは本系統との連系線入、切
用であり、152Rの図示上方母線BUSには多くの発
電機群及び負荷群が接続(図示せず)されている。本系
統のしや断器152は前記池系統のしや断器152Rと
同様目的のもので、系統間の連系線の入、切を行なうも
のである。また本系統の発電機Gは発電機しや断器52
と主変圧器MTを介して本系統に接続される。また本系
統は負荷変圧器LTと負荷しや断器52Fを介して負荷
群Lに接続している。つぎに本系統と他系統の電力融通
について説明する。
The area inside the diagonally shaded frame 1 is another power system, and the area outside the frame is the main system.
The shield disconnector 152R in the pond system is used to connect and disconnect the interconnection line with the main system, and many generator groups and load groups are connected (not shown) to the illustrated upper bus line BUS of 152R. . The power line disconnector 152 of this system has the same purpose as the power line disconnector 152R of the pond system, and is for connecting and disconnecting interconnection lines between systems. In addition, the generator G of this system is the generator and the disconnector 52
and is connected to the main system via the main transformer MT. Further, this system is connected to a load group L via a load transformer LT and a load shear disconnector 52F. Next, we will explain power interchange between this system and other systems.

電力融通の方式として次の4ケースが考えられる。ケー
スA: 本系統負荷L‘こ対して本系統の発電機Gの電
力と発電機Gでの電力不足分を他系統より電力供給する
The following four cases can be considered as power interchange methods. Case A: For the main system load L', the power of the generator G of the main system and the power shortage in the generator G is supplied from another system.

このとき、しや断器152R,152,52,52Fは
全て“入”となる。ケースB: 本系統負荷L‘こ対し
て本系統の発電機Gより電力を供給し、発電機Gの電力
余剰分を池系統に融通する。
At this time, the shield breakers 152R, 152, 52, and 52F are all turned on. Case B: Power is supplied from the generator G of the main system to the main system load L', and the surplus power of the generator G is transferred to the pond system.

このとき、しや断器152R,152,52,52Fは
全て“入”となる。
At this time, the shield breakers 152R, 152, 52, and 52F are all turned on.

ケースC; 本系統の発電機Gが停止中に本系統の負荷
Lには他系統より電力を供給する。
Case C: While the generator G of the main system is stopped, power is supplied to the load L of the main system from another system.

このとき、しや断器152R,152,52Fが“入”
となる。ケースD; 本系統の発電機Gの電力を他系統
へ供給し、本系統負荷Lには電力供給をしない。
At this time, the shield disconnectors 152R, 152, and 52F are turned on.
becomes. Case D: Power from the generator G of this system is supplied to another system, but no power is supplied to the load L of this system.

このとき、しや断器152R,152,52が“入”と
なる。以上のような電力融通状態において、他系統のし
や断器152Rが切れた場合には前記ケースA〜Dにお
いてケースAの場合; 電力融通されていた負荷分が不
足となるので発電機Gが過負荷となり、タービン回転数
が下降しタービン及び発電機等が危険状態となりうるの
で、発電機Gの発電力を増加させるかまたは負荷側Lの
負荷を発電機Gの出力に見合った値まで減らす必要が生
じる。
At this time, the sheath disconnectors 152R, 152, and 52 are turned on. In the above-mentioned power interchange state, if the shield disconnector 152R of the other system is tripped, in case A among the above cases A to D; the generator G is switched off because the load for which the power was interchanged becomes insufficient. As overload may occur, the turbine rotation speed may drop, and the turbine, generator, etc. may be in a dangerous state, so either increase the power generated by generator G or reduce the load on the load side L to a value commensurate with the output of generator G. The need arises.

ケースBの場合: 電力融通していた負荷分が余剰電力
となり発電機Gが軽負荷となり、タービン回転数が上昇
しタービン及び発電機等が危険状態となりうるので、発
電機Gの発電力を減少させるか又は負荷側Lの負荷を発
電機Gの出力に見合った値まで増す必要が生じる。
In case B: The load that was being used for power interchange becomes surplus power, and the load on generator G becomes light.The turbine rotation speed increases, potentially putting the turbine, generator, etc. in a dangerous state, so the power generated by generator G is reduced. It becomes necessary to increase the load on the load side L to a value commensurate with the output of the generator G.

ケースCの場合; 発電機Gに対する影響はない。Case C: There is no effect on generator G.

ケースDの場合; 発電機Gの負荷が無関係となるので
タービン回転数が急変上昇するので、直ちにタービン及
び発電機を停止又は定格速度へ引戻す操作をする必要が
ある。
Case D: Since the load on the generator G becomes irrelevant, the turbine rotational speed suddenly changes and increases, so it is necessary to immediately stop the turbine and generator or return them to the rated speed.

以上の如く、ケースCを除いては他系統内のしや断器が
切れ電力の融通が不可となった場合には、本系統におい
ては発電機Gまたは負荷Lの何らかの調整が必要となる
As described above, with the exception of case C, if a breakout switch in another system goes out and power cannot be exchanged, some kind of adjustment of the generator G or load L is required in this system.

従来、しや断器152Rのトリツプはこのしや断器15
2Rそのものの髭点出力で判断することが多い。
Conventionally, the trip of the breaker 152R was this breaker 15.
Judgment is often made based on the whisker point output of 2R itself.

しかし、しや断器152Rの位置が本系統以外の遠方地
に設けられている場合には、しや断器の接点を取りだす
ために本系統からしや断器152R設置点までケーブル
を布設することになるが、ケーブルが長くなるために費
用が増大したりケーブルの線路抵抗が増し接点の開,閉
を正確に検出することができない。したがってしや断器
接点を本系統へ入力するために伝送装置が必要となり、
費用が増大する。また伝送装置を設けた場合には、伝送
装置の高信頼度化又は高信頼度とするための伝送回線多
重化による費用増大等が生じる。またしや断器が遠方地
でなくとも、しや断器152Rの接点が全て使用済みで
接点を出せない場合や、しや断器152R相当が数多く
設けられているために各しや断器の接点を1個所にまと
められない場合、またしや断器152Rが他の電力会社
の系統にある場合には接点の取り合いを行なわずに池系
統の異常により本系統が影響を受ける場合には本系統側
で池系統の異常を検出せざるを得ない場合もある。これ
らの問題を解決するために、従来では連系線電力量又は
電流量の零検出を行ない、連系線電力零のときをしや断
器152Rトリップ(但し、しや断器152,52,5
2Fの入、切により生ずる電力変化では検出しないよう
にロックする)としていたが、連系線電力は一方向性の
ものではなく、他系統から本系統へ、本系統から池系統
へと常に両者融通し合うために一時的に連系線電力が零
となることもあり得るために、このときは謀検出をする
ことになる。
However, if the shield breaker 152R is located in a remote location other than the main system, a cable must be laid from the main system to the installation point of the shield breaker 152R in order to take out the contacts of the shield breaker. However, as the cable becomes longer, the cost increases and the line resistance of the cable increases, making it impossible to accurately detect whether the contacts are open or closed. Therefore, a transmission device is required to input the breaker contact to the main system.
Costs increase. In addition, when a transmission device is provided, costs increase due to higher reliability of the transmission device or multiplexing of transmission lines to achieve higher reliability. Even if the disconnector is not located far away, there may be cases where all the contacts of the disconnector 152R are used and the contacts cannot be made, or there are many equivalent disconnectors for the disconnector 152R, so each disconnector can be disconnected. If the contacts cannot be put together in one place, or if the disconnector 152R is in another power company's system, do not connect the contacts, and if the main system is affected by an abnormality in the pond system. There may be cases where the main system has no choice but to detect an abnormality in the pond system. In order to solve these problems, conventionally, zero detection of interconnection line power or current amount is performed, and when the interconnection line power is zero, the breaker 152R trips (however, the breaker 152R trips (however, breaker 152, 52, 5
However, interconnection line power is not unidirectional; it is always connected from other systems to the main system, and from the main system to the pond system. Because interconnection line power may temporarily drop to zero due to mutual accommodation, a conspiracy must be detected in this case.

本発明はこの点にかんがみ、池系統と蓮系している電力
系統において、他系統に設けられた連系線電力入、切用
しや断器のトリツプを、連系線電力零又は電流零と系統
周波数基準値以外の条件で検出し、他系統からのしや断
器トリップ接点の取り合いを不要とした連系線電力断検
出装置を提供することを目的とするものである。
In view of this point, the present invention, in a power system that is interconnected with the pond system, is capable of reducing interconnection line power input, disconnection, and disconnection trips provided in other systems to zero interconnection line power or zero current. It is an object of the present invention to provide an interconnection line power failure detection device that detects under conditions other than the grid frequency reference value and eliminates the need for connecting disconnection trip contacts from other systems.

以下図面を参照して本発明の一実施例を説明する。An embodiment of the present invention will be described below with reference to the drawings.

まず、第2図で連系線電力及び周波数検出回路を説明す
る。第2図で枠1内は他の電力系統、その他は本系統で
ある。枠1内の池系統電力系では発電機群及び負荷群は
母線BUSに接続され、連系線入、切用しや断器152
Rに接続している。152は前言己しや断器152Rと
同様に本系統に設けられた連系線入、切用しや断器であ
る。
First, the interconnection line power and frequency detection circuit will be explained with reference to FIG. In Figure 2, the area within frame 1 is another power system, and the others are this system. In the pond power system in frame 1, the generator group and the load group are connected to the bus BUS, and the interconnection line is connected, disconnected, and disconnected by 152.
Connected to R. Reference numeral 152 denotes an interconnection line entry/disconnection/disconnection switch provided in the main system, similar to the above-mentioned line/disconnection switch 152R.

連系線には変流器CTと計器用変圧器PTが設けられ、
変流器CT2次電流iと変圧器PT2次電圧Vが連系線
電力軍検出器2に入力され、また変圧器PT2次電圧は
周波数検出器3に入力される。連系線電力零検出器2は
連系線電力が零のときを検出し、零検出としたときリレ
ーAが動作する。また周波数検出器3は系統周波数がし
や断器152及び152Rが“入”となり他系統と蓮系
しているときに生ずる通常の周波数変化よりはずれたこ
とを検出し、このときリレーBが動作する。尚、周波数
検出器3は発電機Gが停止(しや断器52“切”)でし
や断器152が“切”又は152Rが“切”のときは入
力Vが零Vとなるので、周波数異常低下と同様の状態と
して検出リレーBが動作する。発電機Gは一定出力制御
の発電機であり、発電機しや断器52と主変圧器MTを
介して本系統に接続し、本系統から負荷変圧器LTと負
荷しや断器52Fを介して本系統の負荷群L‘こ接続し
ている。次に第3図でリレーシーケンス回路について説
明する。
The interconnection line is equipped with a current transformer CT and a potential transformer PT.
The current transformer CT secondary current i and the transformer PT secondary voltage V are input to the interconnection line power force detector 2, and the transformer PT secondary voltage is input to the frequency detector 3. The interconnection line power zero detector 2 detects when the interconnection line power is zero, and when zero is detected, the relay A operates. Frequency detector 3 also detects that the system frequency has deviated from the normal frequency change that occurs when disconnectors 152 and 152R are "on" and connected to other systems, and at this time relay B is activated. do. In addition, since the input V of the frequency detector 3 becomes 0 V when the generator G is stopped (the shield breaker 52 is "off") and the shield breaker 152 is "off" or the shield breaker 152R is "off", Detection relay B operates in the same state as the abnormal frequency drop. The generator G is a generator with constant output control, and is connected to the main system via the generator sheath disconnector 52 and the main transformer MT, and is connected to the main system via the load transformer LT and the load sheath disconnector 52F. The load group L' of this system is connected. Next, the relay sequence circuit will be explained with reference to FIG.

図で接点152一1a,152一2a,152−3aは
しや断器152が“入”のとき閉となる補助接点、また
接点52−la,52一3aは発電機しや断器52が“
入”のとき閉となり、52一bは“切”のとき閉となる
補助接点である。また接点52F−laと52F−2a
は負荷しや断器52Fが“入”のとき閉となり、接点5
2F−3bは“切”のとき閉となる補助接点である。リ
レーCはしや断器152が“入”、発電機しや断器52
が“入”、負荷しや断器52Fが“切”で本系統の発電
機Gより池系統へ電力融通し、本系統負荷に電力を供給
していないときに動作して出力接点C−laを閉じる。
リレーDはしや断器1 52が“入”、発電機しや断器
52が“切”、負荷しや断器52Fが“入”で他系統か
ら本系統負荷Lへ電力融通し、本系統の発電機が停止し
ているときに動作し出力接点D−laが開となる。また
リレーEはしや断器152が“入”、発電機しや断器5
2が“入”、負荷しや断器52Fが“入”で本系統負荷
Lに他系統と本系統発電機Gの両者より電力供給するか
又は本系統発電機Gが本系統負荷Lと池系統へ電力供給
するときに動作し出力接点E−laが閉となる。接点B
−laは第2図のリレーBが動作したとき‘こ閉となる
接点であり、接点A−laはリレーAが動作したときに
閉となる接点である。リレーFTは限時動作のリレーで
あり、リレーFTが動作し接点FT−laが開になるこ
とにより自己保持し、保持復帰スイッチの接点G−lb
を閉とするまで保持を継続する。次に本発明の動作を説
明する。
In the figure, contacts 152-1a, 152-2a, 152-3a are auxiliary contacts that close when the cutter 152 is turned on, and contacts 52-la, 52-3a are the auxiliary contacts that close when the cutter 152 is turned on. “
521b is an auxiliary contact that is closed when it is "on", and 521b is an auxiliary contact that is closed when it is "off". Contacts 52F-la and 52F-2a
is closed when the load and disconnector 52F is "on", and contact 5
2F-3b is an auxiliary contact that closes when "off". Relay C terminal disconnector 152 is “on”, generator terminal disconnector 52
is "on", and the load disconnector 52F is "off", power is transferred from generator G of the main system to the pond system, and when power is not being supplied to the main system load, it operates and output contact C-la Close.
Relay D and disconnector 1 52 are “on,” generator and generator disconnectors 52 are “off,” and load and disconnectors 52F are “on,” allowing power to be transferred from other systems to main system load L, and the main It operates when the generator in the system is stopped, and the output contact D-la is opened. In addition, the relay E terminal and disconnector 152 is “on”, and the generator terminal and disconnector 5
2 is "on", and the load disconnector 52F is "on", and power is supplied to the main system load L from both the other system and the main system generator G, or the main system generator G is connected to the main system load L and the main system generator G. It operates when power is supplied to the grid, and the output contact E-la is closed. Contact B
-la is a contact that is closed when relay B in FIG. 2 is operated, and contact A-la is a contact that is closed when relay A is operated. The relay FT is a time-limited relay, and when the relay FT operates and the contact FT-la opens, it holds itself, and the hold-return switch contact G-lb
It continues to be held until it is closed. Next, the operation of the present invention will be explained.

しや断器152及び152Rが“入”となり他系統と蓮
系しているときの系統周波数の変動は、他系統における
負荷変化、本系統における負荷変化の区別なく池系統の
母線BUSに接続されている発電機群及び本系統の発電
機運転中は本系統の発電機Gによって基準周波数となる
ように制御されている。したがって負荷変化によって生
ずる周波数変化は直ちに抑制されるように制御されるの
で、周波数の変動量は略予測された範囲内となる。しか
し、しや断器152又は152Rが切れ本系統のみの単
独系統となった場合には、本系統負荷Lの負荷変化によ
って生ずる周波数変化は本系統の発電機Gのみで制御す
ることになるので、周波数の変動量は他系統と接続され
ていた場合に比べて大きくなるのが一般である。また他
系統と電力融通していた状態でしや断器152R又は1
52が瞬時に切れると、融通し合っていた電力分が本系
統として不足または過剰となるので周波数はこの過又は
不足電力に相当する分だけ急変上昇又は下降したのちに
発電機Gの周波数制御のゲイン及び時定数にそってこの
過不足を制御することになる。また他系統と本系統が接
続されていても連系線電力零の状態もあり得るが、本系
統負荷Lの変化が生じた場合には周波数が変化するので
本系統の発電機Gの出力が変化するとともに連系線電力
も負荷変化を補うべく変化するが、他系統と連系してし
・ない場合には連系線電力は零の状態を継続する。そこ
で本発明では、他系統しや断器が“切”となり連系線電
力が零になるのを連系線電力零検出器2により検出しリ
レーAを動作させる。
Changes in the system frequency when the pond disconnectors 152 and 152R are turned on and connected to other systems are connected to the bus line BUS of the pond system, regardless of load changes in other systems or load changes in the main system. During the operation of the generator group and the main system, the generator G of the main system controls the frequency to be the reference frequency. Therefore, since the frequency change caused by the load change is controlled to be immediately suppressed, the amount of frequency fluctuation is approximately within the predicted range. However, if the breaker 152 or 152R breaks and the main system becomes an isolated system, the frequency change caused by the load change of the main system load L will be controlled only by the generator G of the main system. Generally, the amount of frequency fluctuation is larger than when connected to other systems. In addition, in a state where power was being exchanged with other systems, disconnection switch 152R or 1
52 is cut off instantaneously, the amount of power that was being exchanged becomes insufficient or excessive for the main system, so the frequency suddenly increases or decreases by the amount corresponding to this excess or shortage, and then the frequency control of generator G is changed. This excess or deficiency is controlled according to the gain and time constant. Also, even if other systems and the main system are connected, there may be a state in which the interconnection line power is zero, but if a change in the main system load L occurs, the frequency will change, so the output of the main system's generator G will change. As the load changes, the interconnection line power also changes to compensate for the load change, but if it is not interconnected with other systems, the interconnection line power continues to be zero. Therefore, in the present invention, the interconnection line power zero detector 2 detects when the interconnection line power becomes zero due to the disconnection of other systems and the interconnection line power becoming zero, and the relay A is activated.

また本系統が単独系統となったことにより生ずる系統周
波数変動量の変化幅が他系統と蓮系している場合の系統
周波数の変動量より越えていて尚且本系統の水車発電機
Gが安定運転できない領域であることを周波数検出器3
により検出しリレーBを動作させる。ここで、リレーC
,D,Eは本系統内のしや断器152,52,52Fの
3ケースの状態を表わしており、従来技術にて説明した
3ケース(ケースA又はBとCとD)と同様である。
In addition, the range of change in system frequency fluctuation caused by this system becoming an independent system exceeds the amount of system frequency fluctuation when it is connected to other systems, and the water turbine generator G of this system is operating stably. Frequency detector 3
is detected and relay B is activated. Here, relay C
, D, and E represent the states of the three cases of the shield breakers 152, 52, and 52F in this system, and are similar to the three cases (cases A or B, C, and D) explained in the prior art. .

このようにケースの区分けをしたのは本発明の目的が他
系統の原因による連系線電力断の検出にあるので、本系
統内のしや断器の状変によっても連系線電力が零となる
こともあり得るので、謀検出することのないように各ケ
ース毎にロックしているものである。即ち、発電機Gが
運転中のケースの場合ではリレーC又はリレーEが動作
し、接点C−la又は8一1aが閉となっているので、
この状態で他系続しや断器が“切”になると連系線電力
が零となり、リレーAが動作し接点A−laが閉となり
、同時に周波数が設定幅を越えるのでリレーBが動作し
て接点B−laが閉となるので、限時動作リレーFTが
タイムカウントを始める。
The reason for dividing the cases in this way is that the purpose of the present invention is to detect interconnection line power interruptions due to causes in other systems, so even if the condition of a disconnector in the main system changes, the interconnection line power may become zero. Therefore, each case is locked in order to prevent detection of fraud. That is, in the case where generator G is in operation, relay C or relay E operates and contact C-la or 8-1a is closed.
In this state, if another system is connected or the disconnector is turned off, the interconnection line power becomes zero, relay A operates and contact A-la closes, and at the same time the frequency exceeds the set range, so relay B operates. Since the contact B-la is closed, the time-limited operation relay FT starts counting the time.

タイムカウント時間中に周波数が設定幅内に抑制されな
い場合にはリレーFTの接点FT−laによりリレーF
Tは自己保持する。この自己保持は運転員による保持復
帰スイッチG−16の操作をするまで継続する。リレー
FTが動作したことによって他系統しや断器の“切”を
判断する。限時動作リレーFTの時間設定は他系統しや
断器が“入”のときの周波数変動を引き戻す制御に要す
る時間に設定される。また上記において、他系統しや断
器が“切”になる前の連系線電力量が小さい場合には、
周波数の変動が設定幅を越えないこともあり得る。この
場合には直ちに池系統しや断器の“切”を検出できない
が、このときの周波数は水車発電機Gが安定な運転ので
きる領域であるので特に問題ない。しかし本系統の負荷
Lが変化したことにより周波数が設定幅を越えたときは
、池系統しや断器が切れたことが判断できる。またリレ
ー○が動作しているケース、即ち本系統発電機が停止し
本系統の負荷Lには他系統より電力供給している状態で
は周波数の変化を見ることなく連系線電力断の条件によ
り他系続しや断器“切”を判断してもよいので、リレー
FTの動作条件には周波数の条件を入れていない。尚、
上記実施例では連系線電力断を電力量にて検出している
が、電流量で検出してもよい。
If the frequency is not suppressed within the set range during the time count period, relay F is activated by contact FT-la of relay FT.
T is self-preserving. This self-holding continues until the operator operates the holding return switch G-16. Depending on the operation of the relay FT, it is determined whether other systems or disconnectors are "off". The time setting of the time-limited operation relay FT is set to the time required for control to pull back the frequency fluctuation when the other system or disconnector is "on". In addition, in the above, if the interconnection line power amount before the other system or disconnector is "off" is small,
It is possible that the frequency fluctuation does not exceed the set width. In this case, it is not possible to immediately detect the disconnection of the pond system or disconnection, but there is no particular problem because the frequency at this time is within the range in which the water turbine generator G can operate stably. However, when the frequency exceeds the set range due to a change in the load L of this system, it can be determined that the pond system or disconnector has tripped. In addition, in the case where relay ○ is operating, that is, when the main system generator is stopped and power is being supplied to the main system's load L from another system, there is no change in frequency due to the interconnection line power disconnection condition. Since it is also possible to determine whether the relay is connected to another system or whether the circuit is disconnected, frequency conditions are not included in the operating conditions of the relay FT. still,
In the above embodiment, interconnection line power interruption is detected by the amount of electric power, but it may be detected by the amount of current.

また叢系線電力をしや断器152の発電機側で見ている
が、連系線電力の検出できる点例えばしや断器152と
152Rの闇でもよい。以上記載の本発明によれば、池
系統しや断器が“切”になったことを目系統内で検出す
ることができるので、他系統しや断器までのケーブル布
設による線路抵抗の問題や伝送装置設置による費用増大
を抑えることができる連系線電力断検出装置を提供する
ことができる。
Further, although the interconnection line power is observed on the generator side of the shield disconnector 152, it is also possible to detect the interconnection line power at a point where the interconnection line power can be detected, for example, in the darkness of the shield disconnector 152 and 152R. According to the present invention described above, it is possible to detect within the main system that a pond system or disconnector is "off", so there is no problem with line resistance due to cable installation to other systems or disconnectors. Accordingly, it is possible to provide an interconnection line power interruption detection device that can suppress an increase in cost due to the installation of transmission equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は連系線電力系統を示す単線図、第2図及び第3
図は本発明の一実施例を説明する単線系統図と制御回路
図である。 1・・・・・・他系統、2・・・・・・連系線電力零検
出器、3・・・・・・周波数検出器、152R,152
・・・・・・連系線しや断器、52・・・・・・発電機
しや断器、52F・・・・・・負荷しや断器、G…・・
・発電機、A,B,C,D.E・・・・・・補助リレー
、FT・・・・・・限時動作リレー。 第1図第2図 第3図
Figure 1 is a single line diagram showing an interconnected power system, Figures 2 and 3
The figures are a single-line system diagram and a control circuit diagram illustrating an embodiment of the present invention. 1... Other system, 2... Interconnection line power zero detector, 3... Frequency detector, 152R, 152
...Interconnection line disconnector, 52...Generator disconnector, 52F...Load disconnector, G...
- Generator, A, B, C, D. E: Auxiliary relay, FT: Time-limited operation relay. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 相互に電力融通している電力系統において、連系線
電力又は連系線電流が零のとき動作する連系線電力又は
電流零検出器と系統周波数検出器を備え、連系線電力又
は電流零の条件と系統周波数が他系統と連系している場
合の系統周波数の周波数変化幅を越えた条件により他系
統のしや断器が切れたことを検出する連系線電力断検出
装置。
1 In a power system where power is interchanged between each other, a system is equipped with a zero interconnection power or current detector and a system frequency detector that operate when interconnection line power or current is zero, and An interconnection line power failure detection device that detects when a disconnector in another system is disconnected due to a zero condition and a condition in which the system frequency exceeds the frequency change range of the system frequency when interconnected with another system.
JP53100396A 1978-08-17 1978-08-17 Interconnection line power interruption detection device Expired JPS6031172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53100396A JPS6031172B2 (en) 1978-08-17 1978-08-17 Interconnection line power interruption detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53100396A JPS6031172B2 (en) 1978-08-17 1978-08-17 Interconnection line power interruption detection device

Publications (2)

Publication Number Publication Date
JPS5529219A JPS5529219A (en) 1980-03-01
JPS6031172B2 true JPS6031172B2 (en) 1985-07-20

Family

ID=14272817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53100396A Expired JPS6031172B2 (en) 1978-08-17 1978-08-17 Interconnection line power interruption detection device

Country Status (1)

Country Link
JP (1) JPS6031172B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0235128A (en) * 1988-07-25 1990-02-05 Toto Ltd Water saving device of flush toilet

Also Published As

Publication number Publication date
JPS5529219A (en) 1980-03-01

Similar Documents

Publication Publication Date Title
CA2354533C (en) Intelligent power distribution network
JP3284589B2 (en) Transmission line protection method and protection relay device
JPH08126210A (en) Parallel off control device for commercial power supply linkage private generator
JPS6031172B2 (en) Interconnection line power interruption detection device
JPS6355297B2 (en)
JP2860740B2 (en) Grid connection protection detector
JPS59162729A (en) Protecting circuit of power system with solar battery generating system
KR910000085B1 (en) System for detecting and cutting off failured section in distribution system
JP2684317B2 (en) Grid connection protection device
JPH04253000A (en) Nuclear power station, its power equipment within plant and power control panel within plant
JPH0214283Y2 (en)
JP2860784B2 (en) Grid connection protection device
JPS6347052B2 (en)
JP2640628B2 (en) Grid connection protection device
JP3433992B2 (en) Protection system for different bus supply loop transmission line system
JP3403752B2 (en) Islanding detection device
JPS6051336B2 (en) Interconnection line power change detection device
JP3023913B2 (en) Ring protection relay
JPS649816B2 (en)
JP2558585B2 (en) Grid interconnection protection detector
JPH0652973B2 (en) Interconnection device for small-capacity power generation system
JP3167166B2 (en) Load selective cut-off device
JPH07107656A (en) Protecting device for electric power system
JPH07159592A (en) Power source control device for bus with mg set and power source control method
JPH0520976B2 (en)