JPS6050574B2 - Crosslinking foam molding method and device for high molecular weight polymers - Google Patents

Crosslinking foam molding method and device for high molecular weight polymers

Info

Publication number
JPS6050574B2
JPS6050574B2 JP52031406A JP3140677A JPS6050574B2 JP S6050574 B2 JPS6050574 B2 JP S6050574B2 JP 52031406 A JP52031406 A JP 52031406A JP 3140677 A JP3140677 A JP 3140677A JP S6050574 B2 JPS6050574 B2 JP S6050574B2
Authority
JP
Japan
Prior art keywords
temperature
crosslinking
agent
foaming
crosslinking agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52031406A
Other languages
Japanese (ja)
Other versions
JPS53115780A (en
Inventor
護 滝浦
正昭 阿部
紀行 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ikegai Corp
Original Assignee
Ikegai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ikegai Corp filed Critical Ikegai Corp
Priority to JP52031406A priority Critical patent/JPS6050574B2/en
Publication of JPS53115780A publication Critical patent/JPS53115780A/en
Publication of JPS6050574B2 publication Critical patent/JPS6050574B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • B29C48/832Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/86Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the nozzle zone
    • B29C48/865Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Description

【発明の詳細な説明】 この発明は高分子重合体から架橋発泡体を成形する方法
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to an improvement in the method of forming crosslinked foams from high molecular weight polymers.

高分子重合体の発泡成形には、目的とする製品に応じて
、発泡セルが互いに連通した連続気泡構造を有する発泡
体の成形と、各々のセルが独立した気泡構造を有する発
泡体の成形との2通りの方法があり、さらにセルの形状
や大きさの違いによつて感触、機械的強度、電気的特性
の異なる成形品が得られる。
Depending on the desired product, foam molding of high molecular weight polymers can be performed by molding foams with an open cell structure in which foam cells communicate with each other, or molding foams with a cell structure in which each cell is independent. There are two methods, and molded products with different feel, mechanical strength, and electrical properties can be obtained depending on the shape and size of the cells.

連続気泡構造を有する発泡体の成形方法は、一般に無機
固体発泡剤、有機固体発泡剤、揮発性発ノ泡剤などを用
い、自由に種々の成形品を選択できることが知られてい
る。
It is known that a method for molding a foam having an open cell structure generally uses an inorganic solid foaming agent, an organic solid foaming agent, a volatile foaming agent, etc., and allows a variety of molded products to be freely selected.

独立気泡構造を有する発泡体の成形方法には、1 予め
高分子重合体(以下可塑物という)に発泡剤を添加した
のち加熱溶融する方法、または先丁ず可塑物のみを加熱
溶融した時点で外部から発泡剤を添加する方法のいずれ
の場合にも、可塑物の溶融粘度を発泡剤ガス圧とのバラ
ンスで適正となるように溶融温度を調節する方法、2増
粘剤を添加する方法、3架橋反応による粘度増加を利用
する方法などがある。
Methods for molding foams having a closed cell structure include: 1. A method in which a blowing agent is added to a high molecular weight polymer (hereinafter referred to as a plastic material) in advance and then heated and melted, or a method in which only the plastic material is first heated and melted. In either method of adding a blowing agent from the outside, a method of adjusting the melting temperature so that the melt viscosity of the plastic material is appropriate in balance with the blowing agent gas pressure, a method of adding a thickening agent, 3. There are methods that utilize the increase in viscosity caused by the crosslinking reaction.

これらのうち1の方法においては、可塑物の溶融粘度が
発泡に適しているポリ塩化ビニル、アクリル・ブタジエ
ン●スチレン共重合体、ポリスチレンなどを用いる場合
にはよいが、溶融粘度の低下が大きい可塑物に対しては
できる限り融点近くで成形する必要があり、発泡剤の発
泡温度との関係から発泡の均一性の点からも好ましいも
のでなかつた。2の方法では溶融した際の可塑物の粘度
を増粘剤て補うもので、成形性の自由度は大きいが、発
泡剤と基体となる可塑物との相溶性、分散性などにより
材料の選択が限定される。
Method 1 of these methods is suitable for plastics whose melt viscosity is suitable for foaming, such as polyvinyl chloride, acrylic-butadiene/styrene copolymers, polystyrene, etc.; It is necessary to mold the product as close to the melting point as possible, and this is not preferable from the viewpoint of uniformity of foaming due to the relationship with the foaming temperature of the foaming agent. In method 2, the viscosity of the plastic when melted is supplemented with a thickener, and there is a large degree of freedom in moldability, but the selection of materials depends on the compatibility and dispersibility of the blowing agent and the base plastic. is limited.

また、3の方法に関しては、架橋剤の高分子材料であれ
ばどのような可塑物を用いてもよいが、架橋温度および
架橋度との関係において架橋可塑物の成形性に難点があ
つた。すなわち、架橋反応して分子構造が3次元化する
ことによる増粘効果を利用して独立発泡させようとする
−ものてあるが、架橋が進行する温度に達すると架橋度
は時間の函数となり、架橋が進行しすぎると流動性を失
い成形が困難となり、架橋が進行しすぎても、発泡が進
行しすぎてもよくなく、架橋の進行に伴う粘度変化とバ
ランスしながら発泡が進1行することが望ましい。これ
らの点から従来は未架橋、未発泡てタイから押出し、後
の工程て非連続的にブレスあるいはオープン中で先ず架
橋を進行させ、次いで発泡を行なわせたり、あるいは架
橋と発泡を同時に進行させたりしていた。近年、架橋成
形技術は、従来の押出技術である架橋開始温度以下の温
度にて押出す方法から、架橋が実質的に進行する温度に
昇温してから押出す技術に変つてきたために、均一でし
かも短時間に昇温させ、可塑物の架橋は進行しているが
未だ流3動性を失わない間にタイから押出そうとする方
法、たとえば特開昭50−40667、特開昭50−1
54360、特開昭51−96858、特開昭51−9
7668などが提案されている。
Regarding method 3, any plastic material may be used as long as it is a polymeric material for the crosslinking agent, but there was a problem in the moldability of the crosslinked plastic material in relation to the crosslinking temperature and degree of crosslinking. In other words, an attempt is made to achieve independent foaming by utilizing the thickening effect caused by the crosslinking reaction and the three-dimensional molecular structure, but once the temperature at which crosslinking progresses is reached, the degree of crosslinking becomes a function of time. If crosslinking progresses too much, fluidity will be lost and molding will become difficult, and it is not good if crosslinking progresses too much or foaming progresses too much, and foaming should proceed in balance with the change in viscosity that accompanies the progress of crosslinking. This is desirable. From these points of view, conventional methods have been to extrude the uncrosslinked and unfoamed product from a tie, and in the subsequent process, proceed with crosslinking first in a discontinuous press or open state, and then proceed with foaming, or proceed with crosslinking and foaming at the same time. I was doing a lot of things. In recent years, crosslinking molding technology has changed from the conventional extrusion method of extruding at a temperature below the crosslinking initiation temperature to a technology of extruding after raising the temperature to a temperature at which crosslinking substantially progresses. A method in which the temperature is raised uniformly and in a short period of time, and the plastic is extruded from the tie while crosslinking is progressing but the fluidity is not lost yet, such as JP-A-50-40667, JP-A-Sho. 50 -1
54360, JP-A-51-96858, JP-A-51-9
7668 etc. have been proposed.

この発明は、可塑物に架橋剤および発泡剤を添4加した
混合物から架橋発泡体を連続的に成形する方法において
、上記の方法をさらに改善したものてある。
The present invention is a method for continuously molding a crosslinked foam from a mixture of a plastic material and a crosslinking agent and a blowing agent, which is a further improvement on the above method.

連続的に所定の架橋発泡体を成形するには、タイノズル
出口すでに実質的な架橋が進行しているか、あるいは架
橋が急激に進行する温度にあること、およびダイノズル
より押出されてから所望の最終架橋度に達するまでの時
間(Ts)と、所望の最終発泡度に達するまでの時間(
Tr)との間にTr〉Tsの関係が得られることが必要
である。
In order to continuously form a predetermined crosslinked foam, it is necessary that substantial crosslinking has already progressed at the exit of the tie nozzle, or the temperature is such that crosslinking will rapidly proceed, and that the desired final crosslinking is achieved after extrusion from the die nozzle. (Ts) and the time to reach the desired final foaming degree (Ts).
Tr), it is necessary to obtain the relationship Tr>Ts.

また、このような関係を得るためには、架橋剤が実質的
に分解する温度以上で、かつ発泡剤が実質的に分解また
は沸騰する温度以上に短時間に昇温するこ・と、および
上記条件を満たす温度に昇温されたら、昇温開始時から
の時間がその温度における架橋剤の半減期以内にダイノ
ズルから押出すことが必要であることが分つた。なお、
ここで言う半減期とは、その温度て加熱分解させたとき
に初めの架橋剤濃度の112を分解させるに必要な時間
を指す。すなわち、昇温開始から昇温後ダイノズル出口
までの適過時間(昇温時間)をTpとすると、Tp=f
(Q)とTpは押出量Qの函数とみることがてきる。ま
た、前記半減期以内の時間内で押出すのに可能な限界時
間をTcとすると、Tp<Tcとなるように通過時間(
昇温時間)を調節することが必要てある。したがつて、
押出量(時間)と発熱量(温度)が各々独立して自在に
調節てきるようにすれは、タイノズル出口で発泡に適正
な粘度を与える架橋度て種々の発泡状態を有する成形物
が連続して得られることを見出した。これは、半減期以
上の時間ては架橋が進行しすぎて発泡を押えてしまうと
いう知見によるものである。上述したこの発明による成
形条件を一括して式で示すと次のとおりである。
In addition, in order to obtain such a relationship, the temperature must be raised in a short period of time to a temperature above which the crosslinking agent substantially decomposes and above a temperature at which the blowing agent substantially decomposes or boils. It has been found that once the temperature is raised to a temperature that satisfies the conditions, it is necessary to extrude the crosslinking agent from the die nozzle within the half-life of the crosslinking agent at that temperature. In addition,
The half-life here refers to the time required to decompose 112 at the initial concentration of crosslinking agent when thermally decomposed at that temperature. That is, if the appropriate time (temperature increase time) from the start of temperature increase to the exit of the die nozzle after temperature increase is Tp, then Tp=f
(Q) and Tp can be seen as functions of the extrusion amount Q. Further, if Tc is the limit time possible for extrusion within the time period within the half-life, the transit time (
It is necessary to adjust the heating time (heating time). Therefore,
In order to be able to freely adjust the extrusion amount (time) and calorific value (temperature) each independently, molded products with various foaming states are continuously produced at the outlet of the tie nozzle with a degree of crosslinking that gives the appropriate viscosity for foaming. I found out that it can be obtained by This is based on the knowledge that if the time is longer than the half-life, crosslinking will proceed too much and foaming will be suppressed. The above-mentioned molding conditions according to the present invention are collectively expressed by the following equation.

(たたし、Tcは架橋剤の分解温度、Tfは発 泡剤
の分解温度または沸騰温度、Tpは溶 融樹脂の昇温終
了時の所定温度、TcはTpにおける架橋剤の半減期(
時間)、Tpは昇 温時間からTpに到達しタイノズル
から押 出すまての時間、Qは押出量)この発明で使用
される架橋剤は、t−ブチルヒドロペルオキシド、p−
メンタンヒドロペルオキシド、クメンヒドロオキシドな
どのヒドロ過酸物、過酸化ジt−ブチル、2,5−ジメ
チルー2,5−ジ(t−ブチルペルオキシ)ヘキサン、
過酸化t−ブチルクミン、過酸化ジクミルなどの過酸化
ジアルキル、過酸化アセチル、過酸化プロピオニル、過
酸化イソブチリル、過酸化ベンゾイルなどの過酸化ジア
シル、過酢酸t−ブチル、過2−エチルヘキサン酸t−
ブチル、t−ブチル過炭酸イソプロピルなどの過酸エス
テル、メチルエチルケトンペルオキシド、シクロヘキサ
ノンペルオキシドなどのケトンペルオキシド、1,1″
−ジー(t−ブチルペルオキシ)シクロヘキサンなどの
ペルオキシケタノールなどであり、その分解温度が可塑
物の融点よりも高く、かつ可塑物との反応性および発泡
剤との安定性を考慮して選べはよい。
(Tc is the decomposition temperature of the crosslinking agent, Tf is the decomposition temperature or boiling temperature of the blowing agent, Tp is the predetermined temperature at the end of heating the molten resin, and Tc is the half-life of the crosslinking agent at Tp.
time), Tp is the time from the heating time to reaching Tp and extrusion from the tie nozzle, Q is the extrusion amount) The crosslinking agent used in this invention is t-butyl hydroperoxide, p-
Hydroperoxides such as menthane hydroperoxide and cumene hydroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane,
Dialkyl peroxides such as t-butyl peroxide and cumin peroxide, diacyl peroxides such as acetyl peroxide, propionyl peroxide, isobutyryl peroxide, and benzoyl peroxide, t-butyl peracetate, and t-2-ethylhexanoate.
Peracid esters such as butyl, t-butyl isopropyl percarbonate, ketone peroxides such as methyl ethyl ketone peroxide, cyclohexanone peroxide, 1,1''
- Peroxyketanols such as di(t-butylperoxy)cyclohexane, whose decomposition temperature is higher than the melting point of the plastic, and should be selected in consideration of reactivity with the plastic and stability with the blowing agent. good.

発泡剤としては、炭酸アンモニア、重炭酸ソーダ、亜硝
酸ソーダと塩化アンモニウムとの混合物などの無機発泡
剤、ジニトロソペンタメチレンテトラミン、ベンゼンス
ルホニルヒドラジド、アゾジカルボンアミド、ジエチル
アゾジカルボキシレートなどの有機発泡剤などが用いら
れ、これらに分解温度調整用の尿素系助剤あるいは有機
酸系剤、金属塩系助剤などを併用してもよい。
Blowing agents include inorganic blowing agents such as ammonia carbonate, sodium bicarbonate, a mixture of sodium nitrite and ammonium chloride, and organic blowing agents such as dinitrosopentamethylenetetramine, benzenesulfonyl hydrazide, azodicarbonamide, diethyl azodicarboxylate, etc. are used, and a urea-based auxiliary agent, an organic acid-based agent, a metal salt-based auxiliary agent, etc. for adjusting the decomposition temperature may be used in combination with these.

また発泡剤として有機溶剤を使用することもてきる。発
泡剤は、可塑物の融点、架橋剤の分解温度、成形物の発
泡倍率および品質を考慮して選べばよい。無機発泡剤お
よび有機発泡剤はとくに限定されるものでないが、分解
速度の大きいものが好ましく、発泡剤が顕著に分解する
温度が架橋剤のそれに等しいか、あるいはその以下の方
が成形が容易になる。発泡剤の添加量は所望の発泡密度
、分解効率によつて主に決定される。一般に発泡剤を可
塑物に添加して発泡させる場合、有効に作用するのは初
めに添加した発泡剤の15〜30%程度で、あとの70
〜85%は成形品中に残ることが多く、これを有効に発
泡させて所望の発泡密度を得るには、架橋剤の添加量や
可塑物の種類に関係なく20〜30%の架橋率(有機溶
剤にて膨濶抽出したときの不溶ゲル分の10紛率)に達
したところで発泡させるのが好ましい。種々の試験を行
なつた結果、上記の架橋率が得られるのは、架橋剤およ
び可塑物の種類に関係なく、各温度において架橋剤の分
解量が初期濃度の112になる時間すなわち半減期内で
あることを見出した。
It is also possible to use organic solvents as blowing agents. The foaming agent may be selected in consideration of the melting point of the plastic material, the decomposition temperature of the crosslinking agent, the expansion ratio and quality of the molded product. Inorganic blowing agents and organic blowing agents are not particularly limited, but those with a high decomposition rate are preferred, and molding is easier if the temperature at which the blowing agent significantly decomposes is equal to or lower than that of the crosslinking agent. Become. The amount of foaming agent added is mainly determined by the desired foaming density and decomposition efficiency. Generally, when adding a blowing agent to a plastic material to foam it, only about 15 to 30% of the blowing agent added at the beginning acts effectively, and the remaining 70% acts effectively.
~85% often remains in the molded product, and in order to effectively foam this and obtain the desired foam density, a crosslinking rate of 20 to 30% (regardless of the amount of crosslinking agent added or the type of plastic material) It is preferable to carry out foaming when the insoluble gel content reaches 10% (insoluble gel content when expanded and extracted with an organic solvent). As a result of various tests, the above crosslinking rate can be obtained regardless of the type of crosslinking agent and plasticizer, and the time required for the decomposition amount of the crosslinking agent to reach the initial concentration of 112 at each temperature, that is, within the half-life period. I found that.

これは架橋剤の分解がとくに時間に対しては指数函数的
てあり、分解が50%程度まては非常に早くてそれ以上
は緩慢に分解するために、実質上50%程度も分解して
いれば所望の最終架橋率に対し十分な架橋率を得ること
ができるためと考えられる。一方、可塑物との反応は一
般に一次反応てあるため、架橋は架橋剤の分解に比べて
ゆつくりと進行するのて、半減期内ては架橋率を時間に
よつて自由に制御できるためと思われる。ノ 第1図は
、一般的に言われている架橋剤の分解量を半減期を基準
に示したものである。第2図は、温度に対する半減期を
プロットした一例てあり、aは過酸化ジクミル、bは2
,5−ジメチルー2,5−ジ(tーブチルパーオキシ)
ヘキシン・−3で、それらの0.2モル/′ベンゼン溶
液を加熱分解させて活性酸素量の低下を測定して算出し
たものである。上記の活性酸素量とは、化学反応性に富
む酸素量を言い、原子状態が準安定状態にある酸素の量
を言う。第3図は、高分子重合体にフ架橋剤を混和した
ものの各温度における時間に対する架橋率の変化を示し
たもので、その詳細は次のとおりである。実験は各試料
を未架橋状態で溶融したのち1?厚さの試料片にブレス
し、これを直ちに上記温度に保たれたシリコーンオイル
中で一定時間浸漬したのち18゜Cの水で急冷したもの
の架橋率を測定した。
This is because the decomposition of the crosslinking agent is an exponential function with respect to time, and decomposition is extremely fast when it reaches about 50%, and decomposition is slow beyond that, so in reality, it decomposes by about 50%. This is presumably because a sufficient crosslinking rate can be obtained for the desired final crosslinking rate. On the other hand, since the reaction with plastics is generally a first-order reaction, crosslinking progresses more slowly than the decomposition of the crosslinking agent, and the crosslinking rate can be freely controlled by time within the half-life. Seem. Figure 1 shows the amount of decomposition of a crosslinking agent, which is generally said to be based on the half-life. Figure 2 shows an example of half-life plotted against temperature, where a is dicumyl peroxide and b is dicumyl peroxide.
,5-dimethyl-2,5-di(t-butylperoxy)
It was calculated by thermally decomposing a 0.2 mol/'benzene solution of hexyne-3 and measuring the decrease in the amount of active oxygen. The above active oxygen amount refers to the amount of oxygen that is highly chemically reactive, and refers to the amount of oxygen whose atomic state is in a metastable state. FIG. 3 shows the change in the crosslinking rate with respect to time at each temperature of a high molecular weight polymer mixed with a crosslinking agent, the details of which are as follows. The experiment was conducted after melting each sample in an uncrosslinked state. A sample piece of the same thickness was pressed, immediately immersed in silicone oil kept at the above temperature for a certain period of time, and then rapidly cooled with water at 18°C, and the crosslinking rate was measured.

なお、試料片の1Tmmの厚さは、可塑物の熱伝導率(
一般的に小さい)を無視できるほど肉厚方向に短時間に
昇温できる厚さとして決定してあり、試料片全体を昇温
する際に周囲のシリコーンオイルの温度が低下しないよ
うに、容量をできるだけ大きくとつて強制攪拌を行なつ
た。第2図から各温度における各架橋剤の半減期を求め
、これを第3図に当てはめると半減期における架橋率は
35〜40%以下(斜線部分)を示している。
Note that the thickness of the sample piece of 1 Tmm is determined by the thermal conductivity of the plastic material (
The thickness is determined to be such that the temperature can be raised in a short time in the thickness direction so that the specimen (generally small) can be ignored. Forced stirring was performed to make the volume as large as possible. When the half-life of each crosslinking agent at each temperature is determined from FIG. 2 and applied to FIG. 3, the crosslinking rate at the half-life is 35 to 40% or less (shaded area).

ここでこれら関係を求める前提条件として、可塑物を架
橋させる場合所望の最終架橋率を得るのに必要な最適の
架橋剤量があればよく、それ以上の添加量は残渣として
残り無意味であるという見解に立つている。これとは逆
に第3図中のDはBに比べて架橋剤が少なく、半減期に
おける架橋率は17〜18%程度てあり、Bと同じ効果
を得よう、とするには温度とさらに上げる必要がある。
したがつて、半減期内の時間てあれは架橋剤や可塑物の
種類および温度に関係なく架橋発泡に適正な粘度を付与
することがてき、この場合温度と時間が各々独立して制
御できることが重要である。次にこの発明を実施例によ
つて詳しく説明する。実施例 高分子重合体 低密度ポリエチレン100重量部架 橋
剤 過酸化ジクミル 1重量部 (分解
温度(Te) 約166℃) 発 泡 剤 アゾジカノUυアミド 20重昂部上
記混合物に発泡助剤としてステアリン酸鉛を少量添加し
て発泡剤の分解温度(Tf)を約185℃に調整した材
料21を、第4図に示すような本発明実施装置のホッパ
1から投入し、変速可能な駆動源11と歯車12とて回
転されるスクリュ3、スクリュ先端部のノーズコーン4
およびヒータ15により未架橋、未発泡の温度(〈Tf
,Tc)にて均一に可塑化あるいは架橋剤および発泡剤
の分解開始温度以上に発熱昇温させ、第1段のシリンダ
2と直角に連接され外周にヒータ15を具えた第2段の
シリンダ5内に可塑化溶融体22を送り込む。
Here, as a precondition for determining these relationships, when crosslinking a plastic material, it is sufficient that there is an optimal amount of crosslinking agent necessary to obtain the desired final crosslinking rate, and any amount added beyond that amount remains as a residue and is meaningless. I am of the opinion that On the contrary, D in Figure 3 contains less crosslinking agent than B, and the crosslinking rate during the half-life is about 17-18%. It is necessary to raise it.
Therefore, the time within the half-life period can impart an appropriate viscosity to cross-linked foam regardless of the type and temperature of the cross-linking agent or plasticizer, and in this case, temperature and time can each be controlled independently. is important. Next, the present invention will be explained in detail by way of examples. Example polymer: 100 parts by weight of low-density polyethylene Crosslinking agent: 1 part by weight of dicumyl peroxide (decomposition temperature (Te) approximately 166°C) Blowing agent: 20 parts by weight of azodicano Uυ amide Lead stearate was added to the above mixture as a foaming aid. The material 21, in which the decomposition temperature (Tf) of the blowing agent was adjusted to about 185° C. by adding a small amount of 12, the screw 3 is rotated, and the nose cone 4 at the tip of the screw
and the temperature (<Tf
, Tc) to uniformly generate heat and raise the temperature above the decomposition starting temperature of the crosslinking agent and the blowing agent. A plasticized melt 22 is fed into the container.

シリンダ5内には、搬送用のネジ部6と、先端にシリン
ダ5との間隙で回転による剪断発熱を与えるための回転
を矛リフイス7とキャップ8からなり、前記変速可能な
駆動源11とは独立して変速可能な駆動源14と歯車1
3とて回転されノるロータ16が装入されている。第1
段のシリンダ2から送り込んだ溶融体22を、回転オリ
フィス7によつて短時間に、しかも架橋剤と発泡剤の分
解温度(Te,Tl)以上の温度(Tp)に昇温させ、
さらに所定温度(Tp)に温度制御された熱媒体液(温
油)を還流するジャケット10を設けたダイノズル9か
ら押出す。
Inside the cylinder 5, there is a threaded part 6 for conveyance, a rotary cutting tool 7 and a cap 8 for applying shear heat by rotation in the gap between the cylinder 5 and the tip of the cylinder 5, and the variable speed drive source 11 is Drive source 14 and gear 1 that can change speed independently
A rotor 16, which is rotated at a speed of 3, is installed. 1st
The melt 22 fed from the cylinder 2 of the stage is heated by the rotating orifice 7 in a short time to a temperature (Tp) higher than the decomposition temperature (Te, Tl) of the crosslinking agent and the blowing agent,
Further, the heat medium liquid (hot oil) whose temperature is controlled to a predetermined temperature (Tp) is extruded from a die nozzle 9 provided with a jacket 10 for refluxing.

押出された溶融体23は、第1段押出機のスクリュ回転
による押出量と、押出量の変化に対して関係なく独立し
て回転数を調整てきる第2段の回転ロータ16による剪
断発熱量とで、昇温開始から昇温終了後ダイノズル9の
出口までの通過時間(Tp)と温度(Tp)を選定調節
することによつてグイノズル9を出た直後に発泡を開始
し、サイジングダイ(図示せず)で形を整えた品質の良
好な所望の架橋発泡成形物を得た。このときの条件はの
とおりである。ダイノズル出口での溶融体温度(Tp)
=190゜C押出量(Q)=35k91hr昇温前の溶
融体の温度=1377C 昇温開始からグイノズル出口までの 通過時間(Tp)=1鍛ダイノ
ズル出口での架橋率=約25%サイジング後の成形物の
発泡倍率=28倍サイジング後の成形物の架橋率=68
.3%比較例実施例と同じ材料を用い、同じ装置により
下記の条件で架橋発泡成形を行なつた。
The extruded melt 23 has an extrusion amount due to the rotation of the screw of the first stage extruder, and a shear calorific value due to the second stage rotating rotor 16 whose rotation speed is independently adjusted regardless of changes in the extrusion amount. By selecting and adjusting the passage time (Tp) and temperature (Tp) from the start of temperature rise to the exit of the die nozzle 9 after the end of the temperature rise, foaming is started immediately after exiting the die nozzle 9, and the sizing die ( A desired cross-linked foam molded product of good quality was obtained by adjusting the shape using a method (not shown). The conditions at this time are as follows. Melt temperature at die nozzle exit (Tp)
= 190°C Extrusion amount (Q) = 35k91hr Temperature of melt before heating = 1377C Passage time from the start of heating to the Guin nozzle exit (Tp) = 1 Crosslinking rate at the forging die nozzle exit = Approximately 25% after sizing Foaming ratio of molded product = 28 times Crosslinking ratio of molded product after sizing = 68
.. 3% Comparative Example Using the same materials and the same equipment as in the example, crosslinking foam molding was carried out under the following conditions.

ダイノズル出口での溶融体温度(Tp)=190゜C押
出量(Q)=15k91hr昇温前の溶融体の温度=1
28℃ 昇温開始からダイノズル出口までの 通過時間(Tp)=約3囲2上記
の条件にて回転オリフィス7の回転を変化させ、種々の
樹脂温度におけるダイノズル出口の架橋率を測定した。
Melt temperature at die nozzle exit (Tp) = 190°C Extrusion amount (Q) = 15k91hr Temperature of melt before heating = 1
Passage time (Tp) from the start of temperature rise to the exit of the die nozzle at 28° C. = approximately 3.2°C The rotation of the rotary orifice 7 was varied under the above conditions, and the crosslinking rate at the exit of the die nozzle at various resin temperatures was measured.

その結果を第5図に示す。上記の押出量においては良好
な架橋発泡成形品を得ることができす、発泡剤の分解温
度以上におけるサイジング後の発泡倍率は1皓以下であ
つた。これは3叩2の半減期を得るに必要な温度は第2
図より約182′Cてあることから、182′C以上は
架橋が進行しすぎて発泡が抑えられてしまうためである
The results are shown in FIG. At the above extrusion rate, a good cross-linked foamed molded product could be obtained, and the expansion ratio after sizing at a temperature above the decomposition temperature of the blowing agent was 1 or less. This means that the temperature required to obtain a half-life of 3 and 2 is the second temperature.
From the figure, the temperature is about 182'C, so if the temperature exceeds 182'C, crosslinking will proceed too much and foaming will be suppressed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は架橋剤の分解量と時間との関係を示す曲線図、
第2図は架橋剤の温度に対する半減期を示す線図、第3
図は架橋剤を含む高分子重合体の各温度における架橋率
と時間との関係を示す曲線図、第4図は本発明実施装置
の断面図、第5図は比較例における樹脂温度と架橋率の
関係を示す曲線図である。 2・・・第1段のシリンダ、3・・・スクリュ、5・・
・第2段のシリンダ、6・・・ネジ部、7・・・回転オ
リフィス、8・・・キャップ、9・・・グイノズル。
Figure 1 is a curve diagram showing the relationship between the amount of decomposition of the crosslinking agent and time;
Figure 2 is a diagram showing the half-life of the crosslinking agent versus temperature;
The figure is a curve diagram showing the relationship between crosslinking rate and time at various temperatures of a polymer containing a crosslinking agent, Figure 4 is a cross-sectional view of the apparatus implementing the present invention, and Figure 5 is a resin temperature and crosslinking rate in a comparative example. It is a curve diagram showing the relationship. 2...1st stage cylinder, 3...screw, 5...
・Second stage cylinder, 6... Threaded part, 7... Rotating orifice, 8... Cap, 9... Guin nozzle.

Claims (1)

【特許請求の範囲】 1 架橋剤と発泡剤を混和した高分子重合体をスクリュ
押出機で架橋反応および発泡が起きない温度および圧力
下で溶融、混練し、次いでこの溶融体を溶融体の分子間
剪断によつて架橋剤の分解温度以上で、かつ発泡剤の分
解温度または沸騰温度以上の所定温度に昇温してから押
出す工程において、溶融体を昇温し始めてから該所定温
度に到達しダイノズルから押出すまでの時間を、前記架
橋剤の該所定温度における半減期よりも短かい時間内で
押出すものとし、該押出時間の調節は前記溶融体の押出
量を変化させることによつて行なうことを特徴とする高
分子重合体の架橋発泡成形方法。 2 架橋剤と発泡剤を混和した高分子重合体を架橋反応
および発泡が起きない温度および圧力下で溶融、混練す
る単軸又は二軸スクリュを回転変速可能に装架した第1
段押出機と、この第1段押出機の押出口に接続され、前
記高分子重合体の溶融体を搬送するねじ部及びこのねじ
部の先端に一体に形成されシリンダ内周面と協働する回
転オリフィスを設けたロータを前記第1段押出機のスク
リュとは独立して回転変速可能に装架した第2段押出機
とよりなり、前記溶融体は前記回転オリフィスにおける
分子間剪断速度のみによつて架橋剤の分解温度及び発泡
剤の分解温度又は沸騰温度以上の所定温度に発熱昇温し
、前記回転オリフィスにおいて前記溶融体が発熱昇温し
始めてから前記所定温度に到達しダイノズルから押出す
までの時間は前記第1段押出機からの供給量のみによつ
て前記所定温度における架橋剤の半減期より短かく調節
し得るようにしたことを特徴とする高分子重合体の架橋
発泡成形装置。
[Claims] 1. A high molecular weight polymer mixed with a crosslinking agent and a foaming agent is melted and kneaded in a screw extruder at a temperature and pressure that does not cause crosslinking reaction and foaming, and then this melt is mixed with molecules of the melt. In the step of extruding after raising the temperature to a predetermined temperature above the decomposition temperature of the crosslinking agent and above the decomposition temperature or boiling temperature of the blowing agent by shearing, the predetermined temperature is reached after the temperature of the melt starts to rise. The time required for extrusion from the die nozzle is shorter than the half-life of the crosslinking agent at the predetermined temperature, and the extrusion time is adjusted by changing the amount of extrusion of the melt. A method for crosslinking and foaming molding of high molecular weight polymers. 2. A first unit equipped with a single or twin screw capable of rotating at variable speed, which melts and kneads a high molecular weight polymer mixed with a crosslinking agent and a foaming agent at a temperature and pressure that does not cause crosslinking reaction and foaming.
a stage extruder, a threaded part that is connected to the extrusion port of the first stage extruder and conveys the melted polymer; and a threaded part that is integrally formed at the tip of the threaded part and cooperates with the inner peripheral surface of the cylinder. The second stage extruder is equipped with a rotor provided with a rotating orifice so that the rotation speed can be changed independently of the screw of the first stage extruder, and the melt is controlled only at the intermolecular shear rate at the rotating orifice. Therefore, the temperature is exothermically raised to a predetermined temperature that is higher than the decomposition temperature of the crosslinking agent and the decomposition temperature or boiling temperature of the blowing agent, and after the melt starts to exothermicly increase in temperature in the rotating orifice, it reaches the predetermined temperature and is extruded from the die nozzle. A crosslinking and foaming molding apparatus for a high-molecular polymer, characterized in that the time to which the crosslinking agent lasts can be adjusted to be shorter than the half-life of the crosslinking agent at the predetermined temperature only by the amount of supply from the first stage extruder. .
JP52031406A 1977-03-22 1977-03-22 Crosslinking foam molding method and device for high molecular weight polymers Expired JPS6050574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52031406A JPS6050574B2 (en) 1977-03-22 1977-03-22 Crosslinking foam molding method and device for high molecular weight polymers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52031406A JPS6050574B2 (en) 1977-03-22 1977-03-22 Crosslinking foam molding method and device for high molecular weight polymers

Publications (2)

Publication Number Publication Date
JPS53115780A JPS53115780A (en) 1978-10-09
JPS6050574B2 true JPS6050574B2 (en) 1985-11-09

Family

ID=12330366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52031406A Expired JPS6050574B2 (en) 1977-03-22 1977-03-22 Crosslinking foam molding method and device for high molecular weight polymers

Country Status (1)

Country Link
JP (1) JPS6050574B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4498578B2 (en) * 2000-10-05 2010-07-07 積水化学工業株式会社 Manufacturing method of polyethylene pipe

Also Published As

Publication number Publication date
JPS53115780A (en) 1978-10-09

Similar Documents

Publication Publication Date Title
JP6586089B2 (en) Apparatus and method for producing foamed foam embryos
JP3998374B2 (en) Method for adding supercritical carbon dioxide and method for producing thermoplastic resin foam using the addition method
CA2300776C (en) Rotational molding
US3776989A (en) Method for injection molding articles of foam material involving autoge-nous flow
JP2554154B2 (en) Moldable foam beads of polyolefin crosslinked with silane
US4419309A (en) Polystyrene foam extrusion into a foam assisting atmosphere
Lee et al. Growth of gas bubbles in the foam extrusion process
US4206166A (en) Process of producing polyolefin foam moldings
JPH0615722A (en) Production of high-polymeric material object having foamable core in skin and device used for said method
JPH10152575A (en) Foaming and molding of thermoplastic resin
US3452123A (en) Process for the manufacture of crosslinked ethylene polymer foams
US5667740A (en) Process for the production of products of light cellular plastic with closed cells
CN1261899A (en) Vinyl aromatic polymer coupling and foams
EP0692516A1 (en) Thermoplastic syntactic foam with accurate dimensions
JPH05500779A (en) Manufacturing method of cellular plastic
GB2145961A (en) Method of producing crosslinked foam articles
JPS6050574B2 (en) Crosslinking foam molding method and device for high molecular weight polymers
US3351569A (en) Process for the preparation of expandable polymeric products
JPH01500812A (en) Method for manufacturing polyvinyl chloride foam
JP2003261707A (en) Method for producing resin foam
DK147372B (en) PROCEDURE FOR CONTINUOUS PREPARATION OF HEAT-INSULATED CONDUCT
JPH08300391A (en) Injection molding of foamable plastic composition
US3801686A (en) Method of injection molding articles of foam material
JP3517622B2 (en) Method and apparatus for producing foam
KR830001834B1 (en) Method of making crosslinked open cell polyole - fin foumed products