JPS6051023B2 - Corrosion prevention equipment for power plants - Google Patents

Corrosion prevention equipment for power plants

Info

Publication number
JPS6051023B2
JPS6051023B2 JP57007540A JP754082A JPS6051023B2 JP S6051023 B2 JPS6051023 B2 JP S6051023B2 JP 57007540 A JP57007540 A JP 57007540A JP 754082 A JP754082 A JP 754082A JP S6051023 B2 JPS6051023 B2 JP S6051023B2
Authority
JP
Japan
Prior art keywords
condensate
ammonia
pipe
condenser
air extractor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57007540A
Other languages
Japanese (ja)
Other versions
JPS58127089A (en
Inventor
稔 大和田
裕次郎 内野
実 奥村
伸一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Toshiba Corp
Original Assignee
Electric Power Development Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Toshiba Corp filed Critical Electric Power Development Co Ltd
Priority to JP57007540A priority Critical patent/JPS6051023B2/en
Publication of JPS58127089A publication Critical patent/JPS58127089A/en
Publication of JPS6051023B2 publication Critical patent/JPS6051023B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は、揮発性のアルカリ性の水質処理剤で復水及
び給水のpH管理(制御)を行つている発電プラントに
おける復水冷却管の腐蝕防止装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a corrosion prevention device for condensate cooling pipes in a power plant where pH management (control) of condensate and feed water is performed using a volatile alkaline water treatment agent.

既に提案されているこの種の発電プラトンは、第1図
に示されるように、高圧タービン1及び低圧タービン2
で仕事を了えた蒸気を復水器3へ還流して、こ)て蒸気
を冷却水(海水)と熱交換して復水を生成し、このとき
、蒸気中に含まれるアンモニヤの約45%程度が上記復
水器3に附設された空気抽出器4へ連管5を通して移行
される。
This type of power generation Plato, which has already been proposed, has a high-pressure turbine 1 and a low-pressure turbine 2, as shown in FIG.
The steam that has completed its work is returned to the condenser 3, where it exchanges heat with cooling water (seawater) to generate condensate, and at this time, approximately 45% of the ammonia contained in the steam is The air is transferred to an air extractor 4 attached to the condenser 3 through a connecting pipe 5.

さらに、この45%のアンモニヤ量のうち約10%程度
がガス化して大気放出管6から大気中に放出される。し
かして、残りの約35%程度のアンモニヤ量は、ドレン
弁7を備えたドレン管(回収管)8を通してドレンと一
緒に、再び、上記復水器3へ回収される。 又、ガス化
して大気中に放出して減少した不足分(10%)のアン
モニヤ量は、補給管11に接続されたアンモニヤ貯蔵タ
ンク9からアンモニヤ注入ポンプ10によつて、上記復
水器3における復水管系12の復水ポンプ13の出口側
13aに注入して補充するようになつている。
Furthermore, about 10% of this 45% ammonia amount is gasified and released into the atmosphere from the atmosphere discharge pipe 6. Therefore, the remaining amount of ammonia, about 35%, is returned to the condenser 3 together with the drain through a drain pipe (recovery pipe) 8 equipped with a drain valve 7. In addition, the insufficient amount (10%) of ammonia that has been reduced by being gasified and released into the atmosphere is transferred from the ammonia storage tank 9 connected to the supply pipe 11 to the ammonia injection pump 10 in the condenser 3. It is designed to be replenished by injecting it into the outlet side 13a of the condensate pump 13 of the condensate pipe system 12.

このようにしてアンモニヤを含んだ復水は、上記復水
管系12に配設された各低圧給水加熱器(低圧ヒータと
もいう) 14a、14b)脱気器19及び給水管系1
5に設けられた給水ポンプ16、各高圧給水加熱器(高
圧ヒータともいう)17a、17bを通つて加熱されな
がらボイラー18へ供給される。
In this way, the condensate containing ammonia is transferred to each of the low pressure feed water heaters (also referred to as low pressure heaters) 14a, 14b) disposed in the condensate pipe system 12), the deaerator 19, and the water supply pipe system 1.
The water is supplied to the boiler 18 while being heated through a water supply pump 16 provided at 5 and high pressure water heaters (also referred to as high pressure heaters) 17a and 17b.

こゝで上記復水(給水)は蒸気に生成され、主蒸気管2
0を通つて高圧タービン1及び低圧タービン2に移送さ
れ、こ)でこの高圧タービン1及び低圧タービン2を駆
動して発電機(図示されず)を回転するようになつてい
る。しかしながら、上述した発電プラントは、空気抽出
器4に含まれるアンモニアが、再び、復水器3に回収さ
れる関係上、復水器3中のアンモニア濃度が高くなり、
この復水器3に組込まれた多数の復水冷却管としての銅
管による銅の溶出が著しく増大し、これに起因して、上
記復水冷却管が、経時的に腐蝕して損傷し、復水器3の
機能を損い、発電プラントの運転効率を低下するばかり
でなく、空気抽出器4から大気中にアンモニアを無駄に
放出する等の欠点がある。又一方、一般に、発電プラン
トは、給水及び復水に使用される配管、給水加熱器、ボ
イラー等の腐蝕を抑制するために、これら復水・及び給
水管系においては、アンモニア溶液によるPH管理(P
H制御)、脱気やヒドラジン注入による脱酸素を行つて
いる。
Here, the condensate (feed water) is generated into steam, and the main steam pipe 2
0 to a high-pressure turbine 1 and a low-pressure turbine 2, which drive the high-pressure turbine 1 and low-pressure turbine 2 to rotate a generator (not shown). However, in the power plant described above, since the ammonia contained in the air extractor 4 is recovered into the condenser 3 again, the ammonia concentration in the condenser 3 becomes high.
Copper elution from the large number of copper pipes as condensate cooling pipes incorporated in the condenser 3 increases significantly, and as a result, the condensate cooling pipes are corroded and damaged over time. This not only impairs the function of the condenser 3 and lowers the operating efficiency of the power plant, but also has disadvantages such as wasteful release of ammonia from the air extractor 4 into the atmosphere. On the other hand, in general, power generation plants use ammonia solution to control pH ( P
H control), deoxygenation is performed by degassing and injection of hydrazine.

特に、上記アンモニア溶液によるPH管理は、鋼製の配
管や伝熱管の防蝕を考慮して、できるだけ高いPH濃度
で管理されている。
In particular, PH control using the ammonia solution is controlled at a PH concentration as high as possible in consideration of corrosion protection of steel piping and heat exchanger tubes.

その結果、発電プラントにおけるタービン1,2で仕事
を了えた蒸気を復水器3に還流する復水冷却管には、伝
熱性(熱伝導性)及び経済的な見地から、アルミニウム
黄銅を主体とした銅合金が使用されている。
As a result, the condensate cooling pipes that return the steam that has finished its work in the turbines 1 and 2 to the condenser 3 in power plants are mainly made of aluminum brass from the standpoint of heat transfer (thermal conductivity) and economy. A polished copper alloy is used.

他方、非凝縮性ガスが集まる空気冷却管系では、アンモ
ニア濃度が、蒸気中の約100皓近くになり、これに起
因して、上記復水管系や給水管系にアンモニヤアタツク
現象を生じて、復水器冷却管の漏洩事故を発生するおそ
れがある。
On the other hand, in the air cooling pipe system where non-condensable gases gather, the ammonia concentration in the steam approaches approximately 100%, which causes an ammonia attack phenomenon in the condensate pipe system and water supply pipe system. , there is a risk of a condenser cooling pipe leakage accident.

即ち、これを銅材(Cu)による管体として化学反応式
で示すと、下記の通りである。
That is, when this is expressed as a chemical reaction formula for a tube made of copper material (Cu), it is as follows.

となり、 この化学反応式は、銅管の腐蝕にはアンモニア濃度とと
もに、溶存酸素が大きく作用することを示している。
This chemical reaction formula shows that dissolved oxygen as well as ammonia concentration plays a large role in the corrosion of copper pipes.

そこで、これまで実施されたアンモニヤアタツク現象の
防止手段としては、空気冷却部の冷却管の材質を耐アン
モニア性の優れた材料、例えば、キユプロニツケルやチ
タン管を使用している。
Therefore, as a means to prevent the ammonia attack phenomenon that has been implemented so far, the cooling pipe of the air cooling section is made of a material with excellent ammonia resistance, such as a cupronickel or titanium pipe.

特に、チタン管は、きわめて耐蝕性の優れた材料であり
、これを使用することによつて、空気冷却部のアンモニ
ヤアタツク現象を防止している。しかし、最近、さらに
、上記空気冷却部の近傍の管体にも、アンモニヤアタツ
ク現象が発生するに至つた。そこで、このアンモニヤア
タツク現象の防止手段として、アンモニアの注入量を低
減することも考えられるけれども、これは、逆に、復水
・及び給水管系統内のアンモニアによるPHの低下によ
つて、これまで抑えられていた鉄の溶出量を増加させる
等の不都合を生じる。
In particular, titanium tubes are a material with extremely excellent corrosion resistance, and by using them, ammonia attack phenomenon in the air cooling section can be prevented. However, recently, an ammonia attack phenomenon has also occurred in the tubes near the air cooling section. Therefore, as a means to prevent this ammonia attack phenomenon, it may be possible to reduce the amount of ammonia injected, but this would conversely result in a decrease in pH due to ammonia in the condensate and water supply pipe system. This may cause inconveniences such as increasing the amount of iron eluted, which had been suppressed until now.

又一方、これらの対応策として、チタン管の使用が考え
られるが、これはコスト高となるばかりでなく、チタン
管による熱伝達効率を低下し、復水器3としての復水能
力を低下させる等の難点がある。
On the other hand, as a countermeasure to these problems, the use of titanium tubes may be considered, but this not only increases the cost but also reduces the heat transfer efficiency of the titanium tubes and reduces the condensing capacity of the condenser 3. There are other difficulties.

そこで、本発明者は、復水及び給水管系におけるアンモ
ニヤアタツク現象の化学的分析を行つた結果、復水器3
に附設されている空気抽出器4のドレンがアンモニヤア
タツク現象に大きな影響を与えていることを発見した。
Therefore, as a result of chemical analysis of the ammonia attack phenomenon in condensate and water supply pipe systems, the present inventor found that
It was discovered that the drain of the air extractor 4 attached to the tank had a large effect on the ammonia attack phenomenon.

即ち、第1表に示されるように、空気抽出器4のドレン
を復水器3に回収した場合。復水のPHは、9.2であ
るとき、アンモニア濃度は、0.86ppmとなり、銅
の溶出量は、3〜5ppbとなる。
That is, as shown in Table 1, when the drain from the air extractor 4 is collected into the condenser 3. When the pH of the condensate is 9.2, the ammonia concentration is 0.86 ppm, and the amount of copper eluted is 3 to 5 ppb.

又、空気抽出器4のドレンのPHが、10.9であると
き、アンモニア濃度は、1000ppmとなり、銅は、
10〜18ppbとなることが解つた。一方、上記空気
抽出器4のドレンを復水管系統に回収した場合、復水の
PHが、8.9であるとき、アンモニア濃度は、0.6
4ppmとなり、銅の溶出量は、1〜2ppbとなる。
さらに、空気抽出器4のドレンのPHが10.6である
とき、アンモニア濃度は、700ppmとなり、銅の溶
出量は、3〜4ppbとなる。
Further, when the pH of the drain of the air extractor 4 is 10.9, the ammonia concentration is 1000 ppm, and the copper is
It was found that the amount was 10 to 18 ppb. On the other hand, when the drain from the air extractor 4 is collected into the condensate pipe system, when the pH of the condensate is 8.9, the ammonia concentration is 0.6.
The amount of copper eluted is 4 ppm, and the amount of copper eluted is 1 to 2 ppb.
Further, when the pH of the drain of the air extractor 4 is 10.6, the ammonia concentration is 700 ppm, and the amount of copper eluted is 3 to 4 ppb.

即ち、上述したように、空気抽出器4のドレンの回収は
、復水器3から復水管系統12に変更することによつて
、復水中のアンモニア濃度を低減させることができる。
That is, as described above, by changing the collection of drain from the air extractor 4 from the condenser 3 to the condensate pipe system 12, the ammonia concentration in the condensate can be reduced.

この結果として、銅の溶出量も減少し、アンモニヤアタ
ツク現象が、可及的に抑制することができる。さらに、
上気空気抽出器4のドレンを復水管系統12に回収した
とき、空気抽出器4に移行するアンモニア量が低減する
ため、空気抽出器4.+8から大気放出管6を通してア
ンモニヤガスとして大気中へ放出する量もノI>なくす
ることができる。このようにして、復水器冷却管のアン
モニヤアタツク現象を低減させるときには、上記空気抽
出器4のドレンの回収場所を上記復水器3から、復水管
系統12に変更することが最適であることが判明した。
本発明は、上述した事情に鑑みてなされたものであつて
、復水器に附設された空気抽出器に回収管を設け、この
回収管の一端部を上記復水器の復水管系に接続し、これ
により、アンモニヤアタツク現象を低減して、復水冷却
管の腐蝕を防止し、併せて、アンモニアの使用を節減し
てアンモニアの省力化を図るようにしたことを目的とす
る発電プラントの腐蝕防止装置を提供するものてある。
以下、本発明を図示の一実施例について説明する。なお
、本発明は、上述した具体例と同じ構成部材には同じ符
号を附して説明する。第2図において、符号3は、アル
カリ性の水質処理剤を用いて復水及び給水のPHを管理
している発電プラトンにおける復水器であつて、この復
水器3の一側には空気抽出器4が、連管5を介して附設
されており、この空気抽出器4にはガス化したアンモニ
アを放出する大気放出管6が植設されている。
As a result, the amount of copper eluted is also reduced, and the ammonia attack phenomenon can be suppressed as much as possible. moreover,
When the drain from the upper air extractor 4 is collected into the condensate pipe system 12, the amount of ammonia transferred to the air extractor 4 is reduced. The amount of ammonia gas released into the atmosphere through the atmosphere discharge pipe 6 can also be eliminated. In order to reduce the ammonia attack phenomenon in the condenser cooling pipe in this way, it is optimal to change the collection location of the drain from the air extractor 4 from the condenser 3 to the condenser pipe system 12. It has been found.
The present invention has been made in view of the above-mentioned circumstances, and includes providing a recovery pipe in an air extractor attached to a condenser, and connecting one end of the recovery pipe to the condensate pipe system of the condenser. This is a power generation plant whose purpose is to reduce the ammonia attack phenomenon, prevent corrosion of condensate cooling pipes, and at the same time reduce the use of ammonia and save ammonia labor. There are some that provide corrosion protection equipment.
Hereinafter, the present invention will be described with reference to an illustrated embodiment. It should be noted that the present invention will be described with the same reference numerals attached to the same constituent members as in the above-described specific example. In Fig. 2, reference numeral 3 is a condenser in the power generation Plato, which uses an alkaline water treatment agent to manage the pH of condensate and feed water. A container 4 is attached via a connecting pipe 5, and an atmospheric discharge pipe 6 for discharging gasified ammonia is installed in this air extractor 4.

又、上記空気抽出器4には、ドレンを注入する注入ポン
プ21を備えた回収管22の一端部が繋がれており、こ
の回収管22には途中から2分割した各枝管22a,2
2bが設けられている。そして、この一方の枝管22a
は開閉弁23を介して前記復水管系12の復水ポンプ1
3の出口側13aに接続されており、他方の枝管22b
は開閉弁24を介して、上記復水管系12の低圧給水加
熱器14bの出口側14b1に接続されている。従つて
、今、高圧タービン1及び低圧タービン2で仕事を了え
た蒸気が復水器3に流入すると、この復水器3に流入す
る蒸気に含まれるアンモニアの約33%が上記空気抽出
器4に移行する。
Further, one end of a recovery pipe 22 equipped with an injection pump 21 for injecting condensate is connected to the air extractor 4, and each branch pipe 22a, 2 divided into two from the middle is connected to this recovery pipe 22.
2b is provided. And this one branch pipe 22a
is the condensate pump 1 of the condensate pipe system 12 via the on-off valve 23
3, and the other branch pipe 22b
is connected to the outlet side 14b1 of the low-pressure feedwater heater 14b of the condensate pipe system 12 via the on-off valve 24. Therefore, when the steam that has completed its work in the high pressure turbine 1 and the low pressure turbine 2 flows into the condenser 3, about 33% of the ammonia contained in the steam flowing into the condenser 3 is transferred to the air extractor 4. to move to.

こ)で約8%程のアンモニヤガスが大気放出管6を通し
て大気中に放出される。そして、この空気抽出器4のド
レンに含まれる約25%程度のアンモニアは、ドレンと
して注入ポンプ21によつて回収管22から復水管系1
2に回収される。特に、上記ドレンの回収口は、銅合金
による伝熱管の場合には、低圧給水加熱器14bの出口
側14b1による復水管系12が望ましく、又、鋼管に
よる伝熱管の場合には、低圧給水加熱器14aの入口側
、つまり、上記復水ポンプ13の出口側13aが望まし
い。
In this step, approximately 8% of the ammonia gas is discharged into the atmosphere through the atmosphere discharge pipe 6. Approximately 25% of the ammonia contained in the drain of the air extractor 4 is transferred as drain from the recovery pipe 22 to the condensate pipe system 1 by the injection pump 21.
2 will be collected. In particular, in the case of a heat exchanger tube made of a copper alloy, the condensate pipe system 12 is preferably the outlet side 14b1 of the low pressure feed water heater 14b, and in the case of a heat exchanger tube made of a steel pipe, the drain recovery port is preferably a condensate pipe system 12 connected to the outlet side 14b1 of the low pressure feed water heater 14b. The inlet side of the vessel 14a, that is, the outlet side 13a of the condensate pump 13 is desirable.

このようにして、空気抽出器4のドレンを回収管22を
通して復水管系12に回収することによつて、復水器3
中のアンモニア濃度は、前述した具体例に比べて、約2
5%程度に低減することができると共に、銅の溶出量を
112以下に減少させ、耐アンモニヤアタツク効果を上
げることができる。
In this way, by collecting the condensate of the air extractor 4 through the recovery pipe 22 into the condensate pipe system 12, the condenser 3
The ammonia concentration inside is approximately 2
It is possible to reduce the amount of copper to about 5%, reduce the amount of copper eluted to 112% or less, and improve the ammonia attack resistance effect.

因に、本発明は、火力発電プラントの具体例について説
明したけれども、NOx対策上、ガスタービンの燃焼室
に蒸気を噴射している関係上、メーキヤツプ量が、従来
の発電プラントに比べて多く、しかも溶存酸素量が多く
流入する復水器を備えたガスタービンと蒸気タービンと
を組合せたコンバインドサイクルによる発電プラントに
転用し得るように設計変更することは自由である。
Incidentally, although the present invention has been described with reference to a specific example of a thermal power plant, since steam is injected into the combustion chamber of a gas turbine for NOx countermeasures, the amount of make-up is larger than in conventional power plants. Moreover, the design can be freely changed so that it can be used for a combined cycle power generation plant that combines a gas turbine and a steam turbine equipped with a condenser into which a large amount of dissolved oxygen flows.

以上述べたように本発明によれば、アルカリ性の水質処
理剤で復水及び給水のPH管理をしている発電プラント
において、復水器に空気抽出器を附設し、この空気抽出
器に設けられた注入ポンプを備えた回収管を上記復水器
の復水管系に接続してあるので、アンモニヤアタツク現
象を大幅に低減して、復水冷却管の腐蝕を未然に防止で
きるばかりでなく、アンモニアの使用量を節減してアン
モニアを省力化できると共に、構成も簡素であるから、
既設の発電プラントにも容易に組込むことがてきる。
As described above, according to the present invention, in a power generation plant where the pH of condensate and feed water is managed using an alkaline water treatment agent, an air extractor is attached to the condenser, and Since the recovery pipe equipped with an injection pump is connected to the condensate pipe system of the condenser, it is possible to significantly reduce the ammonia attack phenomenon and prevent corrosion of the condensate cooling pipe. It is possible to reduce the amount of ammonia used and save labor, and the configuration is simple.
It can be easily integrated into existing power plants.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は既に提案されている発電プラントの系統図、第
2図は本発明による発電プラントの腐蝕防止装置の系統
図である。 1・・・・・・高圧タービン、2・・・・・・低圧ター
ビン、3・・・・復水器、4・・・・・・空気抽出器、
12・・・・・・復水管系、13・・・・・・復水ポン
プ、14a,14b・・・・・・低圧給水加熱器、17
a,17b・・・・・高圧給水加熱器、18・・・・ボ
イラー、19・・・・・・脱気器、22・・・・・回収
管、22a,22b・・・・・・枝管。
FIG. 1 is a system diagram of a power plant that has already been proposed, and FIG. 2 is a system diagram of a corrosion prevention device for a power plant according to the present invention. 1... High pressure turbine, 2... Low pressure turbine, 3... Condenser, 4... Air extractor,
12... Condensate pipe system, 13... Condensate pump, 14a, 14b... Low pressure feed water heater, 17
a, 17b...High pressure feed water heater, 18...Boiler, 19...Deaerator, 22...Recovery pipe, 22a, 22b...Branch tube.

Claims (1)

【特許請求の範囲】 1 水質処理剤で復水及び給水のpH管理をしている発
電プラントにおいて、復水器に空気抽出器を附設し、こ
の空気抽出器に設けられた注入ポンプを備えた回収管の
一端部を、上記復水器の復水管系に接続したことを特徴
とする発電プラントの腐蝕防止装置。 2 回収管に途中から各開閉弁を備えた各枝管を2分割
して設け、この一方の枝管を復水管系の復水ポンプの出
口側に、他方の枝管を上記復水管系の低圧給水加熱器の
出口側にそれぞれ接続したことを特徴とする特許請求の
範囲第1項記載の発電プラントの腐蝕防止装置。
[Claims] 1. In a power generation plant in which the pH of condensate and feed water is controlled using a water treatment agent, an air extractor is attached to the condenser, and an injection pump installed in the air extractor is provided. A corrosion prevention device for a power generation plant, characterized in that one end of a recovery pipe is connected to a condensate pipe system of the condenser. 2 The recovery pipe is divided into two branch pipes equipped with on-off valves, and one branch pipe is connected to the outlet side of the condensate pump of the condensate pipe system, and the other branch pipe is connected to the outlet side of the condensate pump of the condensate pipe system. The corrosion prevention device for a power generation plant according to claim 1, wherein the corrosion prevention device is connected to the outlet side of the low pressure feed water heater.
JP57007540A 1982-01-22 1982-01-22 Corrosion prevention equipment for power plants Expired JPS6051023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57007540A JPS6051023B2 (en) 1982-01-22 1982-01-22 Corrosion prevention equipment for power plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57007540A JPS6051023B2 (en) 1982-01-22 1982-01-22 Corrosion prevention equipment for power plants

Publications (2)

Publication Number Publication Date
JPS58127089A JPS58127089A (en) 1983-07-28
JPS6051023B2 true JPS6051023B2 (en) 1985-11-12

Family

ID=11668618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57007540A Expired JPS6051023B2 (en) 1982-01-22 1982-01-22 Corrosion prevention equipment for power plants

Country Status (1)

Country Link
JP (1) JPS6051023B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107339895A (en) * 2017-08-02 2017-11-10 宁波双屹节能环保科技有限公司 One kind is used for the simple way of escape vacuum extractor of unclean steam-electric power

Also Published As

Publication number Publication date
JPS58127089A (en) 1983-07-28

Similar Documents

Publication Publication Date Title
US5165237A (en) Method and apparatus for maintaining a required temperature differential in vacuum deaerators
JPS6354882B2 (en)
RU2152521C1 (en) Condensate degassing method and device
CN102748963B (en) Closed water cooling system with double-evaporative cooling pressure
EP3734150B1 (en) Double-loop nuclear reactor steam generating plant having a blowdown and drainage system
JPS6051023B2 (en) Corrosion prevention equipment for power plants
CN103899369A (en) Closed water cooling system with twin-jet nozzle for evaporative cooling
JP7053929B1 (en) Water supply device and water supply method
Athey et al. Deaerating condenser boosts combined-cycle plant efficiency
RU2198346C2 (en) Ultrahigh pressure mixing heat exchanger for preheating feed water at atomic power station
JPS59150587A (en) Recovery of condensed water in multi-stage flash heat exchanger
JPH0148363B2 (en)
JPS62233606A (en) Boiler maintenance system
JPS5820679B2 (en) watermelon watermelon
JPH0447103A (en) Thermal power plant
JPH02222880A (en) Cooling equipment of nuclear power plant
CN116447892A (en) Steam drainage recovery system
JPH06221779A (en) Power generating plant
JPS63150504A (en) Water treatment equipment
JPH0152720B2 (en)
JPS6190788A (en) Water treatment in power plant and its apparatus
Verma Technical aspects of coupling a 6300 m {sup 3}/day MSF-RO desalination plant to a PHWR nuclear power plant
JP2002098306A (en) Boiler equipment, and its operation method
JPS5723793A (en) Vacuum heat exchanger
JPS6256401B2 (en)