JPS6051125A - Oxidation and reduction of organic compound - Google Patents

Oxidation and reduction of organic compound

Info

Publication number
JPS6051125A
JPS6051125A JP16007783A JP16007783A JPS6051125A JP S6051125 A JPS6051125 A JP S6051125A JP 16007783 A JP16007783 A JP 16007783A JP 16007783 A JP16007783 A JP 16007783A JP S6051125 A JPS6051125 A JP S6051125A
Authority
JP
Japan
Prior art keywords
organic compound
catalyst layer
reaction
porous
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16007783A
Other languages
Japanese (ja)
Inventor
Yuko Fujita
藤田 雄耕
Ikuo Tanigawa
谷川 郁夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Nihon Denchi KK
Original Assignee
Japan Storage Battery Co Ltd
Nihon Denchi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd, Nihon Denchi KK filed Critical Japan Storage Battery Co Ltd
Priority to JP16007783A priority Critical patent/JPS6051125A/en
Publication of JPS6051125A publication Critical patent/JPS6051125A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To carry out the oxidation reduction of an organic compound, by using a laminated sheet composed of an internally short-circuited cell catalyst layer and a porous polyethylene fluoride membrane, and contacting the organic compound to the catalyst layer and an oxidizing or reducing gas to the porous membrane. CONSTITUTION:An organic compound is supplied to the reactor containing a bonded catalyst 2 through the organic compound inlet 3, and is made to react with air supplied through the air inlet 4. The bonded catalyst is composed of the internally short-circuited cell catalyst layer 7, the porous polytetrafluoroethylene membrane 9, the sprayed layer 8 of tetrafluoroethylene-hexafluoropropylene copolymer for bonding the catalyst layer and the porous membrane, and the porous Ni plate 6 acting as a reinforcing material. The internally short-circuited cell catalyst layer 7 is composed of (a) an electrically conductive powder effective for the electrolytic reduction of oxidized material, (b) an electrically conductive powder effective for the electrolytic oxidation of the reduced material, (c) powder or short fibers of an ion exchange resin and (d) a fluororesin.

Description

【発明の詳細な説明】 本発明は有機化合物の酸化還元方法に関するものであり
、その目的とするところは、内部短絡電池式触練を用い
て、有機化合物の酸化還元をより効率的におこない得る
方法を提供せんとづるにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for redoxing organic compounds, and its purpose is to more efficiently redox organic compounds by using internal short-circuit battery type catalysis. There are a number of ways to do this.

化学反応の多くは、酸化還元反応である。づ°なわら、
還元体が酸化される反応が酸化反応であり、酸化体が還
元される反応が還元反応である。
Many chemical reactions are redox reactions. However,
A reaction in which a reductant is oxidized is an oxidation reaction, and a reaction in which an oxidant is reduced is a reduction reaction.

一方、電池などの電気化学装置における電気化学反応も
酸化還元反応である。づ−なわち、電気化学装置には必
ずカソードとアノードと電解質とが存在するが、カソー
ド反応はづべて還元反応であり、アノード反応はすべて
酸化反応である。
On the other hand, electrochemical reactions in electrochemical devices such as batteries are also redox reactions. That is, an electrochemical device always includes a cathode, an anode, and an electrolyte, and all cathode reactions are reduction reactions, and all anode reactions are oxidation reactions.

通常の化学反応と電気化学反応との差は、前右では、少
くとも見掛けの上では電子の授受が起Iうないのに対し
、後者では電子の授受が起り、電流が外部回路を流れる
という点にある。ところが、通常の化学反応であっても
、微視的にみると、実は電気化学反応であるか、電気化
学反応として説明イると反応メカニズムがよく理解でき
る場合も多々ある。例えば活性炭を触媒として、水の存
在下で二酸化イオウと酸素とを反応させると、ra酸が
生成するが、この反応は見掛けの上では通常の接触化学
反応であるが、微視的にみると、活性炭の酸素の吸着サ
イトでは、次のような酸素の電解還元反応が起り、 1/ 202 +28” +2e−−+1−120 (
1)活性炭の二酸化イオウの吸着ナイトでは802 +
 2H20 一+SO4’−+41−1++2e−(2)なる電解酸
化反応が起り、全体としては1/ 202 +SO2+
H20→t−12SO4(3>なる反応が起ると説明さ
れている。換言すると、活性炭上で、酸素−二酸化イオ
ウ電池が形成され、これが電子伝導性の活性炭で内部短
絡されているととらえることができる。この場合には、
反応初期には、二酸化イオウが水に溶けて生成する亜硫
酸が支持電解質として働き、(2)式の反応がある程度
進んだのちは、硫酸が支持電解質として働いていると考
えることかできる。
The difference between a normal chemical reaction and an electrochemical reaction is that in the front right, no exchange of electrons occurs, at least in appearance, whereas in the latter, exchange of electrons occurs and current flows through an external circuit. At the point. However, even if a normal chemical reaction is viewed microscopically, it is actually an electrochemical reaction, or the reaction mechanism can often be better understood if it is explained as an electrochemical reaction. For example, when sulfur dioxide and oxygen are reacted in the presence of water using activated carbon as a catalyst, RA acid is produced.This reaction appears to be a normal catalytic chemical reaction, but when viewed microscopically, , at the oxygen adsorption site of activated carbon, the following electrolytic reduction reaction of oxygen occurs: 1/202 +28" +2e--+1-120 (
1) Activated carbon adsorption night of sulfur dioxide is 802 +
2H20 1+SO4'-+41-1++2e-(2) An electrolytic oxidation reaction occurs, and the total is 1/202 +SO2+
It is explained that the reaction H20 → t-12SO4 (3>) occurs.In other words, an oxygen-sulfur dioxide battery is formed on the activated carbon, and this can be considered to be internally short-circuited by the electronically conductive activated carbon. In this case,
At the beginning of the reaction, sulfur dioxide, which is produced by dissolving sulfur dioxide in water, acts as a supporting electrolyte, and after the reaction of equation (2) has progressed to a certain extent, sulfuric acid can be considered to act as a supporting electrolyte.

その他、例えば特公昭50−40395号には、撥水処
理を施した活性炭を触媒にして、硫化j−1−リウムの
水溶液と空気とを作用させると、単体イΔつと水酸化ナ
トリウムが生成するとし、この反応(6式)は次の(4
)式の電解酸化反応と(5)式の電解還元反応の組合せ
であると説明されている。
In addition, for example, Japanese Patent Publication No. 50-40395 states that when an aqueous solution of j-1-lium sulfide is made to react with air using water-repellent activated carbon as a catalyst, sodium hydroxide is produced as a single substance. This reaction (equation 6) is expressed as the following (4
It is explained that it is a combination of the electrolytic oxidation reaction of equation () and the electrolytic reduction reaction of equation (5).

52−−>30 +2e−(4) 21−120+02 +4e−−+ 40H−(5)2
Na2S −+−21−120+02→230 + 4
−〇11(13) なお、上記引例には、何ら説明されていないけれども、
この反応は、反応初期には、Ni128を、(5)式の
反[+5がある程度進んだのらには、水酸化す1−リウ
ムを支持電解質とした酸素−硫化イΔつ電池を活性炭で
内部短絡させて起った反応と説明ザることが可能である
52-->30 +2e-(4) 21-120+02 +4e--+ 40H-(5)2
Na2S −+−21−120+02→230+4
-〇11(13) Although there is no explanation in the above cited example,
In this reaction, in the early stage of the reaction, Ni128 is used, and after the reaction [+5 in equation (5)] has progressed to a certain extent, an oxygen-sulfide ∆ cell with 1-lium hydroxide as the supporting electrolyte is used with activated carbon. This can be explained as a reaction caused by an internal short circuit.

このように、電子伝導性を有する活性炭を不均一系触媒
として、見掛り一りは単なる化学反応であるが、微視的
にみると、実は電気化学反応である反応例とし−C1例
えば、特公昭52−38982号には、次のようなもの
が掲げられている。
In this way, an example of a reaction using activated carbon with electron conductivity as a heterogeneous catalyst, which appears to be a simple chemical reaction, but is actually an electrochemical reaction when viewed microscopically. Publication No. 52-38982 lists the following:

(イ)空気によるチオ@酸ナトリウムの硫酸ナトリウム
への酸化、(ロ)空気による硫酸第一鉄または硫酸第一
鉄アンモニウムの硫酸第二鉄への酸化、(ハ)空気によ
るハイドロキノンのキンヒドロンへの酸化、(ニ)空気
によるフェノールの酸化、(ホ)空気によるベンズアル
デヒドの安息香酸への酸化、くべ)水素ガスによる硝酸
銀の銀への還元。
(b) Oxidation of sodium thioate to sodium sulfate by air, (b) Oxidation of ferrous sulfate or ferrous ammonium sulfate to ferric sulfate by air, (c) Oxidation of hydroquinone to quinhydrone by air. oxidation, (d) oxidation of phenol by air, (e) oxidation of benzaldehyde to benzoic acid by air, and (v) reduction of silver nitrate to silver by hydrogen gas.

いずれにしても、微視的にみた電池の内部短絡現象によ
って化学反応を進行させようとするためには、触媒が電
子伝導性を有する固体であり、しかも支持電解質が共存
していることが不可欠である。
In any case, in order for the chemical reaction to proceed through the microscopic internal short-circuit phenomenon of the battery, it is essential that the catalyst be a solid with electronic conductivity and that a supporting electrolyte coexist. It is.

従来、支持電解質としては、各個別反応に応じて、各々
個別に反応以前の出発物質である無機の塩、酸もしくは
水酸化アルカリか、反応の進行とともに生成する反応生
成物が流用されていたにすぎず、電解質を積極的に添加
するという発想はなかった。一方有機化学反応において
は、一般に反応の出発物質も反応生成物もイオン伝導性
を示さず、電解質としての機能を果さないので、別途に
無機の支持電解質を混入させる必要が出てくる。
Conventionally, supporting electrolytes have been either inorganic salts, acids, or alkali hydroxides, which are the starting materials before the reaction, or reaction products produced as the reaction progresses, depending on each individual reaction. There was no idea of actively adding electrolytes. On the other hand, in organic chemical reactions, neither the reaction starting material nor the reaction product generally exhibits ionic conductivity and does not function as an electrolyte, so it is necessary to separately mix an inorganic supporting electrolyte.

ところが、無機の支持電解質を添加()だ場合には、反
応終了後に目的反応生成物と無故の支持電解質とを分1
13Ilすることが大きな難題となる。J、た上述の特
公昭50−40395号および特公昭52−38982
号には、触媒として活性炭だ()が使用されCいて、こ
の活性炭が酸化体を電解還元する機能と還元体を電解酸
化する機能との双方を受()もつCいるわけだが、反応
系によっては、活性炭だ【ノでは、このように首尾よく
いかない場合の方がむしろ多い。
However, when an inorganic supporting electrolyte is added (), after the reaction is complete, the desired reaction product and the inorganic supporting electrolyte are separated into 1 part.
13Il becomes a major challenge. J, the above-mentioned Special Publication No. 50-40395 and Special Publication No. 52-38982
In this issue, activated carbon () is used as a catalyst, and this activated carbon has both the function of electrolytically reducing the oxidant and the function of electrolytically oxidizing the reductant, but depending on the reaction system. is activated carbon.There are actually many cases where things don't work out like this.

一方、従来、゛電池の内部短絡現象を利用した触媒を用
いて、酸化還元反応をおこなわせる際、液体反応出発物
質の中に、酸化性ガスi3つるいは還元性ガスを気泡状
にして吹き込むという方法が採用されているが、かかる
方法の場合には、触媒と出発反応物質と酸化性ガスある
い番よ還元性カスとを効率的に接触させることが困難で
あっl〔。
On the other hand, conventionally, when performing a redox reaction using a catalyst that utilizes the internal short-circuit phenomenon of a battery, oxidizing gas i3 or reducing gas is blown into the liquid reaction starting material in the form of bubbles. However, in such a method, it is difficult to bring the catalyst, starting reactant, and oxidizing gas or reducing residue into contact efficiently.

本発明は、上述の如き欠点を除去せんとするものである
。寸なわら、本発明は、酸化体の電解還元に有効な電子
伝導性の粉末と還元体の電解酸化に有効な電子伝導性の
粉末とイオン伝導体としてのイオン交換樹脂の粉末もし
くはwl繊維とフッ素樹脂との混合物で構成される内部
短絡電池式触媒層と多孔性ポリ 4フツ化エチレン膜と
を一体に接合したシート状接合体の内部短絡電池式触媒
層の側に有機化合物、有機化合物の水溶液もしくは有機
化合物の水懸濁液を接触せしめるとともに、多孔性ポリ
 4フツ化エチレンの側に酸化性ガスもしくは加湿した
酸化性ガスを接触させることにより、有機化合物を酸化
せしめるか、還元性ガスもしくは加湿した還元性ガスを
接触させることによって、有機化合物を還元することを
特徴とする有機化合物の酸化還元方法を提供するもので
ある。
The present invention seeks to eliminate the above-mentioned drawbacks. In other words, the present invention provides an electronic conductive powder effective for electrolytic reduction of an oxidant, an electronic conductive powder effective for electrolytic oxidation of a reductant, and an ion exchange resin powder or wl fiber as an ion conductor. An organic compound is placed on the side of the internally shorted battery type catalyst layer of a sheet-like assembly in which an internally shorted battery type catalyst layer composed of a mixture with a fluororesin and a porous polytetrafluoroethylene membrane are integrally bonded. By contacting an aqueous solution or an aqueous suspension of an organic compound and also contacting an oxidizing gas or a humidified oxidizing gas with the porous polytetrafluoroethylene side, the organic compound is oxidized, or a reducing gas or The present invention provides a method for redoxing an organic compound, which is characterized in that the organic compound is reduced by contacting it with a humidified reducing gas.

かかる方法を採用すると、まず、内部短絡電池式触媒層
のイオン交換樹脂が固体電解質となり、反応生成物の分
離が容易になる。また、内部短絡電池式触媒層では、酸
化体の電解還元に有効イオン伝導体の粉末とイオン交換
樹脂との接点で、酸化体の電解還元が起り、還元体の電
解酸化に有効な電子伝導性の粉末とイオン交換樹脂との
接点で、還元体の電解酸化が起る。換言すると、酸化体
の電解還元に有効な電子伝導性の粉末を正極どし、還元
体の電FIv酸化に有効な電子伝導性の粉末をh極とし
、イオン交換樹脂を電解質どした電池が構成され、酸化
体の電Flv還元に有効な電子伝導性の粉末と還元体の
電解酸化に有効な電子伝導性の粉末どの接点で内部短絡
電流が流れ、その結束どして電解酸化還元反応が起る。
When such a method is adopted, first, the ion exchange resin of the internally shorted battery type catalyst layer becomes a solid electrolyte, which facilitates the separation of reaction products. In addition, in the internally shorted battery type catalyst layer, electrolytic reduction of the oxidant occurs at the contact point between the ion conductor powder and the ion exchange resin, which is effective for the electrolytic reduction of the oxidant, and electron conductivity is effective for the electrolytic oxidation of the reductant. Electrolytic oxidation of the reductant occurs at the contact point between the powder and the ion exchange resin. In other words, a battery is constructed in which an electronically conductive powder effective for electrolytic reduction of an oxidant is used as a positive electrode, an electronically conductive powder effective for electrolytic FIv oxidation of a reductant is used as an h electrode, and an ion exchange resin is used as an electrolyte. An internal short-circuit current flows at the contact point between the electronically conductive powder effective for the electrolytic Flv reduction of the oxidant and the electronically conductive powder effective for the electrolytic oxidation of the reductant, and the electrolytic redox reaction occurs due to their unity. Ru.

この「内部短絡電池式触媒」という語句は、本願発明者
らの造語であり、このような明確な触媒膜51思想は従
来なかったものである。
The phrase "internally shorted battery type catalyst" was coined by the inventors of the present invention, and such a clear idea of the catalyst membrane 51 has not existed before.

目的とする有機化合物は還元体となる場合と酸化体とな
る場合とがある。有機化合物が還元体ひある場合には、
この有機化合物を内部短絡電池式触媒層の側に配し、多
孔性ポリ 4フツ化エチレン膜の側から酸化性ガス、例
えば酸素あるいは空気を供給すると、酸化性ガスが多孔
性ポリ 4フツ化エチレン膜の細孔を通過して、内部短
絡電池式触 −煤層の酸化体の電解還元に有効な電子伝
導性の粉末表面に到達し、そこで電解還元を受けると同
時に、有機化合物が電解酸化される。反対に、有機化合
物が酸化体である場合には、多孔性ポリ 4フツ化エチ
レン股の側から還元性ガス、例えば水素を供給するど、
この有機化合物が電解還元される。
The target organic compound may be a reduced form or an oxidized form. When an organic compound has a reduced form,
When this organic compound is placed on the side of the internally shorted battery-type catalyst layer and an oxidizing gas, such as oxygen or air, is supplied from the side of the porous polytetrafluoroethylene membrane, the oxidizing gas is transferred to the porous polytetrafluoroethylene membrane. It passes through the pores of the membrane and reaches the surface of the electronically conductive powder, which is effective for the electrolytic reduction of oxidants in the internal short-circuited battery type catalyst - soot layer, where it undergoes electrolytic reduction and, at the same time, organic compounds are electrolytically oxidized. . On the other hand, if the organic compound is an oxidant, a reducing gas such as hydrogen may be supplied from the side of the porous polytetrafluoroethylene.
This organic compound is electrolytically reduced.

この内部短絡電池式触媒層のイオン交換樹脂は含水して
はじめて電解質として機能するので、酸化還元の対象と
なる有機化合物を水溶液もし′くは水懸濁液の形にする
か、さもなければ、酸化性ガスあるいは還元性ガスを加
2Iii11”る必要がある。この点にも本発明のひと
つの特徴がある。
The ion exchange resin of this internally shorted battery type catalyst layer functions as an electrolyte only when it contains water, so the organic compound to be redoxed must be in the form of an aqueous solution or suspension, or else, It is necessary to add oxidizing gas or reducing gas. This point is also one of the features of the present invention.

次に多孔性ポリ 4フツ化エチレン膜は、有機化合物の
水溶液もしくは水懸濁液の漏出を防止する機能をもって
いると同時に、内部短絡電池式触媒層の細孔内で、有機
化合物と酸化性ガスもしくは還元性ガスの接点をより多
くもたぜ、有機化合物の酸化あるいは還元反応をJ:り
効率的に進ませる機能をもっている。
Next, the porous polytetrafluoroethylene membrane has the function of preventing the leakage of an aqueous solution or suspension of an organic compound, and at the same time prevents organic compounds and oxidizing gas from leaking within the pores of the internally shorted battery-type catalyst layer. Alternatively, it has the function of increasing the number of points of contact with reducing gas and allowing the oxidation or reduction reaction of organic compounds to proceed more efficiently.

このH部短絡電池式触Wc層に用いられる電子伝導性の
粉末は反応系によって異なってくるが、通例は金属、カ
ーボンあるいはカーボンに金属を111持したものが適
しているが、一部のスピネル型酸化物あるいはペロブス
カイト型酸化物の如き金属酸化物やホウ化金属のような
がなりの電子伝導性を示す化合物を使用できることもあ
る。
The electronically conductive powder used for this H-section short-circuited battery type Wc layer varies depending on the reaction system, but generally metal, carbon, or carbon with 111 metals is suitable, but some spinel powders are suitable. Metal oxides, such as type oxides or perovskite-type oxides, and compounds exhibiting some degree of electronic conductivity, such as metal borides, may also be used.

あるいはまた、アルミナやシリカの如き、それ自体電子
伝導性をもたない担体に、金属を担持さけたちのを用い
ることもできる。その他、これらのm:媒活性を示す粉
末と触W活性を示さないが、電子伝導性の向上に寄与す
るような材料を混合づること・b有効な場合がある。
Alternatively, carriers that do not themselves have electronic conductivity, such as alumina or silica, can be used to carry the metal. In addition, it may be effective to mix these powders exhibiting catalytic activity with materials that do not exhibit catalytic activity but contribute to improving electronic conductivity.

さらには、どの電子伝導性を有し、触媒活性を示づ粉末
は、酸化体の還元反応おにび還元1ホの酸化反応にそれ
ぞれ選択性を有する異種相別の混合物にすることが非常
に有効であるが、場合によっては同一の粉末にしてもが
まねない。
Furthermore, powders that have electronic conductivity and exhibit catalytic activity can be made into a mixture of different types that have selectivity for the reduction reaction of oxidants and the oxidation reaction of reduction and oxidation. Although it is effective, in some cases it may not be possible to use the same powder.

内部短絡電池式触媒の他の構成材ゎ1である了Aン交換
樹脂としては、カチオン交換型のものとアニオン交換型
のものがある。カチオン交換樹脂としては、スチレン−
ジビニルベンゼン共重合体あるいはパーフロロカーボン
の如き含フツ素高分子をベースにし、これにスルフォン
酸基、カルボン酸基あるいは両者を導入したものが適し
ているが、本発明はこれらに限定するものではない。こ
のカチオン交換樹脂の移動するイオンは水素イオンであ
る。
The anion exchange resin, which is another component of the internally shorted battery type catalyst, includes cation exchange type and anion exchange type. As a cation exchange resin, styrene-
Suitable materials are those based on fluorine-containing polymers such as divinylbenzene copolymers or perfluorocarbons, into which sulfonic acid groups, carboxylic acid groups, or both are introduced, but the present invention is not limited to these. . The ions that move in this cation exchange resin are hydrogen ions.

アニオン交換樹脂どしては、ボリスヂレン系母核に、ア
ンモニウム塩型アミンもしくはジエチレントリアミンの
ようなアミンを交JAWとして導入したものをアルカリ
で処理して、水酸イオン移動型としたものを用いればよ
い。
As an anion exchange resin, one in which an ammonium salt type amine or an amine such as diethylene triamine is introduced as an exchange JAW into a boris dylene mother nucleus and treated with an alkali to form a hydroxyl ion transfer type may be used. .

これらのイオン交換樹脂は、粉末状のものが短Sli$
4i状のものが適している。粉末状の場合には、数十ミ
クロン以下の粒径のものがよい。短繊維状のものは、直
径が数ミクロン、長さが数mm以下のものがよい。
These ion exchange resins are available in powder form for short Sli$
A 4i-shaped one is suitable. If it is in powder form, it should have a particle size of several tens of microns or less. The short fibers preferably have a diameter of several microns and a length of several mm or less.

カチオン交換樹脂を用いるがアニオン交換樹脂を用いる
かは、対象となる反応系によって適宜選択する必要があ
る。
Whether to use a cation exchange resin or an anion exchange resin must be appropriately selected depending on the target reaction system.

内部短絡電池式触媒層のもうひとつの構成材料であるフ
ッ素樹脂結着剤は、電子伝導性を有し、かつ触媒活性を
示す粉末およびイオン交換樹脂を結着するという機能の
他に、内部短絡電池式触媒層に撥水性を付与するという
機能をもhしている。
Internal short circuit The fluororesin binder, which is another constituent material of the battery type catalyst layer, has electronic conductivity and functions to bind powder and ion exchange resin that exhibit catalytic activity. It also has the function of imparting water repellency to the battery type catalyst layer.

すなわら内部短絡電池式触媒層は、液体の反応物質と気
体の反応物質とを出発原料にする反応に適しているが、
内部短絡電池式触媒が全く親水性の場合には、液体の反
応物質に被覆され尽されC1気体の反応物質の吸着1ノ
イドがなくなってしまうのに対し、部分的に撥水性を有
していると、気体反応物質の吸着サイトおよび液体反応
物質の吸着サイトの双方が確保されるので、反応がより
スムースに進みやすい。
In other words, the internally shorted cell type catalyst layer is suitable for reactions using liquid reactants and gaseous reactants as starting materials;
If the internal short-circuit cell type catalyst is completely hydrophilic, it will be covered with the liquid reactant and the adsorption 1 noid for the C1 gaseous reactant will disappear, whereas it has partial water repellency. Since both adsorption sites for the gaseous reactant and adsorption sites for the liquid reactant are secured, the reaction tends to proceed more smoothly.

フッ素樹脂結着剤としては、出発反応物質に侵されにく
いという性質と耐熱性がよいということと電池触媒の他
の構成材料を被覆し尽さないという意味から、殊にポリ
 4フフ化エチレンが最適であるが、この材料に限定す
るものではない。
As a fluororesin binder, polytetrafluoroethylene is particularly used because it is not easily attacked by the starting reactants, has good heat resistance, and does not cover the other constituent materials of the battery catalyst. Although suitable, it is not limited to this material.

内部短絡電池式触媒層と多孔性ポリ 4フツ化エチレン
膜との接合方法としては、常温で圧着するかホットプレ
スする方法が適しているが、両層の間に4フッ化エチレ
ン−6フツ化プロピレン共重合体あるいは4フッ化エチ
レン−エチレン共重合体の如ぎ融点がポリ 4フツ化エ
チレンより低いフッ素樹脂の粉末を介在させる方法も有
効である。
The suitable method for joining the internally shorted battery type catalyst layer and the porous polytetrafluoroethylene membrane is pressure bonding at room temperature or hot pressing. It is also effective to use a powder of a fluororesin having a melting point lower than that of polytetrafluoroethylene, such as propylene copolymer or tetrafluoroethylene-ethylene copolymer.

また、内部短絡電池式触媒層と多孔性ポリ 4フツ化エ
チレン膜との接合体を補強するために、内部短絡電池式
触tA1層の側に、多孔性ニッケル板を圧着するか、多
孔性ポリ 4フツ化エチレンの側、もしくは内部短絡電
池式Ml!Hjとポリ 4フツ化エチレン膜との間にフ
ッ素樹脂で撥水処理を施した多孔性ニッケル板を配づる
ことも非常に有効である。
In addition, in order to reinforce the joint between the internally shorted battery type catalyst layer and the porous polytetrafluoroethylene membrane, a porous nickel plate is crimped onto the side of the internally shorted battery type catalyst layer 1, or a porous polyethylene Tetrafluoroethylene side or internal short circuit battery type Ml! It is also very effective to place a porous nickel plate treated with water repellent with fluororesin between the Hj and the polytetrafluoroethylene membrane.

以下本発明の位置実施例について詳述する。Hereinafter, positional embodiments of the present invention will be described in detail.

実施例 活性炭粉末2gと白金ブラック粉末10gとスチレン−
ジビニルベンゼン共重合体にスルフォン酸基を導入して
なるイオン交換樹脂粉末5gとをよく混合したものに蒸
溜水・を20111+加え、再びJ: < Iff拌し
たものに、固形分が60%のポリ 4フツ化エチレンの
水懸濁液を61加え、激しく撹拌して凝集させたものを
厚さが1mmで、気孔率が80%の多孔↑11ニッケル
板の片面に塗布する。この塗布層が内部短絡電池式触媒
層になる。次にこの内部%t7絡電池式触媒層の上に、
4フッ化エチレン−6フツ化プロピレン共重合物の水懸
濁液を吹き付け、一旦真空乾燥する。次に、4フッ化エ
チレン−〇フッ化プロピレン共重合物が吹き付けられた
層の上に気孔率が35%の多孔性ポリ 4フツ化エチレ
ン膜を載置し、常4 、100に!] / cntの圧
力でプレスする。最後に、窒素気流中100℃で熱処理
を施す1.かくして触媒接合体が完成する。
Example: 2 g of activated carbon powder, 10 g of platinum black powder, and styrene.
Distilled water was added to a well mixed mixture of 5 g of ion exchange resin powder made by introducing sulfonic acid groups into divinylbenzene copolymer. Add 61 ml of an aqueous suspension of ethylene tetrafluoride, stir vigorously to agglomerate it, and apply it to one side of a porous ↑11 nickel plate with a thickness of 1 mm and a porosity of 80%. This coating layer becomes an internally shorted battery type catalyst layer. Next, on top of this internal %t7-circuit cell type catalyst layer,
An aqueous suspension of tetrafluoroethylene-hexafluoropropylene copolymer is sprayed and once dried in vacuum. Next, a porous polytetrafluoroethylene membrane with a porosity of 35% is placed on the layer onto which the tetrafluoroethylene-〇fluoropropylene copolymer has been sprayed, and the porosity is increased to 4,100! ] / cnt Press with pressure. Finally, heat treatment is performed at 100°C in a nitrogen stream.1. The catalyst assembly is thus completed.

次にこの触媒接合体を第1図に示づような反応容器の中
に組み込み、多孔性ニッケル板の側に、メタノールの1
0%水溶液を入れ、多孔性ポリ 4フツ化エチレン膜の
側から空気を供給した。
Next, this catalyst assembly was assembled into a reaction vessel as shown in Figure 1, and one portion of methanol was placed on the side of the porous nickel plate.
A 0% aqueous solution was added, and air was supplied from the side of the porous polytetrafluoroethylene membrane.

第1図において、(1)は反応容器、(2ンは触媒接合
体、(3)は有機化合物供給口、(4)は空気供給口、
(5〉は空気排出口である。触媒接合体(旦)は、補強
剤としての多孔性ニッケル板(6)、内部短絡電池式触
媒層(7)、4フフ化エチレン−6フツ化プ[1ピレン
共重合体吹き付は層〈8)おJzび多孔性ポリ 4フツ
化エチレン膜(9〉から構成される。
In Figure 1, (1) is a reaction vessel, (2) is a catalyst conjugate, (3) is an organic compound supply port, (4) is an air supply port,
(5> is an air outlet. The catalyst assembly (dan) consists of a porous nickel plate (6) as a reinforcing agent, an internally shorted battery type catalyst layer (7), and a tetrafluoroethylene-hexafluoropropylene The 1-pyrene copolymer spray consists of a layer (8) and a porous polytetrafluoroethylene membrane (9).

上1本の反応容器に、メタノールおよび空気を供給して
から1時間後に、ホルムアルデヒドを分析したどころ、
メタノールからホルムアルデヒドへの酸化率は60%で
あった。
One hour after methanol and air were supplied to the upper reaction vessel, formaldehyde was analyzed.
The oxidation rate of methanol to formaldehyde was 60%.

このメタノールからホルムアルデヒドへの酸化反応にお
いては、主として、活性炭が正極となり、白金ブラック
が負極どなり、正極で空気中の酸素の電解還元反応が起
り、負極でメタノールの電解酸化反応が起っているもの
と考えられる。
In this oxidation reaction from methanol to formaldehyde, activated carbon serves as the positive electrode, platinum black serves as the negative electrode, an electrolytic reduction reaction of oxygen in the air occurs at the positive electrode, and an electrolytic oxidation reaction of methanol occurs at the negative electrode. it is conceivable that.

比較例1 上述の実施例において、イオン交換樹脂を混入させない
他は全く同様にして実験を行なったところ、メタノール
のホルムアルデヒドへの酸化率は8%であった〇 比較例2 上述の実施例において、触媒接合体を10xlO+nn
+の寸法に切り出したものを10%のメタノール水溶液
中に入れ、空気を気泡状に吹き込んだ場合のメタノール
のホルムアルデヒドへの酸化率は37%であった。
Comparative Example 1 An experiment was conducted in exactly the same manner as in the above example except that the ion exchange resin was not mixed, and the oxidation rate of methanol to formaldehyde was 8%. Comparative Example 2 In the above example, Catalyst conjugate at 10xlO+nn
When a piece cut into + dimensions was placed in a 10% methanol aqueous solution and air was blown into it in the form of bubbles, the oxidation rate of methanol to formaldehyde was 37%.

以上の実施例と比較例とから、次のことがわかる。すな
わち、比較例1にみられるように、イオン交換樹脂を含
まないと、内部短絡電池式触媒にならず、単なる触媒反
応であるがために、内部短絡電池式触媒を用いても、空
気を気泡状にしC供給した場合には、反応の接点が少な
いために、本発明のように、ポリ 4フツ化エチレン膜
を通して空気を供給した゛場合に比較すると、メタノー
ルの酸化は相対的に遅いことがわかる。
The following can be understood from the above examples and comparative examples. In other words, as seen in Comparative Example 1, if an ion exchange resin is not included, the internally shorted battery-type catalyst will not become an internally shorted battery-type catalyst, and since it is a mere catalytic reaction, even if an internally shorted battery-type catalyst is used, air will not be bubbled. When carbon is supplied in the form of carbon, the oxidation of methanol is relatively slow compared to the case where air is supplied through a polytetrafluoroethylene membrane as in the present invention, because there are fewer reaction points. Recognize.

以上詳述ける如く、本発明は有機化合物を効率的に酸化
還元する方法を提供覆るもので、その]業的価値極めて
大である。
As detailed above, the present invention provides a method for efficiently redoxing organic compounds, and has extremely great commercial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例にかかる反応容器の断面構造
略図を示す。
FIG. 1 shows a schematic cross-sectional structure of a reaction vessel according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 酸化体の電解還元に有効な電子伝導性の粉末と)ヱ元体
の電解酸化に有効な電子伝導性の粉末とイオン伝導体と
してのイオン交換樹脂の粉末もしくは短繊維とフッ素樹
脂とで構成される内部短絡電池式触媒層と多孔性ポリ 
4フツ化エチレン膜とを一体に接合してなるシート状接
合体の前記内部短絡電池式触媒層の側に有機化合物、有
機化合物の水溶液もしくは有機化合物の水懸濁液を接触
せしめるとともに、多孔性ポリ 4フツ化エチレン膜の
側に酸化性ガスもしくは加湿した酸化性ガスを接触せし
めることにより、前記有機化合物を酸化ぽしめるか、i
U元元方ガスしくは加湿した還元性ガスを接触ししめる
ことにより、前記有機化合物を還元せしめることを特徴
とする有機化合物の酸化還元方法。
It consists of an electronically conductive powder effective for the electrolytic reduction of an oxidant, an electronically conductive powder effective for the electrolytic oxidation of an element, an ion exchange resin powder or short fibers as an ion conductor, and a fluororesin. Internally shorted battery-type catalyst layer and porous polyester
An organic compound, an aqueous solution of an organic compound, or an aqueous suspension of an organic compound is brought into contact with the side of the internal short-circuited battery type catalyst layer of a sheet-like assembly formed by integrally joining a tetrafluoroethylene membrane, and a porous The organic compound is oxidized by bringing an oxidizing gas or a humidified oxidizing gas into contact with the polytetrafluoroethylene film, or i
A method for redoxing an organic compound, characterized in that the organic compound is reduced by contacting with a U-based gas or a humidified reducing gas.
JP16007783A 1983-08-31 1983-08-31 Oxidation and reduction of organic compound Pending JPS6051125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16007783A JPS6051125A (en) 1983-08-31 1983-08-31 Oxidation and reduction of organic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16007783A JPS6051125A (en) 1983-08-31 1983-08-31 Oxidation and reduction of organic compound

Publications (1)

Publication Number Publication Date
JPS6051125A true JPS6051125A (en) 1985-03-22

Family

ID=15707372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16007783A Pending JPS6051125A (en) 1983-08-31 1983-08-31 Oxidation and reduction of organic compound

Country Status (1)

Country Link
JP (1) JPS6051125A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002055465A1 (en) * 2001-01-05 2002-07-18 National Institute Of Advanced Industrial Science And Technology Reaction method utilizing diaphram type catalyst and apparatus therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002055465A1 (en) * 2001-01-05 2002-07-18 National Institute Of Advanced Industrial Science And Technology Reaction method utilizing diaphram type catalyst and apparatus therefor
US6911563B2 (en) 2001-01-05 2005-06-28 National Institute Of Advanced Industrial Science Reaction method utilizing diaphram type catalyst and apparatus therefor

Similar Documents

Publication Publication Date Title
US6335112B1 (en) Solid polymer electrolyte fuel cell
JP3936702B2 (en) Catalyst for direct methanol fuel cell cathode
EP1772919B2 (en) Electrolyte membrane for solid polymer fuel cell, method for producing same and membrane electrode assembly for solid polymer fuel cell
US4524114A (en) Bifunctional air electrode
CA2390299A1 (en) Fuel cell
JP4997971B2 (en) Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell
KR20160106197A (en) Fuel cells
JP2014011000A (en) Ion conductor and electrochemical device using the same
JP2003515894A (en) Direct methanol battery with circulating electrolyte
JP5247974B2 (en) Method for producing electrolyte membrane for polymer electrolyte hydrogen / oxygen fuel cell
JP4487468B2 (en) Anode for fuel cell and fuel cell
US3492164A (en) Fuel cell electrode
JP5311478B2 (en) Electron / ion mixed conductive membrane and method for producing hydrogen peroxide using the same
JP2006099999A (en) Electrolyte membrane for solid polymer fuel cell, its manufacturing method, and membrane electrode assembly for solid polymer fuel cell
JP2005294245A (en) Proton conductor and fuel cell
JP4972867B2 (en) Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell
JP5178677B2 (en) Membrane / electrode assembly for fuel cells
WO2002002846A2 (en) Electrochemical cell
JPS6051125A (en) Oxidation and reduction of organic compound
JP2007224300A (en) Polymer membrane, method of manufacturing the same and fuel cell
JP2006244721A (en) Fuel cell and its manufacturing method
JP2003331869A (en) Proton conductive material
JPS6044052A (en) Internal shortcircuit battery type catalyst for oxidizing or reducing organic compound
JPH0750170A (en) Ion exchange membrane for fuel cell, junction body and fuel cell
JPS6044049A (en) Internal shortcircuit battery type catalyst for oxidizing and reducing organic compound